首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Progesterone treatment of Xenopus oocytes in vitro causes progression through meiotic cell division. The role of altered intracellular levels of cAMP on the initiation of meiotic cell division has been studied. Basal levels of cAMP averaged 1.5 pmol in oocytes from eight females, and exposure to progesterone caused a rapid drop in cAMP to about 40 to 60% of basal. Half-maximal decreases occurred within 15 to 60 s, and cAMP returned to near basal values by 20 min after progesterone. Theophylline inhibition of progesterone-induced cell division was characterized by a small increase in basal levels of cAMP and a reduced drop in cAMP due to the hormone. Cholera toxin, an activator of adenylate cyclase, was found to be a potent inhibitor of progesterone-induced meiosis, with half-maximal inhibition at 8 times 10(-12) M. In addition, the purified A subunit of cholera toxin was an effective inhibitor of progesterone action when microinjected into oocytes, with half-maximal inhibition occurring at an approximate internal concentration of 1 X 10(-7) M. Cholera toxin alone increased cAMP levels by 20%, but upon addition of progesterone, the level increased transiently to 200% of basal, indicating that the inhibition was due to elevated levels of cAMP. The results support a model in which the initiation of meiotic cell division is regulated by cAMP and protein phosphorylation.  相似文献   

2.
Xenopus laevis oocytes have been incubated or microinjected with cholera and diphtheria holotoxins or their respective isolated fragments A and B. Effects on progesterone-induced maturation, protein synthesis and cAMP levels were observed. Xenopus laevis oocytes were highly susceptible to cholera toxin upon incubation as evidenced by the increase of cAMP (two-fold increase in cAMP with 0.1 nM cholera toxin) and the blockade of progesterone-induced maturation. When isolated cholera toxin fragments A or B were incubated with oocytes, no activity could be detected. However, microinjection of cholera toxin fragment A into oocyte was able to mimic the effects of incubated holotoxin. Microinjection of cholera toxin B fragment was only effective at very high concentrations, probably due to trace contaminations by the A fragment. On the other hand, Xenopus laevis oocytes were very resistant to diphtheria toxin action upon incubation, a result attributable to lack of specific membrane receptors since, after microinjection of diphtheria toxin A fragment into oocytes, inhibition of protein synthesis was demonstrated. By simultaneous microinjection of highly radioactive adenine-labelled NAD and diphtheria toxin fragment A into oocytes, radioactive ADP ribosylation of the elongation factor 2 (EF2) was observed. It is proposed that Xenopus laevis oocytes provide a new experimental approach for studying the mechanisms of action of microbial toxins.  相似文献   

3.
The activity of ornithine decarboxylase (ornithine carboxylyase E.C. 4.1.1.17) was studied during meiotic maturation induced in vitro by progesterone in follicle cell-free oocytes. Enzyme activity increased 4–6 fold during maturation, preceding germinal vesicle breakdown. The increase in ornithine decarboxylase activity was inhibited by cholera toxin, an agent that blocks meiotic maturation and increases cAMP levels within the cell. It was also prevented by cycloheximide but not by actinomycin D. Treatment of oocytes with D,L-α-difluoromethyl-ornithine, an irreversible inhibitor of ornithine decarboxylase and of putrescine synthesis, effectively abolished enzyme activity without preventing germinal vesicle breakdown. These observations show that the progesterone-induced increase in ornithine decarboxylase activity is not required for completion of meiotic division of the oocyte.  相似文献   

4.
Progesterone decreases the cAMP level of Xenopus oocytes which had been pretreated with cholera toxin (6 nM) and IBMX (1 mM); its action is obtained either by exposure to external hormone (1 micro M) or by microinjection of 50 nl of a 1 mM progesterone solution in paraffin oil. The cAMP content can be decreased in hormone-free oocytes by the calcium ionophore A 23187 or by microinjection of calcium-calmodulin. Conversely when endogenous calcium-calmodulin is inhibited by microinjection of either anticalmodulin antibodies or fluphenazine the cAMP content is increased. In all experimental conditions (high or low levels of intracellular calmodulin), progesterone is always capable of decreasing the oocyte cAMP concentration. Our results favor the view that the cAMP content is negatively controlled, probably via an inhibition of the adenylate cyclase activity, by two parallel mechanisms: the first involves calmodulin, the second results in an action of progesterone which does not require the intermediary formation of the calcium-calmodulin complex.  相似文献   

5.
Experiments were performed to determine if elevation of cumulus cell cAMP results in an increase in mouse oocyte cAMP while the heterologous gap junctions were intact. Both follicle-stimulating hormone (FSH) and cholera toxin induced a marked increase (>20-fold) in intracellular cAMP in isolated mouse cumulus cell-oocyte complexes in the presence of 3-isobutyl-1-methyl xanthine (IBMX). Concomitantly, both FSH and cholera toxin transiently inhibited resumption of meiosis of cumulus cell-enclosed but not denuded oocytes. The transient nature of the inhibitory effect produced by either FSH or cholera toxin was correlated with the cAMP level in the cumulus cell-oocyte complex. The inhibitory effect, however, was apparently not due to movement of cumulus cell cAMP to the oocyte via the functional heterologous gap junctions between cumulus cells and the oocyte. Radioimmunoassay of cAMP in oocytes free of attached cumulus cells or cumulus cell-enclosed oocytes exposed to either FSH or cholera toxin revealed that both groups of oocytes contained similar amounts of cAMP (about 0.14 fmole/oocyte). Metabolic labeling of cumulus cell-oocyte complexes with [3H]adenosine followed by incubation with either FSH or cholera toxin resulted in a marked increase in the amount of radiolabeled cAMP compared to that in unstimulated complexes. However, similar amounts of radiolabeled cAMP were found in oocytes derived from either stimulated or unstimulated complexes. Thus, we have not detected, using two methods of assay, that increasing the cAMP content of the cumulus cells results in any increase in the cAMP content of the oocyte. The apparent compartmentalization of cumulus cell cAMP elevated in response to either FSH or cholera toxin was not due to disruption of intercellular communication between the two cell types during the incubation; metabolic cooperativity was present between the two cell types and molecules of similar molecular weight and charge relative to that of cAMP were rapidly equilibrated between the two cell types. Testosterone potentiated the FSH/cholera toxin-induced transient inhibition of maturation of cumulus cell-enclosed oocytes. However, testosterone did not increase cAMP accumulation produced by either FSH or cholera toxin, decrease the rate of cAMP degradation, or promote movement of cumulus cell cAMP to the oocyte. Since cAMP elevated in response to FSH or cholera toxin appeared to be compartmentalized to cumulus cells and since neither FSH, cholera toxin, nor testosterone inhibited resumption of meiosis in denuded oocytes, it appears that the inhibitory effect promoted by FSH or cholera toxin is directly mediated by an agent other than cAMP, although cAMP generation is required for its action and that cumulus cells mediate the inhibition. These results are discussed in terms of a possible role of cAMP and steroids in regulating maturation in the mouse.  相似文献   

6.
In somatic cells, the Raf-1 serine/threonine protein kinase is activated by several polypeptide growth factors. We investigated the role of Raf-1 in progesterone-induced meiotic maturation of Xenopus laevis oocytes. Raf-1 enzymatic activity and phosphorylation (reflected by a mobility shift on sodium dodecyl sulfate gels) were increased in oocytes following progesterone stimulation. The increase in Raf-1 activity was concurrent with an elevation in the activity of mitogen-activated protein (MAP) kinase. When RNA encoding an oncogenic form of Raf-1 (v-Raf) was injected into immature oocytes, MAP kinase mobility shift, germinal vesicle breakdown, and histone H1 phosphorylation increased markedly. When RNA encoding a dominant-negative version of Raf-1 was injected, progesterone-induced oocyte maturation was blocked. When RNA encoding Xenopus mos (mosxe) was injected into oocytes, Raf-1 and MAP kinase mobility shifts were observed after several hours. Also, when antisense mosxe oligonucleotides were injected into oocytes, progesterone-induced Raf-1 and MAP kinase mobility shifts were blocked. Finally, when antisense mosxe oligonucleotides were coinjected with v-Raf RNA into oocytes, histone H1 kinase activation, germinal vesicle breakdown, and MAP kinase mobility shift occurred. These findings suggest that Raf-1 activity is required for progesterone-induced oocyte maturation and that Raf-1 is downstream of mosxe activity.  相似文献   

7.
Microinjection of monoclonal antibodies (lines 238, 172, and 259) directed against the ras gene product, p21, into Xenopus laevis oocytes accelerated progesterone-induced germinal vesicle breakdown. Antibody 238 had the greatest effect on the acceleration of progesterone-induced oocyte maturation, and this effect was correlated with in vitro inhibition of adenylate cyclase (EC 4.6.1.1) activity in a concentration-dependent manner. Inhibition of adenylate cyclase by antibody 238 was also measured in membranes prepared from oocytes pretreated with either cholera toxin or pertussis toxin. These results suggest a role for the ras gene product in the regulation of vertebrate cell adenylate cyclase activity.  相似文献   

8.
In Xenopus laevis oocytes progesterone is able to inhibit directly the plasma membrane adenylate cyclase activity and induce reinitiation of meiotic maturation. To determine whether progesterone inhibition is mediated by the inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase, Ni, the effect of the Bordetella pertussis toxin (IAP) and limited proteolysis on progesterone action in oocytes was investigated. Treatment of oocyte membranes with islet activating protein (IAP) in the presence of [32P]NAD led to incorporation of radiolabel into a 41 000-dalton membrane protein. However, exposure of isolated oocytes to 100 ng/ml IAP for up to 24 h, or oocyte membranes with concentrations of toxin as high as 100 micrograms/ml, had no effect on either progesterone inhibition of adenylate cyclase or induction of maturation. Similarly, limited alpha-chymotrypsin proteolysis of oocyte membranes failed to modify progesterone-induced inhibition of adenylate cyclase. In contrast, inhibition of human platelet adenylate cyclase by epinephrine, acting via a GTP-dependent, alpha 2-adrenergic receptor-mediated pathway, is almost completely abolished by both IAP treatment and limited proteolysis of platelet membranes. These data indicate that unlike attenuation of platelet enzyme activity, the inhibition of adenylate cyclase in oocyte membranes by progesterone does not occur via a classical Ni-mediated pathway.  相似文献   

9.
It is now well recognized that hCG-induced luteolysis is associated with hCG-induced desensitization, but the physiological significance of luteal cell GnRH, PGs and beta-receptors is still undefined. Therefore, we intend in this study to observe the effects of prostaglandin F2 alpha and prostaglandin E2 and the interactions between epinephrine, a potent LHRH agonist [(D-Ser-(TBu)6, des-Gly-NH10(2) LHRH ethylamide: Buserelin] and hCG in normal and in vitro hCG-desensitized rat immature luteal cells in monolayer culture, on basal, hCG or cholera toxin stimulated intracellular and extracellular cAMP and progesterone secretion. The present report shows that incubation of immature rat luteal cells in monolayer culture with Buserelin, led to 25-50% inhibition of the epinephrine-as well as PGE2-induced cAMP and progesterone responses. The LHRH agonist can also reverse the stimulatory effects of cholera toxin in the presence of hCG and led with PGF2 alpha, to additive inhibitory effects on extracellular cAMP accumulation induced by cholera toxin. Both Buserelin and PGF2 alpha can reverse the hCG-induced cAMP and progesterone release but no effect could be observed when the incubation was carried out with either substance in the absence of hCG. Prostaglandin E2, in acute conditions of incubation, seems to share agonist properties with hCG when both were incubated with luteal cells. Buserelin reversed the stimulatory effects of PGE2, hCG, epinephrine and cholera toxin on cAMP and progesterone responses to these substances. These results suggest that Buserelin and PGF2 alpha have luteolytic-like effects and that there may be a complementary action for the two substances. Preincubation of rat luteal cells in monolayer culture with 1 nM hCG for a 24 h period led to the inhibition of cAMP and progesterone responses after a subsequent exposure to hCG and epinephrine. Luteal cells were no longer responsive to hCG while the presence of epinephrine in hCG-desensitized cells led to a 40% stimulation of cAMP and progesterone production. These observations suggest that occurred a partial alteration of the N component activity of the adenylyl cyclase system.  相似文献   

10.
Both insulin and progesterone are capable of stimulating germinal vesicle breakdown (GVBD) of large, Stage VI oocytes of Xenopus laevis. Numerous studies have shown an increase in intracellular pH (pHi) and ribosomal protein S6 phosphorylation prior to GVBD in oocytes treated with progesterone. In this study the effect of insulin and progesterone on pHi and S6 phosphorylation was compared. Both hormones increased pHi and S6 phosphorylation to similar levels and the time course of pHi change was the same for both hormones. Half-maximal effects of insulin were observed at 7 X 10(-8) M concentrations. In the presence of 1 nM cholera toxin, the ability of progesterone to induce these two responses was inhibited while the action of insulin was unaffected. However, GVBD induced by either hormone was blocked by cholera toxin. In small, Stage IV oocytes that do not undergo GVBD in response to either progesterone or insulin, a partial increase in pHi without S6 phosphorylation occurred in response to progesterone but both events occurred in response to insulin. These results suggest that the inability of Stage IV oocytes to undergo GVBD in response to hormone is not due to a failure to increase pHi or phosphorylate S6. The results in this paper also indicate that these events are regulated differently by insulin and progesterone in Xenopus oocytes.  相似文献   

11.
In pituitary GH1 cells, a rat growth hormone-producing cell line, butyrate elicited a dose-dependent increase in cholera toxin receptors as measured by an increased binding of 125I-labeled cholera toxin to the intact cells. Butyrate did not alter the affinity of cholera toxin binding, the dissociation constant being 0.4 nM for both control and butyrate-treated cells. Despite the increased binding, the cAMP response to cholera toxin was strongly reduced after exposure to butyrate. This reduction was dose-dependent and with butyrate 1--5 mM, intracellular and extracellular (medium) cAMP levels were decreased by more than 70% in cells incubated for 24 h with 1 nM cholera toxin. Forskolin (30 microM) elicited a cAMP response similar to that found with the toxin, and a similar inhibition of cAMP was also found after incubation of GH1 cells with butyrate. Butyrate also affected basal cAMP levels which were reduced by 40--60% in cells cultured for 24--48 h with the fatty acid. In order to study whether butyrate influenced cAMP synthesis and/or cAMP degradation, adenylyl cyclase and phosphodiesterase activities were determined in control cells and in cells incubated for 24 h with cholera toxin or forskolin. Butyrate had a dual effect since, besides activating phosphodiesterase by more than twofold, it also inhibited the cyclase by 40--50% in all groups. The in vitro response of adenylyl cyclase to stimulatory (NaF) and inhibitory (carbachol and adenosine) effectors was also examined. The absolute activity of the cyclase was always 40--50% lower in the cells incubated with butyrate, but the percentage change of activity obtained in butyrate-treated and untreated cells was unaltered. In addition, ADP-ribosylation of the guanine nucleotide stimulatory component of the cyclase (Gs) was not affected in the cells incubated with butyrate. These results suggest that the catalytic (C) subunit of adenylyl cyclase and/or its interaction with the regulatory components might be altered in butyrate-treated GH1 cells. The inhibition of the cAMP response in GH1 cells was accompanied by an inhibition of a biological action of the nucleotide, namely growth hormone (somatotropin) production which is primarily controlled by thyroid hormones in these cells. Forskolin alone did not affect the somatotropin levels but potentiated the growth hormone response to triiodothyronine. Butyrate produced a dose-dependent inhibition of this response, which was totally abolished at concentrations of butyrate higher than 1 mM.  相似文献   

12.
Although progesterone is the established maturation inducer in amphibia, it has been demonstrated that Bufo arenarum oocytes resume meiosis with no need of an exogenous hormonal stimulus if deprived of their enveloping follicle cells, a phenomenon called "spontaneous maturation." The present studies were designed to evaluate the participation of purines and phosphoinositides in the spontaneous and progesterone-induced maturation in Bufo arenarum full-grown oocytes. The presented data demonstrate that high intracellular levels of purines such as cAMP or guanosine can inhibit both spontaneous and progesterone-induced maturation in full-grown denuded Bufo arenarum oocytes. Moreover, the fact that the mycophenolic acid was able to induce maturation in denuded oocytes obtained during the nonreproductive period in a manner similar to that of the progesterone and also to increase the percentages of spontaneous maturation suggests that in Bufo arenarum, inosine monophosphate dehydrogenase inhibition is an important step in the resumption of meiosis. Inhibition of the phosphatidylinositol 4,5 bisphosphate hydrolysis by treatment of denuded oocytes with neomycin totally blocks spontaneous and progesterone-induced maturation, suggesting that the products of this hydrolysis (1,2 diacylglycerol and inositol 1,4,5 trisphosphate) may be involved in the maturation process of Bufo. In addition, our results indicate that the activation of protein kinase C is also involved in both types of maturation.  相似文献   

13.
Fully grown Xenopus oocytes are physiologically arrested at the G2/prophase border of the first meiotic division. Addition in vitro of progesterone or insulin causes release of the G2/prophase block and stimulates meiotic cell division of the oocyte, leading to maturation of the oocyte into an unfertilized egg. The possibility that the products of polyphosphoinositide breakdown, diacylglycerol and inositol-1,4,5-trisphosphate (IP3-, are involved in oocyte maturation was investigated. Microinjection of IP3 into oocytes just prior to addition of progesterone or insulin accelerated the rate of germinal vesicle breakdown (GVBD) by up to 25%. Half-maximal acceleration occurred at an intracellular IP3 concentration of 1 microM. Treatment of oocytes with the diacylglycerol analog and tumor promoter, 12-O-tetradecanoylphorbol 13-acetate (TPA) induced GVBD in the absence of hormone. Half-maximal induction of GVBD occurred with 150 nM TPA and was blocked by pretreatment of oocytes with 10 nM cholera toxin. Microinjection of highly purified protein kinase C from rat brain into oocytes did not induce maturation but markedly accelerated the rate of insulin-induced oocyte maturation. However, injection of the enzyme had no effect on progesterone action. In oocytes with a basal intracellular pH below 7.6, TPA increased intracellular pH, but GVBD occurred with TPA in Na-substituted medium. Neomycin, a putative inhibitor of polyphosphoinositide breakdown, reversibly inhibited insulin- but not progesterone-induced maturation. Half-maximal inhibition occurred at 1.6 mM neomycin. These results indicate that protein kinase C is capable of regulating oocyte maturation in Xenopus.  相似文献   

14.
Guanyl nucleotide binding-proteins, or G-proteins, are ubiquitous molecules that are involved in cellular signal transduction mechanisms. Because a role has been established for cAMP in meiosis and G-proteins participate in cAMP-generating systems by stimulating or inhibiting adenylate cyclase, the present study was conducted to examine the possible involvement of G-proteins in the resumption of meiotic maturation. Cumulus cell-free mouse oocytes (denuded oocytes) were maintained in meiotic arrest in a transient and dose-dependent manner when microinjected with the nonhydrolyzable GTP analog, GTP gamma S. This effect was specific for GTP gamma S, because GppNHp, GTP, and ATP gamma S were without effect. Three compounds, known to interact with G-proteins, were tested for their ability to modulate meiotic maturation: pertussis toxin, cholera toxin, and aluminum fluoride (AlF4-). Pertussis toxin had little effect on maturation in either cumulus cell-enclosed oocytes or denuded oocytes when meiotic arrest was maintained with dibutyryl cAMP (dbcAMP) or hypoxanthine. Cholera toxin stimulated germinal vesicle breakdown (GVB) in cumulus cell-enclosed oocytes during long-term culture, but its action was inhibitory in denuded oocytes. AlF4- stimulated GVB in both cumulus cell-enclosed oocytes and denuded oocytes when meiotic arrest was maintained with hypoxanthine but was much less effective in dbcAMP-arrested oocytes. In addition, AlF4- abrogated the inhibitory action of cholera toxin in denuded oocytes and also that of follicle-stimulating hormone (FSH) in cumulus cell-enclosed oocytes. Cholera toxin or FSH alone each stimulated the synthesis of cAMP in oocyte-cumulus cell complexes, whereas pertussis toxin or AlF4- alone were without effect. Both cholera toxin and AlF4- augmented the stimulatory action of FSH on cAMP. These data suggest the involvement of guanyl nucleotides and G-proteins in the regulation of GVB, although different G-proteins and mediators may be involved at the oocyte and cumulus cell levels. Cholera toxin most likely acts by ADP ribosylation of the alpha subunit of Gs and increased generation of cAMP, whereas AlF4- appears to act by antagonizing a cAMP-dependent step.  相似文献   

15.
E Pick 《Cellular immunology》1977,32(2):329-339
Intracellular levels of cyclic 3′,5′-adenosine monophosphate (cAMP) in purified guinea pig peritoneal macrophages were elevated following incubation with the adenylate cyclase stimulators prostaglandins E1 and E2 (PGE1, PGE2), isoproterenol, and cholera toxin. Exposure of macrophages to antigen-stimulated lymphocyte culture supernatants, containing migration inhibitory factor (MIF), resulted in a moderate but consistent decrease in the cAMP level, which was best expressed after 1–2 hr of incubation. Incubation of macrophages with MIF-containing supernatants or partially purified MIF for 1–2 hr resulted in reduced cAMP accumulation in response to PGE1, PGE2, isoproterenol, and cholera toxin (nonspecific refractoriness). These findings indicate that MIF-induced inhibition of macrophage migration is not due to an increase in the cellular level of cAMP and that the reduction in cAMP concentration, caused by MIF, is probably a secondary phenomenon unrelated to the inhibition of cellular motility.  相似文献   

16.
Detergent-pretreated spermatozoa of the toad, Bufo bufo japonicus, transform into pronuclei when injected into progesterone-matured oocytes at 18 hr post-hormone treatment (PHT). These sperm, however, do not show any change when injected into the oocytes at the same age from which the germinal vesicle (GV) has been removed before the progesterone treatment. In an attempt to determine when and how the pronucleus-inducing activity (PIA) develops in hormonally induced maturation process, enucleated oocytes were injected with GV and sperm at various stages after the hormone treatment and electrically stimulated at 18 hr PHT. It was found that sperm pronuclei are induced only in those oocytes receiving GV before 14 hr PHT. The 1 hr pulse-treatment of maturing oocytes with cycloheximide between 8–18 hr PHT and the injection of sperm at 18 hr PHT revealed that PIA does not occur in the oocytes treated with the inhibitor during 10–14 hr PHT. Injection of α-amanitin into maturing oocytes had no effect in this respect. Determination of DNA synthetic activity in vitro of the oocyte extracts from various maturation stages showed that the net increase of the activity occurs before the formation of PIA. The activity of the cycloheximide-treated oocyte extracts utilizing native DNA did not correlate with the sensitivity of oocytes to the inhibitor with respect to PIA in situ. It is concluded that PIA develops, in association with the GV materials, by way of translational events at 10–14 hr PHT, being quiescent during later maturation stages, and commences to function as an activation response of oocytes at 18 hr PHT.  相似文献   

17.
To determine the role of the adenylate cyclase system in potentiation of enzyme secretion, we used cholera toxin to activate adenylate cyclase before examining the effects of agents on chief cell cAMP and pepsinogen secretion. Dispersed chief cells were obtained from guinea pig stomach by fractionation of mucosal cells on a Percoll gradient. Incubation of cells with 100 nM cholera toxin for 90 min and subsequent incubation with carbachol or cholecystokinin resulted in augmentation of cellular cAMP and potentiation of pepsinogen secretion. The rate of increase in cAMP with carbachol or cholecystokinin was similar to that for the potentiated secretory response. To determine the role of changes in cell calcium on these effects, we examined the actions of the ionophore A23187. In cells preincubated with cholera toxin, A23187 augmented cAMP and caused potentiation of pepsinogen secretion. The effects of A23187, carbachol, and cholecystokinin on cells preincubated with cholera toxin were abolished by removing extracellular calcium or by adding the calmodulin inhibitor trifluoperazine. These data indicate that in chief cells preincubated with cholera toxin, secretagogue-induced increases in cell calcium concentration activate calmodulin thereby augmenting levels of cAMP and causing potentiation of pepsinogen secretion. Modulation of adenylate cyclase by changes in chief cell calcium concentration appears to be one mechanism whereby secretagogue interaction can result in potentiation of pepsinogen secretion.  相似文献   

18.
Xenopus laevis oocytes undergo maturation when they are injected with large quantities of crude ribosomes from various origins: X laevis full-grown or matured oocytes, Xenopus ovaries and embryos, Xenopus liver or mouse liver. All have the same efficiency, whatever their origin: they include 50-90% maturation in the injected oocytes at about the same speed as progesterone treatment. The ribosomal preparations are inactive wen injected into recipient oocytes pretreated with cholera toxin or cycloheximide. After dissociation with the high salt extract, but not with the subunits. Hypotheses concernning the mode action of this ribosomal extract are disussed.  相似文献   

19.
We have examined the regulation of two key enzymes that control polyamine biosynthesis-L-ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) - by agents increasing cAMP in S49 lymphoma cells. Incubation of wild type S49 cells with beta-adrenergic agonists (terbutaline or isoproterenol) inhibited ODC and SAMDC activities rapidly (less than 2 hr). more quickly than these agents arrested the cells in the G1 phase of the cell cycle. The beta-adrenergic antagonist propranolol blocked inhibition of ODC activity produced by isoproterenol, but only if added simultaneously or less than 4 hr after the agonist. Incubation of wild type S49 cells with cholera toxin or PGE1 also inhibited ODC activity. Decreases in ODC activity produced by beta-adrenergic agonists, cholera toxin, PGE1 or dibutyryl cAMP were all enhanced by the phosphodiesterase inhibitor Ro 20-1724. Results of studies of ODC and SAMDC activity in S49 variants having lesions in the pathway of cAMP generation and action were as follows: kin- cells (which lack cAMP-dependent protein kinase activity) showed no inhibition of ODC by any agent; AC- cells (which have absent nucleotide coupling units in their adenylate cyclase system) only demonstrated inhibition in response to dibutyryl cAMP; UNC cells (which have deficient coupling of hormone receptors and adenylate cyclase) only demonstrated inhibition in response to dibutyryl cAMP and cholera toxin, and beta-depleted cells (which have a decreased number of beta-adrenergic receptors) responded as did wild type cells except for absent response to isoproterenol. We conclude that inhibition of ODC and SAMDC activity in S49 cells is an early response to agents that increase cAMP and that this action occurs via the "classical" pathways of activation of adenylate cyclase and protein kinase. These results in S49 cells contrast with evidence in other systems in which cAMP has been suggested to enhance polyamine biosynthesis, perhaps through alternative mechanisms.  相似文献   

20.
ADP-ribosylation factors (ARFs) are 19-21-kDa proteins purified from bovine brain that bind guanosine 5'-triphosphate (GTP). They exhibit GTP-dependent activity as activators of cholera toxin-catalyzed ADP-ribosylation of the alpha-subunit of the stimulatory guanine nucleotide-binding protein of the adenylyl cyclase system (Gs alpha). ARF, which interacts directly with the catalytic subunit of cholera toxin, has no known physiologic role. Intracellular microinjection of ARF was employed to investigate the effect of ARF on progesterone- and insulin-stimulated maturation of Xenopus oocytes. Maturation was inhibited by injection of ARF 3-8 h before exposure of oocytes to progesterone or insulin. ARF inhibition was dependent on progesterone concentration but not on insulin concentration. Inhibition was enhanced by concomitant injection of GTP and to a greater extent by guanosine 5'-O-(thiotriphosphate) (GTP gamma S) which, in the absence of ARF, inhibited somewhat at early time points. The demonstration of this effect of ARF on both progesterone- and insulin-stimulated oocyte maturation may provide a clue to the physiologic role of this guanine nucleotide-binding protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号