首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cucumber mosaic virus: viral genes as virulence determinants   总被引:1,自引:0,他引:1  
TAXONOMIC RELATIONSHIPS: Cucumber mosaic virus (CMV) is the type species of the genus Cucumovirus in the family Bromoviridae, which also encompasses the Peanut stunt virus (PSV) and the Tomato aspermy virus (TAV). Nucleotide sequence similarity among these three cucumoviruses is 60%-65%. CMV strains are divided into three subgroups, IA, IB and II, based on the sequence of the 5' untranslated region of the genomic RNA 3. Overall nucleotide sequence similarity among CMV strains is approximately 70%-98%. GEOGRAPHICAL DISTRIBUTION, HOST RANGE AND SYMPTOMATOLOGY: CMV is distributed worldwide, primarily in temperate to tropical climate zones. CMV infects more than 1200 species of 100 plant families, including monocot and dicot plants. Symptoms caused by CMV infection vary with the host species and/or CMV strain, and include mosaic, stunt, chlorosis, dwarfing, leaf malformation and systemic necrosis. CMV disease is spread primarily by aphid transmission in a nonpersistent manner. PHYSICAL PROPERTIES: In tobacco sap, the thermal inactivation point of the viral infectivity is approximately 70 °C (10 min), the dilution end-point is approximately 10(-4) and viral infectivity is lost after a few days of exposure to 20 °C. Viral infectivity can be retained in freeze-dried tissues and in the form of virions purified using 5 mm sodium borate, 0.5 mm ethylenediaminetetraacetic acid and 50% glycerol (pH 9.0) at -20 °C. CMV particles are isometric, approximately 28-30 nm in diameter and are composed of 180 capsid subunits arranged in pentamer-hexamer clusters with T= 3 symmetry. The sedimentation coefficient (s(20) ,(w) ) is c. 98 S and the particle weight is (5.8-6.7) × 10(6) Da. The virions contain 18% RNA. The RNA-protein interactions that stabilize the CMV virions are readily disrupted by sodium dodecylsulphate or neutral chloride salts. GENOMIC PROPERTIES: The genomic RNAs are single-stranded messenger sense RNAs with 5' cap and 3' tRNA-like structures containing at least five open reading frames. The viral RNA consists of three genomic RNAs, RNA 1 (c. 3.3 kb), RNA 2 (c. 3.0 kb) and RNA 3 (c. 2.2 kb), and two subgenomic RNAs, RNA 4 (c. 1.0 kb) and RNA 4A (c. 0.7 kb). The 3' untranslated regions are conserved across all viral RNAs. CMV is often accompanied by satellite, noncoding, small, linear RNA that is nonhomologous to the helper CMV.  相似文献   

2.
Promoter for Sindbis virus RNA-dependent subgenomic RNA transcription   总被引:27,自引:22,他引:5       下载免费PDF全文
  相似文献   

3.
Some molecular properties are described of Cole latent virus (CoLV), hitherto designated a tentative species of the Carlavirus genus. CoLV genomic RNA (Ribonucleic acid) of 8.3 Kb is polyadenylated. Two unencapsidated polyadenylated subgenomic RNAs (2.6 and 1.3 Kb) and three double-stranded RNAs (dsRNAs) (8.3, 2.6 and 1.3 Kbp), which are twice the size of the genomic and subgenomics ssRNAs, are produced in CoLV-infected plants; two additional dsRNAs (7.2 and 6.3 Kbp) were also detected in plant extracts. By using a Carlavirus specific primer and a CoLV cDNA, a-3'-terminus fragment of 116 bp was amplified; it had homology with the carlaviruses Potato virus M (62%), Hop latent virus (37%) and Blueberry scorch virus (36%) but no significant homology with 11 other carlaviruses. These results support the classification of CoLV as a distinct species of the Carlavirus genus.  相似文献   

4.
Brome mosaic virus (BMV) packages its genomic RNAs (RNA1, RNA2, and RNA3) and subgenomic RNA4 into three different particles. However, since the RNAs in the virions have distinct lengths and electrostatic charges, we hypothesize that subsets of the virions should have distinct properties. A glutamine to cysteine substitution at position 120 of the capsid protein (CP) was found to result in a mutant virus named QC that exhibited a dramatically altered ratio of the RNAs in virions. RNA2 was far more abundant than the other RNAs, although the ratios could be affected by the host plant species. RNAs with the QC mutation were competent for replication early in the infection, suggesting that they were either selectively packaged or degraded after packaging. In support of the latter idea, low concentrations of truncated RNA1 that co-migrated with RNA2 were found in the QC virions. Spectroscopic analysis and peptide fingerprinting experiments showed that the QC virus capsid interacted with the encapsidated RNAs differently than did the wild type. Furthermore, wild-type BMV RNA1 was found to be more susceptible to nuclease digestion relative to RNA2 as a function of the buffer pH. Other BMV capsid mutants also had altered ratios of packaged RNAs.  相似文献   

5.
Choi YG  Rao AL 《Journal of virology》2003,77(18):9750-9757
The three genomic and a single subgenomic RNA of brome mosaic virus (BMV), an RNA virus infecting plants, are packaged by a single-coat protein (CP) into three morphologically indistinguishable icosahedral virions with T = 3 quasi-symmetry. Genomic RNAs 1 and 2 are packaged individually into separate particles whereas genomic RNA3 and subgenomic RNA4 (coat protein mRNA) are copackaged into a single particle. We report here that packaging of dicistronic RNA3 requires a bipartite signal. A highly conserved 3' tRNA-like structure postulated to function as a nucleating element (NE) for CP subunits (Y. G. Choi, T. W. Dreher, and A. L. N. Rao, Proc. Natl. Acad. Sci. USA 99:655-660, 2002) and a cis-acting, position-dependent packaging element (PE) of 187 nt present in the nonstructural movement protein gene are the integral components of the packaging core. Efficient incorporation into BMV virions of nonviral RNA chimeras containing NE and the PE provides confirmatory evidence that these two elements are sufficient to direct packaging. Analysis of virion RNA profiles obtained from barley protoplasts transfected with a RNA3 variant lacking the PE provides the first genetic evidence that de novo synthesized RNA4 is incompetent for autonomous assembly whereas prior packaging of RNA3 is a prerequisite for RNA4 to copackage.  相似文献   

6.
7.
Brome mosaic virus (BMV) is a positive-sense RNA plant virus, the tripartite genomic RNAs of which are separately packaged into virions. RNA3 is copackaged with subgenomic RNA4. In barley protoplasts coinoculated with RNA1 and RNA2, an RNA3 mutant with a 69-nucleotide (nt) deletion in the 3'-proximal region of the 3a open reading frame (ORF) was very poorly packaged compared with other RNA3 mutants and wild-type RNA3, despite their comparable accumulation in the absence of coat protein. Computer analysis of RNA secondary structure predicted two stem-loop (SL) structures (i.e., SL-I and SL-II) in the 69-nt region. Disruption of SL-II, but not of SL-I, significantly reduced RNA3 packaging. A chimeric BMV RNA3 (B3Cmp), with the BMV 3a ORF replacing that of cucumber mosaic virus (CMV), was packaged negligibly, whereas RNA4 was packaged efficiently. Replacement of the 3'-proximal region of the CMV 3a ORF in B3Cmp with the 3'-proximal region of the BMV 3a ORF significantly improved packaging efficiency, and the disruption of SL-II in the substituted BMV 3a ORF region greatly reduced packaging efficiency. These results suggest that the 3'-proximal region of the BMV 3a ORF, especially SL-II predicted between nt 904 and 933, plays an important role in the packaging of BMV RNA3 in vivo. Furthermore, the efficient packaging of RNA4 without RNA3 in B3Cmp-infected cells implies the presence of an element in the 3a ORF of BMV RNA3 that regulates the copackaging of RNA3 and RNA4.  相似文献   

8.
Northern blot analysis of double-stranded (ds) RNA from bean-leaf tissue infected with tobacco necrosis virus strain D (TNV-D) detected the 4 kb genomic RNA and two subgenomic RNAs of about 1.5 kb and 1.2 kb; RNA extracted from virus particles only contained the genomic species. Blotting and probing with a range of probes indicated the approximate locations of the 5'ends of subgenomic RNA so that primers to fine-map the ends could be designed. When both singlestranded and ds RNA, extracted from TNV-D infected and healthy bean leaves were used as templates for primer extension using primers complementary to sequences at, or upstream of, the initiation codons of, respectively, the coat protein and the p7a genes, major infectionspecific products were detected. Both subgenomic RNAs start at G residues. The larger subgenomic RNA is 1547 nucleotides in length with a leader sequences of 36 nucleotides upstream of the p7a gene, and the smaller subgenomic RNA has a 90 nucleotide leader upstream of the coat protein AUG and is 1202 nucteotides long. An analysis of the 5'terminal locations of both subgenomic RNAs and the previously mapped analogous subgenomic RNAs associated with infection with the related TNV-A isolate, revealed a marked degree of homology downstream of the initiation sites for each RNA. This homology was maintained at the 5'termini of both virion RNAs and could be extended to another isolate of TNV for which partial sequence data, but not subgenomic mapping RNA data are available.  相似文献   

9.
Subgenomic mRNA of Aura alphavirus is packaged into virions.   总被引:6,自引:5,他引:1       下载免费PDF全文
Purified virions of Aura virus, a South American alphavirus related to Sindbis virus, were found to contain two RNA species, one of 12 kb and the other of 4.2 kb. Northern (RNA) blot analysis, primer extension analysis, and limited sequencing showed that the 12-kb RNA was the viral genomic RNA, whereas the 4.2-kb RNA present in virus preparations was identical to the 26S subgenomic RNA present in infected cells. The subgenomic RNA is the messenger for translation of the viral structural proteins, and its synthesis is absolutely required for replication of the virus. Although 26S RNA is present in the cytosol of all cells infected by alphaviruses, this is the first report of incorporation of the subgenomic RNA into alphavirus particles. Packaging of the Aura virus subgenomic mRNA occurred following infection of mosquito (Aedes albopictus C6/36), hamster (BHK-21), or monkey (Vero) cells. Quantitation of the amounts of genomic and subgenomic RNA both in virions and in infected cells showed that the ratio of genomic to subgenomic RNA was 3- to 10-fold higher in Aura virions than in infected cells. Thus, although the subgenomic RNA is packaged efficiently, the genomic RNA has a selective advantage during packaging. In contrast, in parallel experiments with Sindbis virus, packaging of subgenomic RNA was not detectable. We also found that subgenomic RNA was present in about threefold-greater amounts relative to genomic RNA in cells infected by Aura virus than in cells infected by Sindbis virus. Packaging of the Aura virus subgenomic RNA, but not those of other alphaviruses, suggests that Aura virus 26S RNA contains a packaging signal for incorporation into virions. The importance of the packaging of this RNA into virions in the natural history of the virus remains to be determined.  相似文献   

10.
Turnip yellow mosaic virus (TYMV) is a spherical plant virus that has a single 6.3 kb positive strand RNA as a genome. In this study, RNA1 sequence of Flock house virus (FHV) was inserted into the TYMV genome to test whether TYMV can accommodate and express another viral entity. In the resulting construct, designated TY-FHV, the FHV RNA1 sequence was expressed as a TYMV subgenomic RNA. Northern analysis of the Nicotiana benthamiana leaves agroinfiltrated with the TY-FHV showed that both genomic and subgenomic FHV RNAs were abundantly produced. This indicates that the FHV RNA1 sequence was correctly expressed and translated to produce a functional FHV replicase. Although these FHV RNAs were not encapsidated, the FHV RNA having a TYMV CP sequence at the 3’-end was efficiently encapsidated. When an eGFP gene was inserted into the B2 ORF of the FHV sequence, a fusion protein of B2-eGFP was produced as expected. [BMB Reports 2014; 47(6): 330-335]  相似文献   

11.
Packaging signals in alphaviruses.   总被引:8,自引:8,他引:0       下载免费PDF全文
Alphaviruses synthesize large amounts of both genomic and subgenomic RNA in infected cells, but usually only the genomic RNA is packaged. This implies the existence of an encapsidation or packaging signal which would be responsible for selectivity. Previously, we had identified a region of the Sindbis virus genome that interacts specifically with the viral capsid protein. This 132-nucleotide (nt) fragment lies within the coding region of the nsP1 gene (nt 945 to 1076). We proposed that the 132-mer is important for capsid recognition and initiates the formation of the viral nucleocapsid. To study the encapsidation of Sindbis virus RNAs in infected cells, we designed a new assay that uses the self-replicating Sindbis virus genomes (replicons) which lack the viral structural protein genes and contain heterologous sequences under the control of the subgenomic RNA promoter. These replicons can be packaged into viral particles by using defective helper RNAs that contain the structural protein genes (P. Bredenbeek, I. Frolov, C. M. Rice, and S. Schlesinger, J. Virol. 67:6439-6446, 1993). Insertion of the 132-mer into the subgenomic RNA significantly increased the packaging of this RNA into viral particles. We have used this assay and defective helpers that contain the structural protein genes of Ross River virus (RRV) to investigate the location of the encapsidation signal in the RRV genome. Our results show that there are several fragments that could act as packaging signals. They are all located in a different region of the genome than the signal for the Sindbis virus genome. For RRV, the strongest packaging signal lies between nt 2761 and 3062 in the nsP2 gene. This is the same region that was proposed to contain the packaging signal for Semliki Forest virus genomic RNA.  相似文献   

12.
13.
14.
R J Hayes  K W Buck 《Cell》1990,63(2):363-368
A soluble RNA-dependent RNA polymerase was isolated from Nicotiana tabacum plants infected with cucumber mosaic virus (CMV), which has a genome of three positive-strand RNA components, 1, 2, and 3. The purified polymerase contained two virus-encoded polypeptides and one host polypeptide. Polymerase activity was completely dependent on addition of CMV RNA as template, and the products of reaction were single-stranded (ss) RNA and double-stranded (ds) RNA, corresponding to RNAs 1, 2, and 3, and a subgenomic RNA (RNA 4) derived from RNA 3. The ratio of ssRNA to dsRNA was about 5:1, and the ssRNA was shown to be predominantly the positive strand. This demonstrates the complete replication of a eukaryotic virus RNA in vitro by a template-dependent RNA polymerase.  相似文献   

15.
Intracellular applications of ribozymes have been limited partly by the availability of suitable high-expression systems. For RNA effectors, consideration of an RNA virus vector system for delivery and expression is reasonable. We show that alphavirus replicons can be highly efficient nonintegrating ribozyme-expressing vectors. Using a hammerhead ribozyme targeted to a highly conserved sequence in the U5 region of the human immunodeficiency virus type 1 (HIV-1) long terminal repeat, we demonstrate that a full-length 8.3-kb Semliki Forest virus ribozyme (SFVRz) chimeric RNA maintains catalytic activity. SFVRz is packaged into viral particles, and these particles transduce mammalian cells efficiently. SFVRz-transduced BHK cells were found to produce large amounts of genomic and subgenomic forms of ribozyme-containing RNAs that are functional in cleaving a U5-tagged mRNA. The RNase protection assay shows that HIV-1 U5-chloramphenicol acetyltransferase mRNA expressed intracellularly from an RNA polymerase II promoter is quantitatively eliminated in SFVRz-transduced BHK cells.  相似文献   

16.
Aura and Sindbis viruses are closely related alphaviruses. Unlike other alphaviruses, Aura virus efficiently encapsidates both genomic RNA (11.8 kb) and subgenomic RNA (4.2 kb) to form virus particles. Previous studies on negatively stained Aura virus particles predicted that there were two major size classes with potential T=3 and T=4 capsid structures. We have used cryoelectron microscopy and three-dimensional image reconstruction techniques to examine the native morphology of different classes of Aura virus particles produced in BHK cells. Purified particles separated into two components in a sucrose gradient. Reconstructions of particles in the top and bottom components were computed to resolutions of 17 and 21 A, respectively, and compared with reconstructions of Sindbis virus and Ross River virus particles. Aura virus particles of both top and bottom components have similar, T=4 structures that resemble those of other alphaviruses. The morphology of Aura virus glycoprotein spikes closely resembles that of Sindbis virus spikes and is detectably different from that of Ross River virus spikes. Thus, some aspects of the surface structure of members of the Sindbis virus lineage have been conserved, but other aspects have diverged from the Semliki Forest/Ross River virus lineage.  相似文献   

17.
Moloney murine leukemia virus (MLV) particles contain both viral genomic RNA and an assortment of host cell RNAs. Packaging of virus-encoded RNA is selective, with virions virtually devoid of spliced env mRNA and highly enriched for unspliced genome. Except for primer tRNA, it is unclear whether packaged host RNAs are randomly sampled from the cell or specifically encapsidated. To address possible biases in host RNA sampling, the relative abundances of several host RNAs in MLV particles and in producer cells were compared. Using 7SL RNA as a standard, some cellular RNAs, such as those of the Ro RNP, were found to be enriched in MLV particles in that their ratios relative to 7SL differed little, if at all, from their ratios in cells. Some RNAs were underrepresented, with ratios relative to 7SL several orders of magnitude lower in virions than in cells, while others displayed intermediate values. At least some enriched RNAs were encapsidated by genome-defective nucleocapsid mutants. Virion RNAs were not a random sample of the cytosol as a whole, since some cytoplasmic RNAs like tRNA(Met) were vastly underrepresented, while U6 spliceosomal RNA, which functions in the nucleus, was enriched. Real-time PCR demonstrated that env mRNA, although several orders of magnitude less abundant than unspliced viral RNA, was slightly enriched relative to actin mRNA in virions. These data demonstrate that certain host RNAs are nearly as enriched in virions as genomic RNA and suggest that Psi- mRNAs and some other host RNAs may be specifically excluded from assembly sites.  相似文献   

18.
Total RNA was extracted from primary cultures of mouse macrophages isolated from 10-day-old mice 6 to 12 h postinfection with lactate dehydrogenase-elevating virus (LDV). Poly(A)+ RNA was extracted from spleens of 18-h LDV-infected mice. The RNAs were analyzed by Northern (RNA) blot hybridization with a number of LDV-specific cDNAs as probes. A cDNA representing the nucleocapsid protein (VP-1) gene located at the 3' terminus of the viral genome (E. K. Godeny, D. W. Speicher, and M. A. Brinton, Virology 177:768-771, 1990) hybridized to viral genomic RNA of about 13 kb plus seven subgenomic RNAs ranging in size from about 1 to about 3.6 kb. Two other cDNA clones hybridized only to the four or five largest subgenomic RNAs, respectively. In contrast, two cDNAs encoding continuous open reading frames with replicase and zinc finger motifs hybridized only to the genomic RNA. The replicase motif exhibited 75% amino acid identity to that of the 1b protein of equine arteritis virus (EAV) and 44% amino acid identity to those of the 1b proteins of coronaviruses and Berne virus. Combined, the results indicate that LDV replication involves formation of a 3'-coterminal-nested set of mRNAs as observed for coronaviruses and toroviruses as well as for EAV, with which LDV shares many other properties. Overall, LDV, like EAV, possesses a genome organization resembling that of the coronaviruses and toroviruses. However, EAV and LDV differ from the latter in the size of their genomes, virion size and structure, nature of the structural proteins, and symmetry of the nucleocapsids.  相似文献   

19.
M Ishikawa  S Naito    T Ohno 《Journal of virology》1993,67(9):5328-5338
For the multiplication of RNA viruses, specific host factors are considered essential, but as of yet little is known about this aspect of virus multiplication. To identify such host factors, we previously isolated PD114, a mutant of Arabidopsis thaliana, in which the accumulation of the coat protein of tobacco mosaic virus (TMV) in uninoculated leaves of an infected plant was reduced to low levels. The causal mutation, designated tom1, was single, nuclear, and recessive. Here, we demonstrate that the tom1 mutation affects the amplification of TMV-related RNAs in a single cell. When protoplasts were inoculated with TMV RNA by electroporation, the percentage of TMV-positive protoplasts (detected by indirect immunofluorescence staining with anti-TMV antibodies) was lower (about 1/5 to 1/10) among PD114 protoplasts than among wild-type protoplasts. In TMV-positive PD114 protoplasts, the amounts of the positive-strand RNAs (the genomic RNA and subgenomic mRNAs) and coat protein reached levels similar to, or slightly lower than, those reached in TMV-positive wild-type protoplasts, but the accumulation of the positive-strand RNAs and coat protein occurred more slowly than with the wild-type protoplasts. The parallel decrease in the amounts of the coat protein and its mRNA suggests that the coat protein is translated from its mRNA with normal efficiency. These observations support the idea that the TOM1 gene encodes a host factor necessary for the efficient amplification of TMV RNA in an infected cell. Furthermore, we show that TMV multiplication in PD114 protoplasts is severely affected by the coinoculation of cucumber mosaic virus (CMV) RNA. When PD114 protoplasts were inoculated with a mixture of TMV and CMV RNAs by electroporation, the accumulation of TMV-related molecules was approximately one-fifth of that in PD114 protoplasts inoculated with TMV RNA alone. No such reduction in the accumulation of TMV-related molecules was observed when wild-type protoplasts were inoculated with a mixture of TMV and CMV RNAs or when wild-type and PD114 protoplasts were inoculated with a mixture of TMV and turnip crinkle virus RNAs. These observations are compatible with a hypothetical model in which a gene(s) that is distinct from the TOM1 gene is involved in both TMV and CMV multiplication.  相似文献   

20.
Retroviruses preferentially package full-length genomic RNA over spliced viral messages. For most retroviruses, this preference is likely due to the absence of all or part of the packaging signal on subgenomic RNAs. In avian leukosis-sarcoma virus, however, we have shown that the minimal packaging signal, MPsi, is located upstream of the 5' splice site and therefore is present on both genomic and spliced RNAs. We now show that an MPsi-containing heterologous RNA is packaged only 2.6-fold less efficiently than genomic Rous sarcoma virus RNA. Thus, few additional packaging sequences and/or structures exist outside of MPsi. In contrast, we found that env mRNA is not efficiently packaged. These results indicate that either MPsi is not functional on this RNA or the RNA is somehow segregated from the packaging machinery. Finally, deletion of sequences from the 3' end of MPsi was found to reduce the packaging efficiency of heterologous RNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号