首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of elevated [CO2] (e[CO2]) on crops often includes a decrease in their nutrient concentrations where reduced transpiration‐driven mass flow of nutrients has been suggested to play a role. We used two independent approaches, a free‐air CO2 enrichment (FACE) experiment in the South Eastern wheat belt of Australia and a simulation study employing the agricultural production systems simulator (APSIM), to show that transpiration (mm) and nutrient uptake (g m?2) of nitrogen (N), potassium (K), sulfur (S), calcium (Ca), magnesium (Mg) and manganese (Mn) in wheat are correlated under e[CO2], but that nutrient uptake per unit water transpired is higher under e[CO2] than under ambient [CO2] (a[CO2]). This result suggests that transpiration‐driven mass flow of nutrients contributes to decreases in nutrient concentrations under e[CO2], but cannot solely explain the overall decline.  相似文献   

2.
Physiological processes that modulate photosynthetic acclimation to rising atmospheric CO2 concentration are subjects of intense discussion recently. Apparently, the down-regulation of photosynthesis under elevated CO2 is not understood clearly. In the present study, the response of soybean (Glycine max L.) to CO2 enrichment was examined in terms of nitrogen partitioning and water relation. The plants grown under potted conditions without combined N application were exposed to either ambient air (38 Pa CO2) or CO2 enrichment (100 Pa CO2) for short (6 days) and long (27 days). Plant biomass, apparent photosynthetic rate, transpiration rate and 15N uptake and partitioning were measured consecutively after elevated CO2 treatment. Long-term exposure reduced photosynthetic rate, stomatal conductance and transpiration rate. In contrast, short-term exposure increased biomass production of soybean due to increase in dry weight of leaves. Leaf N concentration tended to decrease with CO2 enrichment, however such difference was not true for stem and roots.A close correlation was observed between transpiration rate and 15N partitioned into leaves, suggesting that transpiration plays an important role on nitrogen partitioning to leaves. In conclusion existence of a feed back mechanism for photosynthetic acclimation has been proposed. Down-regulation of photosynthetic activity under CO2 enrichment is caused by decreasing leaf N concentration, and reduced rate of transpiration owing to decreased stomatal conductance is partially responsible for poor N translocation.  相似文献   

3.

Background and aims

Only limited information is available in the research area on the effect of elevated CO2 concentration ([CO2]) and air temperature (Tair) on the fertilizer N uptake by rice. This study was conducted to investigate changes in rice uptake of N derived from fertilizer (NDFF) and soil (NDFS) as well as fertilizer N uptake efficiency (FUE) with elevated [CO2] and Tair in two soils with different fertility.

Methods

Rice (Oryza sativa L.) plants were grown with 15N-urea for two growing seasons (2007 in the less fertile and 2008 in the more fertile soil) in temperature gradient chambers under two (ambient and elevated) levels of [CO2] and Tair regimes. At harvest, dry matter (DM) and N uptake amount of rice compartments (root, shoot, and grain) were determined.

Results

The DM of whole rice increased (P?<?0.01) with co-elevation of [CO2] and Tair in both years (by 28.0 % in 2007 and by 27.4 % in 2008). The DM in 2008 was greater than that in 2007 by 48.1 to 63.1 % probably due to better soil fertility as well as longer sunshine hours (456 h vs. 568 h). Co-elevation of [CO2] and Tair increased total N uptake, NDFF, and NDFS by 19.4 to 29.1 % in general compared to the ambient conditions. The FUE increased with co-elevation of [CO2] and Tair from 46.5 to 59.5 % in 2007 and from 36.7 to 43.8 % in 2008.

Conclusions

The projected global warming with elevated [CO2] is expected to increase FUE via enhanced DM accumulation with less increments in the soils that have higher indigenous soil N availabilities.  相似文献   

4.
Nitrogen (N) availability is a critical factor affecting photosynthetic acclimation of C3 plants under elevated atmospheric CO2 concentration ([CO2]e). However, current understanding of N effects on photosynthetic electron transport rate and partitioning, as well as its impact on photosynthesis under [CO2]e, is inadequate. Using controlled environment open-top chambers, wheat (Triticum aestivum L.) was grown at two N levels (0 and 200 mg(N) kg?1 soil) and two atmospheric CO2 concentrations of 400 ([CO2]a) and 760 μmol mol?1([CO2]e) during 2009 and 2010. Under [CO2]e high N availability increased stomatal conductance and transpiration rate, reduced limitations on the activity of triose phosphate isomerase, a Calvin cycle enzyme, and increased the rate of net photosynthesis (P N). Considering photosynthetic electron transport rate and partitioning aspects, we suggest that greater N availability increased P N under [CO2]e due to four following reasons: (1) higher N availability enhanced foliar N and chlorophyll concentrations, and the actual photochemical efficiency of photosystem (PS) II reaction centers under irradiance increased, (2) increase of total electron transport rate and proportion of open PSII reaction centers, (3) enhancement of the electron transport rate of the photochemical and carboxylation processes, and (4) reduced limitations of the Calvin cycle enzymes on the photosynthetic electron transport rate. Consequently, sufficient N improved light energy utilization in wheat flag leaves under [CO2]e, thus benefiting to photosynthetic assimilation.  相似文献   

5.

Purpose

This study investigated the residual contribution of legume and fertilizer nitrogen (N) to a subsequent crop under the effect of elevated carbon dioxide concentration ([CO2]).

Methods

Field pea (Pisum sativum L.) was labeled in situ with 15N (by absorption of a 15N-labeled urea solution through cut tendrils) under ambient and elevated (700 μmol mol–1) [CO2] in controlled environment glasshouse chambers. Barley (Hordeum vulgare L.) and its soil were also labeled under the same conditions by addition of 15N-enriched urea to the soil. Wheat (Triticum aestivum L.) was subsequently grown to physiological maturity on the soil containing either 15N-labeled field pea residues (including 15N-labeled rhizodeposits) or 15N-labeled barley plus fertilizer 15N residues.

Results

Elevated [CO2] increased the total biomass of field pea (21 %) and N-fertilized barley (23 %), but did not significantly affect the biomass of unfertilized barley. Elevated [CO2] increased the C:N ratio of residues of field pea (18 %) and N-fertilized barley (19 %), but had no significant effect on that of unfertilized barley. Elevated [CO2] increased total biomass (11 %) and grain yield (40 %) of subsequent wheat crop regardless of rotation type in the first phase. Irrespective of [CO2], the grain yield and total N uptake by wheat following field pea were 24 % and 11 %, respectively, higher than those of the wheat following N-fertilized barley. The residual N contribution from field pea to wheat was 20 % under ambient [CO2], but dropped to 11 % under elevated [CO2], while that from fertilizer did not differ significantly between ambient [CO2] (4 %) and elevated [CO2] (5 %).

Conclusions

The relative value of legume derived N to subsequent cereals may be reduced under elevated [CO2]. However, compared to N fertilizer application, legume incorporation will be more beneficial to grain yield and N supply to subsequent cereals under future (elevated [CO2]) climates.  相似文献   

6.
Background and Aims: Nitrogen (N) is a major factor affecting yield gain of cropsunder elevated atmospheric carbon dioxide concentrations [CO2].It is well established that elevated [CO2] increases root mass,but there are inconsistent reports on the effects on N uptakecapacity per root mass. In the present study, it was hypothesizedthat the responses of N uptake capacity would change with theduration of exposure to elevated [CO2]. Methods: The hypothesis was tested by measuring N uptake capacity inrice plants exposed to long-term and short-term [CO2] treatmentsat different growth stages in plants grown under non-limitingN conditions in hydroponic culture. Seasonal changes in photosynthesisrate and transpiration rate were also measured. Key Results: In the long-term [CO2] study, leaf photosynthetic responsesto intercellular CO2 concentration (Ci) were not affected byelevated [CO2] before the heading stage, but the initial slopein this response was decreased by elevated [CO2] at the grain-fillingstage. Nitrate and ammonium uptake capacities per root dry weightwere not affected by elevated [CO2] at panicle initiation, butthereafter they were reduced by elevated [CO2] by 31–41% at the full heading and mid-ripening growth stages. In theshort-term study (24 h exposures), elevated [CO2] enhanced nitrateand ammonium uptake capacities at the early vegetative growthstage, but elevated [CO2] decreased the uptake capacities atthe mid-reproductive stage. Conclusions: This study showed that N uptake capacity was downregulated underlong-term exposure to elevated [CO2] and its response to elevated[CO2] varied greatly with growth stage.  相似文献   

7.
The water fluxes and the CO2 exchange of three leaf succulents, Othonna opima, Cotyledon orbiculata and Senecio medley-woodii, with different leaf anatomy, growth form and CO2 fixation pathways (C3, CAM) were monitored with a gas exchange cuvette which was combined with a potometric system to quantify water uptake. Measurements, which are primarily valid for plants with a sufficient water supply, were made during 6 to 10 consecutive days under constant experimental conditions. Water uptake for 24 h exceeded water loss by transpiration only for a S, medley-woodii plant with 10 expanding but only 7 mature leaves. In this case the gained water evidently is put into leaf expansion. All other plants showed balanced transpiration and water uptake rates. O. opima and C. orbiculata have a similar life form, similar water storage volumes and the same natural habitat but their diurnal water uptake patterns differ significantly. In the C3 plant O. opima water uptake increased when the transpiration increased or transpiration rates were higher than uptake rates and vice versa. On the contrary the CAM plant C. orbiculata transpired during the dark period at constant or decreasing rates but showed steadily increasing uptake rates. Senecio medley-woodii- and C. orbiculata are CAM plants with similar diurnal water uptake patterns with its maximum in uptake during or towards the end of the CO2 dark fixation period. Water uptake of C. orbiculata was at its minimum at the end of the light period despite transpiration being maximal. The results were discussed considering the different CO2 fixation pathways. In the investigated CAM succulents, C. orbiculata and S. medley-woodii, the CAM influenced water uptake throughout the whole day and not only during the CO2 dark fixation period.  相似文献   

8.
The response of some photosynthetic parameters (CO2 assimilation, transpiration rate, stomatal conductance, intercellular CO2 concentration, water-use efficiency, and chlorophyll content), shoot development, and the morphological features of the root system to differentiated conditions of nitrogen supply was tested in festulolium (Festulolium braunii K. Richert A. Camus) varieties (Felopa and Sulino). Nitrogen fertilization with no nitrogen added [0 g(N)], single dosage [0.23 g(N)], and double dosage [0.46 g(N)] per pot and per year was applied. Lack of nitrogen resulted in formation of longer and finer roots and lowered chlorophyll content, CO2 assimilation, and water-use efficiency, resulting in lower dry matter accumulation. Application of both dosages of nitrogen resulted in improved aboveground features, while root features were enhanced without nitrogen fertilization. Dependence between physiological parameters and morphological traits was significant and positively correlated in the case of the aboveground parts of plants and negatively correlated to the belowground parts.  相似文献   

9.
10.
The effects of elevated CO2 (750 ppm vs. 390 ppm) were evaluated on nitrogen (N) acquisition and assimilation by three Medicago truncatula genotypes, including two N-fixing-deficient mutants (dnf1-1 and dnf1-2) and their wild-type (Jemalong). The proportion of N acquisition from atmosphere and soil were quantified by 15N stable isotope, and N transportation and assimilation-related genes and enzymes were determined by qPCR and biochemical analysis. Elevated CO2 decreased nitrate uptake from soil in all three plant genotypes by down-regulating nitrate reductase (NR), nitrate transporter NRT1.1 and NR activity. Jemalong plant, however, produced more nodules, up-regulated N-fixation-related genes and enhanced percentage of N derived from fixation (%Ndf) to increase foliar N concentration and N content in whole plant (Ntotal Yield) to satisfy the requirement of larger biomass under elevated CO2. In contrast, both dnf1 mutants deficient in N fixation consequently decreased activity of glutamine synthetase/glutamate synthase (GS/GOGAT) and N concentration under elevated CO2. Our results suggest that elevated CO2 is likely to modify N acquisition of M. truncatula by simultaneously increasing N fixation and reducing nitrate uptake from soil. We propose that elevated CO2 causes legumes to rely more on N fixation than on N uptake from soil to satisfy N requirements.  相似文献   

11.
CO2 exchange, transpiration and leaf water potential of Welwitschia mirabilis were measured in three contrasting habitats of the Namib desert. From these measurements stomatal conductance, internal CO2concentration and WUE were calculated. In two of the three habitats photosynthetic CO2 uptake decreased and transpiration increased with increasing leaf age while in the third habitat CO2 uptake increased and transpiration decreased with leaf age. Except for the stomata of young leaf sections in this habitat, stomata closed with increasing δw leading to a pronounced midday depression of CO2 uptake. The high stomatal limitation of photosynthetic CO2 uptake of glasshouse-grown plants was verified in the natural habitat. Photosynthetic CO2 uptake saturated between 800 and 1300 μmol photons m?2 s?1depending on leaf age and habitat. CO2 uptake had a broad temperature optimum declining significantly beyond 32 °C. Predawn leaf water potential reflected water availability and atmospheric conditions in the three habitats and ranged from ? 2.5 to ? 6.2 MPa. There was a pronounced diurnal course of leaf water potential in all habitats. During the day a gradient in water potential developed along the leaf axis with the lowest potential at the leaf's tip. With respect to whole plant balances of CO2 exchange and transpiration, there were marked differences between Welwitschias in the three habitats. Despite a negative CO2 balance over a period of five months, leaves in the driest habitat grew constantly at the expense of carbon reserves in the plant. Only at the wettest site did carbon gain exceed carbon demand for growth. The WUE of whole plants was insignificant in all habitats. The results were as contrasting as the habitats and plants and did not allow generalisations about adaptational features of Welwitschia mirabilis.  相似文献   

12.
Effects of the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis on plant growth, carbon (C) and nitrogen (N) accumulation, and partitioning was investigated in Triticum aestivum L. plants grown under elevated CO2 in a pot experiment. Wheat plants inoculated or not inoculated with the AM fungus were grown in two glasshouse cells with different CO2 concentrations (400 and 700 ppm) for 10 weeks. A 15N isotope labeling technique was used to trace plant N uptake. Results showed that elevated CO2 increased AM fungal colonization. Under CO2 elevation, AM plants had higher C concentration and higher plant biomass than the non-AM plants. CO2 elevation did not affect C and N partitioning in plant organs, while AM symbiosis increased C and N allocation into the roots. In addition, plant C and N accumulation, 15N recovery rate, and N use efficiency (NUE) were significantly higher in AM plants than in non-AM controls under CO2 enrichment. It is concluded that AM symbiosis favors C and N partitioning in roots, increases C accumulation and N uptake, and leads to greater NUE in wheat plants grown at elevated CO2.  相似文献   

13.
In the global change scenario, increased CO2 may favour water use efficiency (WUE) by plants. By contrast, in arid and semiarid areas, salinity may reduce water uptake from soils. However, an elevated WUE does not ensure a reduced water uptake and upon salinity this fact may constitute an advantage for plant tolerance. In this work, we aimed to determine the combined effects of enhanced [CO2] and salinity on the plant water status, in relation to the regulation of PIP aquaporins, in the root and leaf tissues of broccoli plants (Brassica oleracea L. var Italica), under these two environmental factors. Thus, different salinity concentrations (0, 60 and 90 mM NaCl) were applied under ambient (380 ppm) and elevated (800 ppm) [CO2]. Under non-salinised conditions, stomatal conductance (Gs) and transpiration rate (E) decreased with rising [CO2] whereas water potential (Ψω) was maintained stable, which caused a reduction in the root hydraulic conductance (L0). In addition, PIP1 and PIP2 abundance in the roots was decreased compared to ambient [CO2]. Under salinity, the greater stomatal closure observed at elevated [CO2] – compared to that at ambient [CO2] – caused a greater reduction in Gs and E and allowed plants to maintain their water balance. In addition, a lower decrease in L0 under salt stress was observed at elevated [CO2], when comparing with the decrease at ambient [CO2]. Modifications in PIP1 and PIP2 abundance or their functionality in the roots is discussed. In fact, an improved water status of the broccoli plants treated with 90 mM NaCl and elevated [CO2], evidenced by a higher Ψω, was observed together with higher photosynthetic rate and water use efficiency. These factors conferred on the salinised broccoli plants greater leaf area and biomass at elevated [CO2], in comparison with ambient [CO2]. We can conclude that, under elevated [CO2] and salt stress, the water flow is influenced by the tight control of the aquaporins in the roots and leaves of broccoli plants and that increased PIP1 and PIP2 abundance in these organs provides a mechanism of tolerance that maintains the plant water status.  相似文献   

14.
Stimulation of grassland nitrogen cycling under carbon dioxide enrichment   总被引:1,自引:0,他引:1  
 Nitrogen (N) limits plant growth in many terrestrial ecosystems, potentially constraining terrestrial ecosystem response to elevated CO2. In this study, elevated CO2 stimulated gross N mineralization and plant N uptake in two annual grasslands. In contrast to other studies that have invoked increased C input to soil as the mechanism altering soil N cycling in response to elevated CO2, increased soil moisture, due to decreased plant transpiration in elevated CO2, best explains the changes we observed. This study suggests that atmospheric CO2 concentration may influence ecosystem biogeochemistry through plant control of soil moisture. Received: 18 December 1995 / Accepted: 19 June 1996  相似文献   

15.

Background and Aims

During the Mesozoic, the polar regions supported coniferous forests that experienced warm climates, a CO2-rich atmosphere and extreme seasonal variations in daylight. How the interaction between the last two factors might have influenced water use of these conifers was investigated. An experimental approach was used to test the following hypotheses: (1) the expected beneficial effects of elevated [CO2] on water-use efficiency (WUE) are reduced or lost during the 24-h light of the high-latitude summer; and (2) elevated [CO2] reduces plant water use over the growing season.

Methods

Measurements of leaf and whole-plant gas exchange, and leaf-stable carbon isotope composition were made on one evergreen (Sequoia sempervirens) and two deciduous (Metasequoia glyptostroboides and Taxodium distichum) ‘living fossil’ coniferous species after 3 years'' growth in controlled-environment simulated Cretaceous Arctic (69°N) conditions at either ambient (400 µmol mol−1) or elevated (800 µmol mol−1) [CO2].

Key Results

Stimulation of whole-plant WUE (WUEP) by CO2 enrichment was maintained over the growing season for the three studied species but this pattern was not reflected in patterns of WUE inferred from leaf-scale gas exchange measurements (iWUEL) and δ13C of foliage (tWUEL). This response was driven largely by increased rates of carbon uptake, because there was no overall CO2 effect on daily whole-plant transpiration or whole-plant water loss integrated over the study period. Seasonal patterns of tWUEL differed from those measured for iWUEL. The results suggest caution against over simplistic interpretations of WUEP based on leaf isotopic composition.

Conclusions

The data suggest that the efficiency of whole-tree water use may be improved by CO2 enrichment in a simulated high-latitude environment, but that transpiration is relatively insensitive to atmospheric CO2 in the living fossil species investigated.Key words: Water-use efficiency, elevated CO2, living fossil plants, conifers, paleoecology, ancient polar forests, stable carbon isotopes, stomatal conductance, canopy transpiration  相似文献   

16.

Background and purpose

Rapid increases in atmospheric carbon dioxide concentration ([CO2]) may increase crop residue production and carbon: nitrogen (C:N) ratio. Whether the incorporation of residues produced under elevated [CO2] will limit soil N availability and fertilizer N recovery in the plant is unknown. This study investigated the interaction between crop residue incorporation and elevated [CO2] on the growth, grain yield and the recovery of 15N-labeled fertilizer by wheat (Triticum aestivum L. cv. Yitpi) under controlled environmental conditions.

Methods

Residue for ambient and elevated [CO2] treatments, obtained from wheat grown previously under ambient and elevated [CO2], respectively, was incorporated into two soils (from a cereal-legume rotation and a cereal-fallow rotation) 1 month before the sowing of wheat. At the early vegetative stage 15N-labeled granular urea (10.22 atom%) was applied at 50 kg?N ha?1 and the wheat grown to maturity.

Results

When residue was not incorporated into the soil, elevated [CO2] increased wheat shoot (16 %) and root biomass (41 %), grain yield (19 %), total N uptake (4 %) and grain N removal (8 %). However, the positive [CO2] fertilization effect on these parameters was absent in the soil amended with residue. In the absence of residue, elevated [CO2] increased fertilizer N recovery in the plant (7 %), but when residue was incorporated elevated [CO2] decreased fertilizer N recovery.

Conclusions

A higher fertilizer application rate will be required under future elevated [CO2] atmospheres to replenish the extra N removed in grains from cropping systems if no residue is incorporated, or to facilitate the [CO2] fertilization effect on grain yield by overcoming N immobilization resulting from residue amendment.  相似文献   

17.
The projected increase of atmospheric CO2 concentration ([CO2]) is expected to increase rice yield, but little is known of the effects of [CO2] at low temperature, which is the major constraint to growing rice in cool climates. We grew rice under two levels of [CO2] (ambient and elevated by 200 μmol mol?1) and two nitrogen (N) fertilization regimes in northern Japan in 2003 (cool weather) and 2004 (warm weather) in the field in a free‐air CO2 enrichment (FACE) system. Elevated [CO2] significantly increased grain yield in both years in both N regimes, but the magnitude of the increase differed between years: 6% in 2003 vs. 17% in 2004, with a significant interaction between [CO2] and year. This difference resulted from responses of spikelet number and ripening percentage to elevated [CO2]. Enhancement of dry matter production and N uptake at heading by elevated [CO2] was smaller in 2003 than in 2004, although at maturity there was no difference between years. No significant interaction between N regime and [CO2] was detected in yield and yield components. The results suggest that yield gain due to elevated [CO2] can be reduced by low temperature.  相似文献   

18.
With an experimental system using mass spectrometry techniques and infra-red gas analysis of CO2 developed for aquatic plants, we studied the responses to various light intensities and CO2 concentrations of photosynthesis and O2 uptake of the red macroalga Chondrus crispus S. The CO2 exchange resistance at air-water interface which could limit the photosynthesis was experimentally measured. It allowed the calculation of the free dissolved CO2 concentration. The response to light showed a small O2 uptake (37% of net photosynthesis in standard conditions) compared to C3 plants; it was always higher than dark respiration and probably included a photoindependent part. The response to CO2 showed: (a) an O2 uptake relatively insensitive to CO2 concentration and not completely inhibited with high CO2, (b) a general inhibition of gas exchanges below 130 microliters CO2 per liter (gas phase), (c) an absence of an inverse relationship between O2 and CO2 uptakes, and (d) a low apparent Km of photosynthesis for free CO2 (1 micromolar). These results suggest that O2 uptake in the light is the sum of different oxidation processes such as the glycolate pathway, the Mehler reaction, and mitochondrial respiration. The high affinity for CO2 is discussed in relation to the use of HCO3 and/or the internal CO2 accumulation.  相似文献   

19.
Keeley JE  Bowes G 《Plant physiology》1982,70(5):1455-1458
The submerged aquatic plant Isoetes howellii Engelmann possesses Crassulacean acid metabolism (CAM) comparable to that known from terrestrial CAM plants. Infrared gas analysis of submerged leaves showed Isoetes was capable of net CO2 uptake in both light and dark. CO2 uptake rates were a function of CO2 levels in the medium. At 2,500 microliters CO2 per liter (gas phase, equivalent to 1.79 milligrams per liter aqueous phase), Isoetes leaves showed continuous uptake in both the light and dark. At this CO2 level, photosynthetic rates were light saturated at about 10% full sunlight and were about 3-fold greater than dark CO2 uptake rates. In the dark, CO2 uptake rates were also a function of length of time in the night period. Measurements of dark CO2 uptake showed that, at both 2,500 and 500 microliters CO2 per liter, rates declined during the night period. At the higher CO2 level, dark CO2 uptake rates at 0600 h were 75% less than at 1800 h. At 500 microliters CO2 per liter, net CO2 uptake in the dark at 1800 h was replaced by net CO2 evolution in the dark at 0600 h. At both CO2 levels, the overnight decline in net CO2 uptake was marked by periodic bursts of accelerated CO2 uptake. CO2 uptake in the light was similar at 1% and 21% O2, and this held for leaves intact as well as leaves split longitudinally. Estimating the contribution of light versus dark CO2 uptake to the total carbon gain is complicated by the diurnal flux in CO2 availability under field conditions.  相似文献   

20.
Growth at elevated CO2 often decreases photosynthetic capacity (acclimation) and leaf N concentrations. Lower-shaded canopy leaves may undergo both CO2 and shade acclimation. The relationship of acclimatory responses of flag and lower-shaded canopy leaves of wheat (Triticum aestivum L.) to the N content, and possible factors affecting N gain and distribution within the plant were investigated in a wheat crop growing in field chambers set at ambient (360 μmol mol−1) and elevated (700 μmol mol−1) CO2, and with two amounts of N fertilizer (none and 70 kg ha−1 applied on 30 April). Photosynthesis, stomatal conductance and transpiration at a common measurement CO2, chlorophyll and Rubisco levels of upper-sunlit (flag) and lower-shaded canopy leaves were significantly lower in elevated relative to ambient CO2-grown plants. Both whole shoot N and leaf N per unit area decreased at elevated CO2, and leaf N declined with canopy position. Acclimatory responses to elevated CO2 were enhanced in N-deficient plants. With N supply, the acclimatory responses were less pronounced in lower canopy leaves relative to the flag leaf. Additional N did not increase the fraction of shoot N allocated to the flag and penultimate leaves. The decrease in photosynthetic capacity in both upper-sunlit and lower-shaded leaves in elevated CO2 was associated with a decrease in N contents in above-ground organs and with lower N partitioning to leaves. A single relationship of N per unit leaf area to the transpiration rate accounted for a significant fraction of the variation among sun-lit and shaded leaves, growth CO2 level and N supply. We conclude that reduced stomatal conductance and transpiration can decrease plant N, leading to acclimation to CO2 enrichment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号