首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
冠层温度信息是作物水分状况诊断信号之一,红外热像仪能实时准确地获取较大区域的温度分布.本文以棉花为研究对象,针对红外热像仪获取冠层温度的主要影响因素(方位、角度和距离)开展试验,研究了不同水分处理下不同方法获取的作物水分胁迫指数(CWSI)与土壤含水率(SWC)、叶水势(LWP)和气孔导度(gs)之间的相互关系.结果表明: 逆太阳光与冠层45°夹角获取的CWSI与SWC、LWP和gs具有较好的相关性,是观测冠层温度的适宜方法;随着距离的增大,冠层温度会表现出衰减的现象,远距离的拍摄需要进行必要的校准工作;通过分析干湿参考表面温度与冠层温度之间的关系,提出了适合华北地区棉花水分胁迫指数的简化计算模式.  相似文献   

2.
Thermal imaging is a potential tool for estimating plant temperature, which can be used as an indicator of stomatal closure and water deficit stress. In this study, a new method for processing and analysing thermal images was developed. By using remote sensing software, the information from thermal and visible images was combined, the images were classified to identify leaf area and sunlit and shaded parts of the canopy, and the temperature statistics for specific canopy components were calculated. The method was applied to data from a greenhouse water-stress experiment of Vicia faba L. and to field data for Vitis vinifera L. Vaseline-covered and water-sprayed plants were used as dry and wet references, respectively, and two thermal indices, based on temperature differences between the canopy and reference surfaces, were calculated for single Vicia faba plants. The thermal indices were compared with measured stomatal conductance. The temperature distributions of sunlit and shaded leaf area of Vitis vinifera canopies from natural rainfall and irrigation treatments were compared. The present method provides two major improvements compared with earlier methods for calculating thermal indices. First, it allows more accurate estimation of the indices, which are consequently more closely related to stomatal conductance. Second, it gives more accurate estimates of the temperature distribution of the shaded and sunlit parts of canopy, and, unlike the earlier methods, makes it possible to quantify the relationship between temperature variation and stomatal conductance.  相似文献   

3.
Temperatures of leaves or canopies can be used as indicators of stomatal closure in response to soil water deficit. In 2 years of field experiments with grapevines (Vitis vinifera L., cvs Castel?o and Aragonês), it was found that thermal imaging can distinguish between irrigated and non-irrigated canopies, and even between deficit irrigation treatments. Average canopy temperature was inversely correlated with stomatal conductance measured with a porometer. Variation of the distribution of temperatures within canopies was not found to be a reliable indicator of stress. A large degree of variation between images was found in reference 'wet' and 'dry' leaves used in the first year for the calculation of an index proportional to stomatal conductance. In the second year, fully irrigated (FI) (100% Et(c)) and non-irrigated (NI) canopies were used as alternatives to wet and dry leaves. A crop water stress index utilizing these FI and NI 'references', where stressed canopies have the highest values and non-stressed canopies have the lowest values, was found to be a suitable measure for detecting stress. It is suggested that the average temperatures of areas of canopies containing several leaves may be more useful for distinguishing between irrigation treatments than the temperatures of individual leaves. Average temperatures over several leaves per canopy may be expected to reduce the impact of variation in leaf angles. The results are discussed in relation to the application of thermal imaging to irrigation scheduling and monitoring crop performance.  相似文献   

4.
Estimation of leaf water potential by thermal imagery and spatial analysis   总被引:8,自引:0,他引:8  
Canopy temperature has long been recognized as an indicator of plant water status and as a potential tool for irrigation scheduling. In the present study, the potential of using thermal images for an in-field estimation of the water status of cotton under a range of irrigation regimes was investigated. Thermal images were taken with a radiometric infrared video camera. Specific leaves that appeared in the camera field of view were sampled, their LWP was measured and their temperature was calculated from the images. Regression models were built in order to predict LWP according to the crop canopy temperature and to the empirical formulation of the crop water stress index (CWSI). Statistical analysis revealed that the relationship between CWSI and LWP was more stable and had slightly higher correlation coefficients than that between canopy temperature and LWP. The regression models of LWP against CWSI and against leaf temperatures were used to create LWP maps. The classified LWP maps showed that there was spatial variability in each treatment, some of which may be attributed to the difference between sunlit and shaded leaves. The distribution of LWP in the maps showed that irrigation treatments were better distinguished from each other when the maps were calculated from CWSI than from leaf temperature alone. Furthermore, the inclusion of the spatial pattern in the classification enhanced the differences between the treatments and was better matched to irrigation amounts. Optimal determination of the water status from thermal images should be based on an overall view of the physical status as well as on the analysis of the spatial structure. Future study will involve investigating the robustness of the models and the potential of using water status maps, derived from aerial thermal images, for irrigation scheduling and variable management in commercial fields.  相似文献   

5.
应用Granier热消散探针测定华南丘陵马占相思的树干液流,将液流与对应的光合有效辐射和水汽压亏缺数据列分别进行逐行错位分析和时间序列分析,探讨树干液流与蒸腾驱动因子之间的时滞效应,并对结果进行互相验证.结果表明:马占相思树木蒸腾主要驱动因子是光合有效辐射和水汽压亏缺,树干液流的变化更多地依赖光合有效辐射的变化,而且干季的依赖性比湿季更强;无论是干季还是湿季,树干液流都滞后于光合有效辐射,提前于水汽压亏缺;时滞效应季节差异显著;不同径级马占相思的时滞效应差异不显著;树高、胸径、冠幅并不能解释树干液流与光合有效辐射、水汽压亏缺之间的时滞效应;干季树干液流与水汽压亏缺之间的时滞效应与夜间水分补充量显著相关,湿季则相反.  相似文献   

6.
As evaporation of water is an energy-demanding process, increasing evapotranspiration rates decrease the surface temperature (T(s)) of leaves and plants. Based on this principle, ground-based thermal remote sensing has become one of the most important methods for estimating evapotranspiration and drought stress and for irrigation. This paper reviews its application in agriculture. The review consists of four parts. First, the basics of thermal remote sensing are briefly reviewed. Second, the theoretical relation between T(s) and the sensible and latent heat flux is elaborated. A modelling approach was used to evaluate the effect of weather conditions and leaf or vegetation properties on leaf and canopy temperature. T(s) increases with increasing air temperature and incoming radiation and with decreasing wind speed and relative humidity. At the leaf level, the leaf angle and leaf dimension have a large influence on T(s); at the vegetation level, T(s) is strongly impacted by the roughness length; hence, by canopy height and structure. In the third part, an overview of the different ground-based thermal remote sensing techniques and approaches used to estimate drought stress or evapotranspiration in agriculture is provided. Among other methods, stress time, stress degree day, crop water stress index (CWSI), and stomatal conductance index are discussed. The theoretical models are used to evaluate the performance and sensitivity of the most important methods, corroborating the literature data. In the fourth and final part, a critical view on the future and remaining challenges of ground-based thermal remote sensing is presented.  相似文献   

7.
运用Granier热消散探针连续监测荷木的树干液流,于2009年的湿季(8月)和干季(11月)选择天气晴朗的3d测定叶片水势,同步连续监测林冠上方光合有效辐射、土壤含水量、气温和空气相对湿度.结果表明:干湿季下荷木树干液流存在显著差异,此外,土壤水势和液流有较好的相关性,且干季时的相关性更好;荷木的叶面积/边材面积比值平均为(0.416±0.033)m2·cm-2,并与树高呈指数函数下降关系;随着11月土壤水势下降,荷木的整树水力导度和午间叶片水势也有所下降,但不明显;对叶片水势和整树蒸腾进行回归分析,二者之间呈二次多项式关系(P<0.01),叶片水势并非无限制下降;结果还表明,大气水汽压亏缺(D)和叶片水势呈负相关,这是否空气温度和相对湿度或共同作用影响叶片水势,需要进一步研究.  相似文献   

8.
明确树木夜间水分补充现象有助于提高总蒸腾量和冠层气孔导度估算的精确度,进一步认识冠层蒸腾与树干液流之间存在的时滞关系.本研究采用热消散探针法测定了广州地区的荷木树干液流密度,同步监测了主要的环境因子,从不同时间尺度分析了树干夜间液流的水分补充现象.结果表明:与白天相比,荷木夜间液流密度较小,旱季变化幅度比湿季大;夜间水分补充的时间段主要在前半夜(18:00-22:00);年内各季节夜间水分补充量之间没有显著差异,与环境因子之间的偏相关关系不显著,但与胸径、树高、冠幅、树干生物量、冠层生物量的回归曲线拟合很好,表明树形特征和生物量能更好地解释夜间补水的变化;各季节夜间水分补充量对总蒸腾量的贡献有显著差异,旱季明显高于湿季.  相似文献   

9.
This paper reviews and discusses strategies for the use of thermal imaging for studies of stomatal conductance in the field and compares techniques for image collection and analysis. Measurements were taken under a range of environmental conditions and on sunlit and shaded canopies to illustrate the variability of temperatures and derived stress indices. A simple procedure is presented for correcting for calibration drift within the images from the low-cost thermal imager used (SnapShot 225, Infrared Solutions, Inc.). The use of wet and dry reference surfaces as thresholds to eliminate the inclusion of non-leaf material in the analysis of canopy temperature is discussed. An index that is proportional to stomatal conductance was compared with stomatal measurements with a porometer. The advantages and disadvantages of a possible new approach to the use of thermal imagery for the detection of stomatal closure in grapevine canopies, based on an analysis of the temperature of shaded leaves, rather than sunlit leaves, are discussed. Evidence is presented that the temperature of reference surfaces exposed within the canopy can be affected by the canopy water status.  相似文献   

10.
Autumn-sown wheat (Triticum aestivum) was studied over two seasons in south-eastern Australia, on a low-P soil where indigenous arbuscular mycorrhizal fungi (AMF) were known to provide little nutritional benefit to crops. It was hypothesised that AMF would be parasitic under these circumstances. Shoot dry mass and water soluble carbohydrate (WSC) reserves in roots and shoots were measured for wheat grown with or without P-fertiliser, in plots where crop sequences had produced either high or low colonisation by AMF. Application of P-fertiliser greatly increased crop growth and decreased colonisation by AMF. At tillering, colonisation by AMF ranged from 24 to 66% of root length when no P was applied and from 11 to 32% when P was applied. At each P-level, high colonisation correlated with reductions of around 20% in stem and root WSC concentrations (first season) or shoot WSC content and shoot dry mass (much drier second season). Impacts on yield were not significant (first season) or largely masked by water-stress and frost (second season). While the major fungal root diseases of the region were absent, interactions between crop sequence and other unknown biotic constraints could not be discounted. The results are consistent with the parasitic impacts of colonisation by AMF being induced primarily through the winter conditions experienced by the crops until anthesis. It is concluded that wheat in south-eastern Australia may benefit from reduced colonisation by AMF, which could achieved through selected crop sequences or, perhaps, targeted wheat breeding programs.  相似文献   

11.
Leaf veins undergo cavitation at water potentials (Psi(leaf)) commonly experienced by field-growing plants. Theoretically, embolism reversal should not be possible until xylem pressures rise by several kilopascals of atmospheric pressure, but recent evidence suggests that embolized conduits can be refilled even when surrounded by others at substantial tension (novel refilling). The present study reports 'novel refilling' occurring in leaf veins of sunflower (Helianthus annuus L.) while at Psi(leaf) = -0.33 MPa. Sixty per cent loss of vein hydraulic conductance (K(vein)) was recorded at Psi(leaf) < -0.65 MPa, while stem hydraulic conductance (K(stem)) was unaffected even at Psi(leaf) = -1.1 MPa. Loss of K(vein) was accompanied by stomatal closure. Water-stressed plants (Psi(leaf) = -1.1 MPa) were rehydrated overnight to different target water potentials achieved by using PEG at different concentrations as irrigation medium. K(vein) recovered by 50% at Psi(leaf) = -0.47 MPa and vein refilling was complete at Psi(leaf) = -0.33 MPa, i.e. well below the theoretical limit for conduit refilling (-0.05 MPa as calculated for sunflower minor veins). Mercurials supplied to detached leaves had no effect on the refilling process. Upon rehydration, recovery of K(vein) was not paralleled by recovery of whole-plant hydraulic conductance or leaf conductance to water vapour (g(L)), as a likely consequence of hydraulic failure of other components of the water pathway (root system or extravascular leaf compartments) and/or root-to-leaf chemical signalling. This is the first study providing experimental evidence for 'novel refilling' in a herbaceous dicot and highlighting the importance of this process in the leaf.  相似文献   

12.
从作物冠层净同化速率入手,通过引入对CO2浓度、空气湿度、光照强度和土壤含水量反映较敏感的光能利用系数(β),建立了考虑水分胁迫和光照条件对作物干物质积累与产量形成影响的数学模型,模型考虑了水分胁迫与低光照下冠层阻力增加的设定,将反映作物冠层水分状况的功能叶水势(Ψl)作为参数纳入本模型,通过对土壤相对含水量(Aw)、气温(Ta)、水汽压差(VPD)的多元回归估算出Ψl,并将空气动力学阻力(Ra)简化为风速(u)的函数,盆载试验应用实例和敏感性分析表明,该模型在诊断环境因子特别是土壤水分与光照因子对作物生长和产量构成的影响具有一定的实用性。  相似文献   

13.
Effects of water stress on respiration in soybean leaves   总被引:2,自引:0,他引:2       下载免费PDF全文
The effect of water stress on respiration and mitochondrial electron transport has been studied in soybean (Glycine max) leaves, using the oxygen-isotope-fractionation technique. Treatments with three levels of water stress were applied by irrigation to replace 100%, 50%, and 0% of daily water use by transpiration. The levels of water stress were characterized in terms of light-saturated stomatal conductance (g(s)): well irrigated (g(s) > 0.2 mol H(2)O m(-2) s(-1)), mildly water stressed (g(s) between 0.1 and 0.2 mol H(2)O m(-2) s(-1)), and severely water stressed (g(s) < 0.1 mol H(2)O m(-2) s(-1)). Although net photosynthesis decreased by 40% and 70% under mild and severe water stress, respectively, the total respiratory oxygen uptake (V(t)) was not significantly different at any water-stress level. However, severe water stress caused a significant shift of electrons from the cytochrome to the alternative pathway. The electron partitioning through the alternative pathway increased from 10% to 12% under well-watered or mild water-stress conditions to near 40% under severe water stress. Consequently, the calculated rate of mitochondrial ATP synthesis decreased by 32% under severe water stress. Unlike many other stresses, water stress did not affect the levels of mitochondrial alternative oxidase protein. This suggests a biochemical regulation (other than protein synthesis) that causes this mitochondrial electron shift.  相似文献   

14.
Increases in total dry-matter yield during bulb growth in well-irrigatedonion crops were correlated with the total solar radiation interceptedby the leaf canopy. The mean efficiency of conversion of interceptedradiation to dry-matter was 1.58 g MJ–1. However, efficiencieswere significantly different between seasons and in two yearsout of three they were lower for spring-sown crops than forautumn-sown crops. The lower efficiencies coincided with periodsof high mean temperature and irradiance. The percentage of thetotal irradiance intercepted by the canopy during bulbing (1%)was increased by higher plant densities, earlier sowing andin later-maturing cultivars. It was higher in spring-sown thanin autumn-sown crops especially at low plant densities. Theduration of bulb growth was negatively correlated with 1% andwith the mean air temperature during bulb growth. Consequentlyautumn-sown crops had a longer duration of bulb growth thanspring-sown crops and produced exceptionally high bulb yieldsat high plant densities. Non-irrigated crops had a lower 1%and a shorter duration of bulb growth than irrigated crops,and a lower conversion efficiency in a season of high mean temperatureand irradiance. Onion, Allium cepa L., bulb, irradiance, efficiency, partitioning, plant population, temperature, irrigation, growth-analysis, water-stress, leaf-area-index  相似文献   

15.
Analyses of the effects of drought stress on Amazonian regrowth stands are lacking. We measured leaf gas exchange and leaf water potential of Miconia ciliata (Melastomataceae) in a dry-season irrigation experiment in 14-yr-old regrowth. In the dry season, irrigated plants maintained significantly higher leaf water potentials, photosynthetic capacity at light saturation (A(max)), stomatal conductance (g(s)), internal CO(2) concentration (C(i)), and lower A(max)/g(s) than control plants. The degree of dry-season down-regulation of control plant A(max), along with its fast recovery following rain, reveals the importance of occasional dry-season rains to the carbon budget of M. ciliata. During the wet season, we observed higher A(max) for control plants than for plants that had been irrigated during the dry season. We hypothesize that reduced drought constraints on photosynthesis of irrigated plants advanced the flowering and fruiting phenology of irrigated plants into the dry season. Flowers and fruits of control plants developed later, during the wet season, potentially stimulating a compensatory reproductive photosynthesis response in nearby leaves. The relative drought intolerance of M. ciliata may be a deciding factor in its ability to survive through the dynamic successional development of the regrowth stand studied.  相似文献   

16.
Aims Nighttime sap flow of trees may indicate transpiration and/or recharge of stem water storage at night. This paper deals with the water use of Acacia mangium at night in the hilly lands of subtropical South China. Our primary goal was to reveal and understand the nature of nighttime sap flow and its functional significance.Methods Granier's thermal dissipation method was used to determine the nighttime sap flux of A. mangium. Gas exchange system was used to estimate nighttime leaf transpiration and stomatal conductance of studied trees.Important findings Nighttime sap flow was substantial and showed seasonal variation similar to the patterns of daytime sap flow in A. mangium. Mean nighttime sap flow was higher in the less precipitation year of 2004 (1122.4 mm) than in the more precipitation year of 2005 (1342.5 mm) since more daytime transpiration and low soil water availability in the relatively dry 2004 can be the cause of more nighttime sap flow. Although vapor pressure deficit and air temperature were significantly correlated with nighttime sap flow, they could only explain a small fraction of the variance in nighttime sap flow. The total accumulated water loss (E L) by transpiration of canopy leaves was only ~2.6–8.5% of the total nighttime sap flow (E t) during the nights of July 17–18 and 18–19, 2006. Therefore, it is likely that the nighttime sap flow was mainly used for refilling water in the trunk. The stem diameter at breast height, basal area and sapwood area explained much more variance of nighttime water recharge than environmental factors and other tree form features, such as tree height, stem length below the branch, and canopy size. The contribution of nighttime water recharge to the total transpiration ranged from 14.7 to 30.3% depending on different DBH class and was considerably higher in the dry season compared to the wet season.  相似文献   

17.
We analyzed body temperature (T(b)), basal metabolic rate (BMR), wet thermal conductance (C(wet)), and evaporative water loss (EWL) of marsupials by conventional and phylogenetically corrected regression. Allometric effects were substantial for BMR, C(wet), and EWL but not T(b). There was a strong phylogenetic signal for mass and all physiological traits. A significant phylogenetic signal remained for BMR, C(wet), and EWL even after accounting for the highly significant phylogenetic signal of mass. T(b), BMR, C(wet), and EWL allometric residuals were correlated with some diet, distribution, and climatic variables before and after correction for phylogeny. T(b) residuals were higher for marsupials from arid environments (high T(a) and more variable rainfall). The fossorial marsupial mole had a lower-than-expected T(b) residual. The allometric slope for BMR was 0.72-0.75. Residuals were consistently related to distribution aridity and rainfall variability, with species from arid and variable rainfall habitats having a low BMR, presumably to conserve energy in a low-productivity environment. The nectarivorous honey possum had a higher-than-expected BMR. For C(wet), the allometric slope was 0.55-0.62; residuals were related to diet, with folivores having low and insectivores high C(wet) residuals. The allometric slope for EWL was 0.68-0.73. EWL residuals were consistently correlated with rainfall variability, presumably facilitating maintenance of water balance during dry periods.  相似文献   

18.
The impact of leaf vein blockage on leaf hydraulic conductance (K(L)), gas exchange (g(L)) and water potential (Psi(L)) was studied in Prunus laurocerasus L., a broad-leaved evergreen. For this purpose, leaves were measured for the three variables above, either with an intact leaf blade (controls) or with the midrib cut a third of the way up (cut a), or with the midrib cut at three different points and the first-order veins cut through near their insertion to the midrib (cut b), or with the midrib cut at 2 mm from the leaf base (cut c). All the cut surfaces were sealed with cyanoacrylate. A serial decrease of K(L) was recorded from cut a to cut c with respect to that measured for the controls, i.e. a K(L) loss of about 37% (cut a), 57% (cut b) and 87% (cut c). A positive linear relationship appeared to exist between g(L) and K(L) with a high correlation coefficient (r(2)=0.99) and a high statistical significance (P <0.01). Even under a severe drop in K(L) (as that induced by cut c), leaf water potential remained approximately constant and not statistically different from Psi(L) measured for the controls. In fact, Psi(L) ranged between -0.83 and -0.98 MPa, i.e. within the cavitation threshold of leaves in terms of the critical Psi(L) inducing a significant production of ultrasound acoustic emissions which was -0.94+/-0.09 MPa. The conclusion was that stomata were very sensitive to changes in K(L) and that stomatal closure led to the homeostatic maintenance of Psi(L) and cavitation avoidance.  相似文献   

19.
通过对热带季节雨林雾凉季和湿热季昼间林窗区域不同热力作用面的热力效应初步分析,指出在西双版纳,不论是雾凉季还是湿热季,热带季节雨林林窗边缘壁面均具有不可忽视的热力作用,且由于受林缘树木的影响,热力效应较强的东侧,北侧林缘壁面最大区域出现位置高于次生林林窗,而强度小于次生林林窗,显示了林窗边缘壁面的热力效应除与太阳高度角,太阳辐射的时间长短和强度有关之外,林窗边缘树木高度也是不可忽视的因子,其结果可为进一步研究林窗小气候形成机制提供研究基础,为研究林窗更新及生物多样性问题提供科学参考。  相似文献   

20.
Field experiments (20 m2 plots) were conducted to compare Azolla and urea as N sources for rice (Oryza sativa L.) in both the wet and dry seasons. Parallel microplot (1 m2) experiments were conducted using 15N. A total of approximately 60 kg N ha-1 was applied as urea, Azolla, or urea plus Azolla. Urea or Azolla applied with equal applications of 30 kg N ha-1 at transplanting (T) and at maximum tillering (MT) were equally effective for increasing rice grain yields in both seasons. Urea at 30 kg N ha-1 at T and Azolla 30 kg N ha-1 at MT was also equally effective. Urea applied by the locally recommended best split (40 kg at T and 20 kg at MT) gave a higher yield in the wet season, but an equal yield in the dry season. The average yield increase was 23% in the wet season, and 95% in the dry season. The proportion of the N taken up by the rice plants which was derived from urea (%NdfU) or Azolla (%NdfAz) was essentially identical for the treatments receiving the same N split. Recovery of 15N in the grain plus straw was also very similar. Positive yield responses to residual N were observed in the succeeding rice crop following both the wet and dry seasons, but the increases were not always statistically significant. Recovery of residual 15N ranged from 5.5 to 8.9% for both crops in succeeding seasons. Residual recovery from the urea applications was significantly higher than from Azolla in the crop succeeding the dry season crop. Azolla was equally effective as urea as an N source for rice production on a per kg N basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号