首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphorylation of the src gene product pp60v-src was studied in plasma membrane fractions prepared from Rous sarcoma virus-transformed vole cells. Upon addition of [gamma-32P]ATP to isolated membrane vesicles, phosphate was incorporated into a 60,000-dalton polypeptide identified as pp60v-src. In the presence of vanadate, pp60v-src phosphorylation was stimulated ca. 30-fold. At low concentrations of ATP (1 microM), this reaction occurred almost exclusively on the carboxy-terminal 26,000-dalton region of pp60v-src. However, at higher ATP concentrations (100 microM), additional sites of phosphorylation were evident in the amino-terminal 34,000-dalton region. Kinetic analyses, performed under conditions in which ATP hydrolysis was minimal, revealed that the phosphorylation reaction at the carboxy terminus exhibited a higher Vmax and a lower Km for ATP than those occurring at the amino terminus. In addition, the amino-terminal region of pp60v-src was more rapidly dephosphorylated than the carboxy-terminal region. These results indicate that interaction of pp60v-src with the plasma membrane may limit the extent of amino-terminal phosphorylation by lowering the rate of the reaction and the affinity for the substrate while increasing its susceptibility to phosphoprotein phosphatases. We suggest that the use of transformed-cell membrane preparations provides a model system for studying the possible regulatory roles of phosphorylation and dephosphorylation on pp60v-src function.  相似文献   

2.
Membrane association of pp60v-src, the myristylated transforming protein of Rous sarcoma virus, has been shown to be a receptor-mediated process, which is inhibited by myristylated src peptides containing the N-terminal 11 amino acids of the v-src sequence (MGYsrc). By cross-linking radiolabelled MGYsrc peptide to fibroblast membranes, a 32-kilodalton membrane protein was identified as a candidate src receptor. To elucidate the potential role of p32 in binding pp60v-src, we studied the relationship between binding of MGYsrc peptide and pp60v-src polypeptide to cellular membranes. The subcellular membrane distribution of p32 was distinct from that of pp60v-src in transformed cells. Moreover, under certain defined in vitro conditions, it was possible to inhibit peptide cross-linking to p32 without significantly affecting pp60v-src membrane binding. However, when internal sequences were removed from pp60v-src, the binding characteristics of the src deletion polypeptide and MGYsrc peptide became identical. These data indicate that the presence of internal membrane binding domains influences the interaction of myristylated N-terminal src sequences with p32, and suggest that accessory binding factors might be involved in establishing stable contact between pp60v-src and the membrane phospholipid bilayer.  相似文献   

3.
Calpactins I and II are proteins that bind Ca2+, phospholipids, actin and spectrin; they are also major substrates of oncogene and growth-factor-receptor tyrosine kinases. Since calpactins have been proposed to provide a link between membrane lipids and the cytoskeleton, we examined in detail the interactions between purified calpactin I and phospholipid liposomes. We focused on the Ca2+-dependence, the effects of phosphorylation of calpactin I by p60v-src (the protein kinase coded for by the Rous-sarcoma-virus oncogene), and the effects of the binding of calpactin I light chain to calpactin I heavy chain. Binding of the light chain to the heavy chain increased the affinity of calpactin I for phosphatidylserine (PS) liposomes. The opposite effect was observed for phosphorylation by p60v-src; phosphorylation decreased the affinity of calpactin I for PS liposomes. These two opposite effects appeared to be independent, since phosphorylation did not prevent light-chain binding to the heavy chain. Calpactin I was found, by the use of three different techniques, to bind to phospholipid liposomes at less than 10(-8) M free Ca2+. This result is in contrast with those of previous studies, which indicated that greater than 10(-6) M free Ca2+ was required. Our findings suggest that calpactin I may be bound to phospholipids in vivo at Ca2+ concentrations of about 1.5 x 10(-7) M, typical of resting unstimulated cells, and that this interaction may be modulated by light-chain binding and phosphorylation by p60v-src.  相似文献   

4.
Based on the finding that vimentin isolated and purified from cultured mammalian cells is heavily contaminated by neutral lipids, the binding of a series of radioactively labeled nonpolar lipids to pure, delipidated vimentin was investigated. Employing gel permeation chromatography of the complexes on Sephacryl S-300, cholesterol, cholesteryl fatty acid esters and mono-, di- and triglycerides were found to efficiently associate with vimentin. These compounds also showed a strong tendency to bind to vimentin filaments. While the non-alpha-helical head piece of vimentin did not interact with neutral lipids under the above assay conditions, the alpha-helical rod domain was highly active. When cholesterol or 1,2-dioleoyl-glycerol was incorporated into phospholipid vesicles, the affinity of the liposomes for vimentin filaments was considerably increased. However, in sucrose density gradient equilibrium centrifugation the filament-vesicle adducts were only stable when the liposomes contained negatively charged phospholipids. These results suggest that the association of intermediate filaments with lipid vesicles is initiated by interaction of the arginine-rich N-termini of their subunit proteins with the negatively charged vesicle surface and stabilized by partial insertion of the protein molecules into the lipid bilayer, particularly at those sites where immiscible, nonpolar lipids create defects in phospholipid packing. Very likely, nonpolar lipids play a significant role in the interaction of intermediate filaments with natural membrane systems.  相似文献   

5.
The incorporation of rifampicin into multilayer phospholipid vesicles depending on the concentration of antibiotic and phospholipid content was studied. The extent of incorporation of rifampicin into monolayer vesicles (liposomes), obtained by the homogenization of multilamellar vesicles, was determined by the method of gel filtration. It was found that rifampicin better penetrates and is retained in membranes consisting of a mixture of phosphatidylcholine and cardiolipin, the maximum incorporation of rifampicin into liposomes being 17%. It was shown by 31P NMR spectroscopy that, during the interaction of rifampicin with the phospholipid membrane, the bilayer packing of phospholipids is destroyed.  相似文献   

6.
Platelets contain exceptionally high levels of pp60c-src and, thus, provide a convenient system for investigating the physiological function of this protein-tyrosine kinase. We have employed chemical cross-linking of myristylated amino-terminal peptides of pp60c-src to platelet membranes in order to identify platelet membrane components that interact with pp60c-src to regulate or mediate its activity. We detected specific binding of radioiodinated peptides to platelet membrane proteins of 32, 50, 92, and 105 kDa. The 32-kDa protein may be related to the putative src receptor component recently identified in fibroblast membranes. The most reactive platelet protein, however, is the 50-kDa protein, which is either absent or nonreactive in fibroblast membranes. Binding of src peptides to this protein was saturable, and we estimate the presence of approximately 1 x 10(6) of the 50-kDa binding sites per platelet. The specificity of the peptide binding to the 50- and 32-kDa platelet proteins was analyzed by competition with different peptides. The binding sites displayed an absolute requirement for an N-myristoyl moiety and a strong preference for pp60c-src amino-terminal sequences. The identification of these src-interacting proteins may help to decipher the biochemical pathways in which platelet pp60c-src is involved.  相似文献   

7.
An early event in Salmonella infection is the invasion of non-phagocytic intestinal epithelial cells. The pathogen is taken up by macropinocytosis, induced by contact-dependent delivery of bacterial proteins that subvert signalling pathways and promote cytoskeletal rearrangement. SipB, a Salmonella protein required for delivery and invasion, was shown to localize to the cell surface of bacteria invading mammalian target cells and to fractionate with outer membrane proteins. To investigate the properties of SipB, we purified the native full-length protein following expression in recombinant Escherichia coli. Purified SipB assembled into hexamers via an N-terminal protease-resistant domain predicted to form a trimeric coiled coil, reminiscent of viral envelope proteins that direct homotypic membrane fusion. The SipB protein integrated into both mammalian cell membranes and phospholipid vesicles without disturbing bilayer integrity, and it induced liposomal fusion that was optimal at neutral pH and influenced by membrane lipid composition. SipB directed heterotypic fusion, allowing delivery of contents from E. coli-derived liposomes into the cytosol of living mammalian cells.  相似文献   

8.
Previous studies showed that the amino-terminal domain of Rous sarcoma virus p60v-src involved in myristylation and membrane association of the protein is required for morphological transformation and anchorage independence. Analysis of src delection mutants revealed that the amino-terminal one-third of p60v-src, including the membrane-binding domain, is not essential for induction of cell proliferation. These results demonstrated that, in contrast to the cellular target(s) involved in morphological transformation and anchorage independence, the target(s) involved in mitogenic activity is accessible to nonmyristylated src proteins.  相似文献   

9.
Cytochrome P-450(11)beta from adrenal cortex is an intrinsic membrane protein embedded in the inner mitochondrial membrane. Topography of the protein inside a phospholipid bilayer was examined using controlled proteolysis of purified cytochrome P-450(11)beta following its integration into artificial liposomes. Inclusion of the protein into phospholipid vesicles led to a marked stabilization of the cytochrome activity. Trypsin treatment of the liposome-integrated cytochrome resulted in the rapid disappearance of the native protein moiety (47 kDa), while a major 34 kDa peptide component was formed. This peptide core retained the heme moiety and part of the cytochrome steroid-11 beta hydroxylase activity. Very similar observations were obtained when inside-out vesicles prepared from isolated adrenocortical mitoplasts were examined with the same approach. It is thus suggested that adrenocortical cytochrome P-450(11)beta is embedded in the inner mitochondrial membrane as well as in artificial liposomes by a major hydrophobic domain associated with the heme moiety while a limited domain remains accessible on the matrix side of the membrane surface. The previous described phosphorylation of the cytochrome P-450(11)beta on a serine residue, by the cAMP-dependent protein kinase is suggested to occur in the protein domain oriented toward the membrane surface, the phosphorylation site being lost under mild proteolytic digestion of the membrane-integrated protein.  相似文献   

10.
We have suggested previously that the amino-terminal 8 kilodaltons of pp60src may serve as a structural hydrophobic domain through which pp60src attaches to plasma membranes. Two isolates of recovered avian sarcoma viruses (rASVs), 1702 and 157, encode pp60src proteins that have alterations in this amino-terminal region. The rASV 1702 src protein (56 kilodaltons) and the 157 src protein (62.5 kilodaltons) show altered membrane association, and fractionate largely as soluble, cytoplasmic proteins in aqueous buffers, in contrast with the membrane association of more than 80% of the src protein of standard avian sarcoma virus under the identical fractionation procedure. Plasma membranes purified from cells transformed by these rASVs contain less than 10% of the amount of pp60src found in membranes purified from cells transformed by Rous sarcoma virus or control rASVs. The altered membrane association of these src proteins had little or no effect on the properties of chick embryo fibroblasts transformed in monolayer culture. In contrast, rASV 1702 showed reduced in vivo tumorigenicity compared with Rous sarcoma virus or with other rASVs that encode membrane-associated src proteins. Rous sarcoma virus-induced tumors are malignant, poorly differentiated sarcomas that are lethal to their hosts. rASV 1702 induces a benign, differentiated sarcoma that regresses and is not lethal to its hosts. These data support the role of amino-terminal sequences in the membrane association of pp60src, and suggest that the amino terminus of pp60src may have a critical role in the promotion of in vivo tumorigenicity.  相似文献   

11.
A 125-kDa glycoprotein exposed on the surface of Saccharomyces cerevisiae cells belongs to a class of eucaryotic membrane proteins anchored to the lipid bilayer by covalent linkage to an inositol-containing glycophospholipid. We have cloned the gene (GAS1) encoding the 125-kDa protein (Gas1p) and found that the function of Gas1p is not essential for cell viability. The nucleotide sequence of GAS1 predicts a 60-kDa polypeptide with a cleavable N-terminal signal sequence, potential sites for N- and O-linked glycosylation, and a C-terminal hydrophobic domain. Determination of the anchor attachment site revealed that the C-terminal hydrophobic domain of Gas1p is removed during anchor addition. However, this domain is essential for addition of the glycophospholipid anchor, since a truncated form of the protein failed to become attached to the membrane. Anchor addition was also abolished by a point mutation affecting the hydrophobic character of the C-terminal sequence. We conclude that glycophospholipid anchoring of Gas1p depends on the integrity of the C-terminal hydrophobic domain that is removed during anchor attachment.  相似文献   

12.
We have investigated the characteristics of platelet-activating factor (PAF)-stimulated protein tyrosine phosphorylation in rabbit platelets and its relationship to pp60c-src. 32P-Labeled platelets were challenged with PAF (10(-7) M) for 15 s, the reaction was killed by lysis at 4 degrees C, and samples were loaded onto a phosphotyrosine monoclonal antibody (Tyr(P)-mAb)-agarose column. The column was eluted with 10 mM phenyl phosphate, and the fractions were collected. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, followed by autoradiography of the column fractions, showed that PAF increased the radioactivity of about a dozen protein bands with predominant ones of approximate molecular masses of 50, 60, 71, 82, and 300 kDa. When Tyr(P)-mAb-agarose column fractions were subjected to immunoblotting with pp60v-src mAb, it was observed that PAF treatment increased the reactivity of 50- and 60-kDa protein species. Immunoprecipitation with pp60v-src mAb further confirmed that PAF treatment increased phosphorylation of the 60- and 50-kDa proteins. Polyclonal antibody to G-protein (alpha-subunit) did not exhibit any reactivity to the column fractions and thus ruled out this protein as substrate for the tyrosine kinase. We next attempted to localize the pp60c-src. Platelet membrane particulate and cytosol fractions were separated from control and PAF-treated platelets, and it was observed that the immunoreactivity to pp60v-src mAb dramatically increased in the particulate membrane fraction from PAF-treated platelets. A concomitant decrease in the immunoreactivity in the cytosol fraction of PAF-treated platelets was also noted. It is concluded that PAF stimulates phosphorylation of pp60c-src tyrosine kinase and causes its rapid translocation from cytosol to membranes in rabbit platelets.  相似文献   

13.
Membrane binding of pp60src is initiated via its myristylated NH2 terminus. To identify a candidate pp60src docking protein or receptor in the membrane, a radiolabelled peptide corresponding to the pp60src NH2-terminal membrane binding domain was cross-linked to fibroblast membranes and found to specifically label a 32-kDa protein. This protein was purified by appending an affinity tag to the peptide probe so that the cross-linked complex could be isolated via affinity chromatography. Microsequencing indicated that the 32-kDa protein was the mitochondrial ADP/ATP carrier (AAC). This result was further confirmed by the ability of an antibody to the AAC to immunoprecipitate the cross-linked complex, by the ability of certain inhibitors of the AAC to block cross-linking, and by membrane fractionation to show that complex formation occurred essentially exclusively in the mitochondrial fraction. While the AAC bound the myristyl-src peptide in a specific manner both in vitro and in vivo, its localization to the inner membrane of the mitochondrion precludes its being a pp60src binding protein. An analysis of pp60v-src binding in vitro was consistent with this expectation. Thus, use of a myristyl-src peptide revealed an unexpected and previously unidentified binding capacity of the AAC, most likely related to the ability of long-chain fatty acyl coenzyme As to serve as AAC inhibitors. The amphipathic nature of the pp60src NH2 terminus suggests alternative strategies for uncovering pp60src membrane binding species.  相似文献   

14.
Rat liver mitochondrial d-β-hydroxybutyrate dehydrogenase has an absolute requirement for lecithin. The nature of the interaction between the enzyme and phospholipid has been investigated. Single bilayer lecithin liposomes of shell-like structure bring about maximal enzyme activation, whereas the interaction with larger vesicles leads to enzyme inactivation. The strong binding of the enzyme to lecithin confers great stability to the enzyme activity as compared with the nonlipid-activated enzyme, and permits the isolation of a lipoprotein complex by chromatography on Sephadex G-200. Only 20% of the proteins solubilized with d-β-hydroxybutyrate dehydrogenase from mitochondrial membranes bind to lecithin liposomes, thus a 5-fold purification of the enzyme is achieved. The liposome-bound proteins had a significantly lower polarity than the remaining 80% of solubilized mitochondrial membrane proteins.  相似文献   

15.
The phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP), and diacylglycerol kinase activities in the plasma membrane-rich fraction of chicken embryo fibroblasts infected with a temperature-sensitive mutant of Rous sarcoma virus increased when the cells were shifted from the nonpermissive temperature, 41 degrees C, to the permissive temperature, 35 degrees C. Temperature shift from 35 to 41 degrees C decreased the lipid kinase activities in the membrane vesicles. These changes accompanied the changes observed in pp60v-src protein kinase activity. Thermal inactivation at 41 degrees C did not appreciably reduce PI and PIP kinase activities in membrane vesicles prepared from uninfected or Rous sarcoma virus-transformed cells, whereas pp60v-src protein kinase activity in the membrane vesicles was rapidly inactivated under the same conditions. These data suggest that pp60v-src may indirectly enhance PI and PIP phosphorylation but not directly contribute to this pathway.  相似文献   

16.
The membrane domain of NADH-cytochrome-b5 reductase, which extends from the amino-terminal myristic acid through the first 28 amino acid residues, can be isolated in cholate after a mild trypsin treatment of cholate-solubilized reductase, and in phospholipid vesicles after exhaustive trypsin treatment of vesicle-bound reductase. The detergent-solubilized peptide has a high affinity for phospholipid vesicles and can be reconstituted in vesicles by the detergent-dialysis method. The fluorescence of Trp-16 of this peptide is highly sensitive to the polarity of the microenvironment. The fluorescence quantum yield of this residue is 0.10 when the peptide is dispersed in 1% sodium cholate, but 0.46-0.52 when the peptide is reconstituted in phospholipid vesicles. Fluorescence energy transfer from this tryptophan residue in vesicle-bound peptide to a random array of acceptors in the head-group region of the vesicle outer monolayer shows that Trp-16 resides at a depth of 20-23 A in the bilayer.  相似文献   

17.
W Zhou  L J Parent  J W Wills    M D Resh 《Journal of virology》1994,68(4):2556-2569
Retroviral Gag proteins are targeted to the plasma membrane, where they play the central role in virion formation. Several studies have suggested that the membrane-binding signal is contained within the amino-terminal matrix sequence; however, the precise location has never been determined for the Gag protein of any retrovirus. In this report, we show that the first 31 residues of human immunodeficiency virus type 1 Gag protein can function independently as a membrane-targeting domain when fused to heterologous proteins. A bipartite membrane-targeting motif was identified, consisting of the myristylated N-terminal 14 amino acids and a highly basic region that binds acidic phospholipids. Replacement of the N-terminal membrane-targeting domain of pp60v-src with that of human immunodeficiency virus type 1 Gag elicits efficient membrane binding and a transforming phenotype. Removal of myristate or the basic region results in decreased membrane binding of Gag-Src chimeras in vitro and impaired virion formation by Pr55gag in vivo. We propose that the N-terminal Gag sequence functions as a targeting signal to direct interaction with acidic phospholipids on the cytoplasmic leaflet of the plasma membrane.  相似文献   

18.
The binding of the major water-soluble lens protein alpha-crystallin to the lens plasma membrane has been investigated by reassociating purified alpha-crystallin with alpha-crystallin-depleted membranes and with phospholipid vesicles in which the lens membrane protein MP26 had been reconstituted. alpha-Crystallin reassociates at high affinity (Kd = 13 X 10(-8)M) with alkali-washed lens plasma membranes but not with lens plasma membranes treated with guanidine/HCl, nor with phospholipid vesicles or erythrocyte membranes. Binding to lens plasma membranes is dependent on salt, temperature and pH and occurs in a saturable manner. Reconstitution of MP26 into phospholipid vesicles and subsequent analysis of alpha-crystallin binding suggests the involvement of this transmembrane protein. Binding ist not influenced by pretreatment of membranes with proteases, suggesting that the 4-kDa cytoplasmic fragment of MP26 is not necessary for alpha-crystallin binding. Labeling experiments using (trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine as a probe for intrinsic membrane proteins further showed that alpha-crystallin contains hydrophobic regions on its surface which might enable this protein to make contact with the lipid bilayer. Newly synthesized alpha-crystallin, in lens culture, is not associated with the plasma membrane, suggesting that the assembly of alpha-crystallin aggregates does not take place in a membrane-bound mode.  相似文献   

19.
Timothy H. Bayburt 《FEBS letters》2010,584(9):1721-14316
Nanodiscs are soluble nanoscale phospholipid bilayers which can self-assemble integral membrane proteins for biophysical, enzymatic or structural investigations. This means for rendering membrane proteins soluble at the single molecule level offers advantages over liposomes or detergent micelles in terms of size, stability, ability to add genetically modifiable features to the Nanodisc structure and ready access to both sides of the phospholipid bilayer domain. Thus the Nanodisc system provides a novel platform for understanding membrane protein function. We provide an overview of the Nanodisc approach and document through several examples many of the applications to the study of the structure and function of integral membrane proteins.  相似文献   

20.
Membrane events involved in myoblast fusion   总被引:3,自引:3,他引:0       下载免费PDF全文
Myoblast fusion has been studied in cultures of chick embryonic muscle utilizing ultrastructural techniques. The multinucleated muscle cells (myotubes) are generated by the fusion of two plasma membranes from adjacent cells, apparently by forming a single bilayer that is particle-free in freeze-fracture replicas. This single bilayer subsequently collapses, and cytoplasmic continuity is established between the cells. The fusion between the two plasma membranes appears to take place primarily within particle-free domains (probably phospholipid enriched), and cytoplasmic unilamellar, particle-free vesicles are occasionally associated with these regions. These vesicles structurally resemble phospholipid vesicles (liposomes). They are present in normal myoblasts, but they are absent in certain fusion-arrested myoblast popluations, such as those treated with either 5-bromo-deoxyuridine (BUdR), cycloheximide (CHX), or pospholipase C (PLC). The unilamellar, particle-free vesicles are present in close proximity to the plasma membranes, and physical contact is observed frequently between the vesicle membrane and the plasma membrane. The regions of vesicle membrane-plasma membrane interaction are characteristically free of intramembrane particles. A model for myoblast fusion is presented that is based onan interpretation of these observations. This model suggests that the cytoplasmic vesicles initiate the generation of particle-depleted membrane domains, both being essential components in the fusion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号