首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Opioid ligands were investigated for their effect on hCG release from trophoblast tissue obtained from term human placenta. Data obtained indicate that opiate agonists stimulate in vitro basal hCG release from trophoblast tissue. The potency of these opioid agonists correspond to their kappa receptor selectivity, i.e., the greater the selectivity the lower is the effective concentration causing maximum stimulation. Opioid antagonists inhibit the release of hCG due to their reversal of the stimulation caused by endogenous opioid peptides. Potency of the antagonists correspond also to their kappa receptor selectivity. Antagonists reverse the stimulation of hCG release caused by agonists indicating that the ligand's action is mediated by the placental kappa opioid receptors. The bell shaped response curves for agonists and antagonists suggest that opioids play a role in the regulation of hCG release from trophoblast tissue, but other mechanism(s) may also exist.  相似文献   

2.
Human placental villus tissue contains opioid receptors and peptides. Kappa opioid receptors (the only type present in this tissue) were purified with retention of their binding properties. The purified kappa receptor is a glycoprotein with an apparent molecular weight of 63,000. Two opioid receptor mediated functions were identified in trophoblast tissue, namely regulation of acetylcholine and hormonal (human chorionic gonadotrophin and human placental lactogen) release. Placental content of kappa receptors increases with gestational age. Term placental content of kappa receptors correlates with route of delivery (higher in those abdominally obtained). Opioid use and/or abuse during pregnancy affects placental receptor content at delivery, as well as its mediated functions. Opioid peptides identified in placental extracts were beta-endorphin, methionine enkephalin, leucine enkephalin and dynorphins 1-8 and 1-13. Dynorphin 1-8 seem to be the predominant opioid peptide present in placental villus tissue.  相似文献   

3.
M S Ahmed  M A Horst 《Life sciences》1986,39(6):535-540
The human placental villous tissue contains components of the cholinergic system and opioid receptors of the kappa type. In vitro stimulation of the villous tissue releases acetylcholine in organ baths. A selective kappa agonist, ethylketocyclazocine, inhibits the release of acetylcholine. This inhibition is reversed by the antagonist Mr 2266. The antagonist alone stimulates the release of acetylcholine 18-fold over control. These results demonstrate an interaction between the placental opioid receptors and the cholinergic system in a non-neural tissue. The modulation of acetylcholine release by endogenous opioid peptides could be one of the in vivo functions of placental opioid receptors.  相似文献   

4.
Fab fragments from a monoclonal antibody, OR-689.2.4, directed against the opioid receptor, selectively inhibited opioid binding to rat and guinea pig neural membranes. In a titratable manner, the Fab fragments noncompetitively inhibited the binding of the mu selective peptide [D-Ala2,(Me)Phe4,Gly(OH)5][3H] enkephalin and the delta selective peptide [D-Pen2,D-Pen5] [3H]enkephalin (where Pen represents penicillamine) to neural membranes. In contrast, kappa opioid binding, as measured by the binding of [3H]bremazocine to rat neural membranes and guinea pig cerebellum in the presence of mu and delta blockers, was not significantly altered by the Fab fragments. In addition to blocking the binding of mu and delta ligands, the Fab fragments displaced bound opioids from the membranes. When mu sites were blocked with [D-Ala2,(Me)Phe4,Gly(OH)5]enkephalin, the Fab fragments suppressed the binding of [D-Pen2,D-Pen5][3H]enkephalin to the same degree as when the mu binding site was not blocked. The Fab fragments also inhibited binding to the mu site regardless of whether or not the delta site was blocked with [D-Pen2,D-Pen5]enkephalin. This monoclonal antibody is directed against a 35,000-dalton protein. Since the antibody is able to inhibit mu and delta binding but not kappa opioid binding, it appears that this 35,000-dalton protein is an integral component of mu and delta opioid receptors but not kappa receptors.  相似文献   

5.
Smooth muscle cells were isolated from the fundus of the canine gallbladder and examined for the presence of opioid receptors. The cells contracted in a concentration-dependent manner in response to three opioid peptides (Met-enkephalin, dynorphin1-13 and Leu-enkephalin), which are known derivatives of opioid precursors present in myenteric neurons of the gut. The order of potency was Met-enkephalin greater than dynorphin1-13 greater than Leu-enkephalin. The contractile response to opioid agonists was selectively inhibited by opioid antagonists (naloxone and Mr2266) but not by muscarinic, CCK/gastrin or tachykinin antagonists. Equivalent responses to the three opioid peptides exhibited differential sensitivity to preferential antagonists of mu (naloxone) and kappa (Mr2266) opioid receptors consistent with the presence of the three main types of opioid receptors (mu, delta and kappa) on canine gallbladder muscle cells.  相似文献   

6.
The ability of neuropeptide Y to potently stimulate food intake is dependent in part upon the functioning of mu and kappa opioid receptors. The combined use of selective opioid antagonists directed against mu, delta or kappa receptors and antisense probes directed against specific exons of the MOR-1, DOR-1, KOR-1 and KOR-3/ORL-1 opioid receptor genes has been successful in characterizing the precise receptor subpopulations mediating feeding elicited by opioid peptides and agonists as well as homeostatic challenges. The present study examined the dose-dependent (5-80 nmol) cerebroventricular actions of general and selective mu, delta, and kappa1 opioid receptor antagonists together with antisense probes directed against each of the four exons of the MOR-1 opioid receptor gene and each of the three exons of the DOR-1, KOR-1, and KOR-3/ORL-1 opioid receptor genes upon feeding elicited by cerebroventricular NPY (0.47 nmol, 2 ug). NPY-induced feeding was dose-dependently decreased and sometimes eliminated following pretreatment with general, mu, delta, and kappa1 opioid receptor antagonists. Moreover, NPY-induced feeding was significantly and markedly reduced by antisense probes directed against exons 1, 2, and 3 of the MOR-1 gene, exons 1 and 2 of the DOR-1 gene, exons 1, 2, and 3 of the KOR-1 gene, and exon 3 of the KOR-3/ORL-1 gene. Thus, whereas the opioid peptides, beta-endorphin and dynorphin A(1-17) elicit feeding responses that are respectively more dependent upon mu and kappa opioid receptors and their genes, the opioid mediation of NPY-induced feeding appears to involve all three major opioid receptor subtypes in a manner similar to that observed for feeding responses following glucoprivation or lipoprivation.  相似文献   

7.
Hruby VJ  Agnes RS 《Biopolymers》1999,51(6):391-410
The discovery of endogenous opioid peptides 25 years ago opened up a new chapter in efforts to understand the origins and control of pain, its relationships to other biological functions, including inflammatory and other immune responses, and the relationships of opioid peptides and their receptors to a variety of undesirable or toxic side effects often associated with the nonpeptide opiates such as morphine including addiction, constipation, a variety of neural toxicities, tolerance, and respiratory depression. For these investigations the need for potent and highly receptor selective agonists and antagonists has been crucial since they in principle allow one to distinguish unequivocally the roles of the different opioid receptors (mu, delta, and kappa) in the various biological and pathological roles of the opioid peptides and their receptors. Conformational and topographical constraint of the linear natural endogenous opioid peptides has played a major role in developing peptide ligands with high selectivity for mu, delta, and kappa receptors, and in understanding the conformational, topographical, and stereoelectronic structural requirements of the opioid peptides for their interactions with opioid receptors. In turn, this had led to insights into the three-dimensional pharmacophore for opioid receptors. In this article we review and discuss some of the developments that have led to potent, selective, and stable peptide and peptidomimetic ligands that are highly potent and selective, and that have delta agonist, mu antagonist, and kappa agonist biological activities (other authors in this issue will discuss the development of other types of activities and selectivities). These have led to ligands that provide unique insight into opioid pharmacophores and the critical roles opioid ligands and receptor scan play in pain, addiction, and other human maladies.  相似文献   

8.
Stevens CW  Newman LC 《Life sciences》1999,64(10):PL125-PL130
In mammals, opioids act by interactions with three distinct types of receptors: mu, delta, or kappa opioid receptors. Using a novel assay of antinociception in the Northern grass frog, Rana pipiens, previous work demonstrated that selective mu, delta, or kappa opioids produced a potent antinociception when administered by the spinal route. The relative potency of this effect was highly correlated to that found in mammals. Present studies employing selective opioid antagonists, beta-FNA, NTI, or nor-BNI demonstrated that, in general, these antagonists were not selective in the amphibian model. These data have implications for the functional evolution of opioid receptors in vertebrates and suggest that the tested mu, delta, and kappa opioids mediate antinociception via a single type of opioid receptor in amphibians, termed the unireceptor.  相似文献   

9.
A structurally unique and new class of opioid receptor antagonists (OpRAs) that bear no structural resemblance with morphine or endogenous opioid peptides has been discovered. A series of carboxamido-biaryl ethers were identified as potent receptor antagonists against mu, kappa and delta opioid receptors. The structure-activity relationship indicated para-substituted aryloxyaryl primary carboxamide bearing an amine tether on the distal phenyl ring was optimal for potent in vitro functional antagonism against three opioid receptor subtypes.  相似文献   

10.
Opioid receptor selectivity of peptide models of beta-endorphin   总被引:1,自引:0,他引:1  
Two peptides, designed to contain structural models of the proposed hydrophilic linker domain (residues 6-12) and amphiphilic alpha-helical domain (residues 13-29) in beta-endorphin, have been tested for their abilities to mimic the opioid receptor selectivity profile of the natural hormone. In competitive binding assays employing guinea-pig brain membranes, both peptides displayed a much higher affinity for mu- and delta-opioid receptors than for kappa opioid receptors. Relative to beta-endorphin, the peptide models were 2-3 times more potent in the mu and kappa receptor binding assays, and about equipotent in the delta receptor binding assay. In guinea-pig ileum assays, one peptide was equipotent to beta-endorphin and the other was twice as potent. Like beta-endorphin, their actions on this tissue were highly sensitive to naloxone antagonism, indicating that they were mediated by mu receptors and not kappa receptors. In view of the design of the two peptide models, and their minimal homology to the natural hormone, these results provide additional evidence in support to our proposal for the functional conformation of beta-endorphin.  相似文献   

11.
Smith AP  Lee NM 《Life sciences》2003,73(15):1873-1893
The pharmacological effects of opioid drugs and endogenous opioid peptides are mediated by several kinds of receptors, the major ones being mu, delta and kappa. Though classically it has been thought that a particular effect mediated by a drug or other ligand results from its interaction with a single type of receptor, accumulating evidence demonstrates that interactions between receptors play a major role in opioid actions. These interactions may be either local, involving receptors within the same tissue, or nonlocal, between receptors located in different tissues. Nonlocal interactions always involve intercellular mechanisms, whereas local interactions may involve either intercellular or intracellular interactions, the latter including physical association of receptors. Both local and nonlocal interactions, moreover, may be either symmetric, with ligand interaction at one receptor affecting interaction at the other, or asymmetric; and either potentiating or inhibitory. In this article we discuss major examples of these kinds of interactions, and their role in the acute and chronic effects of opioids. Knowledge of these interactions may have important implications for the design of opioids with more specific actions, and for eliminating the addictive liability of these drugs.  相似文献   

12.
J G Pfaus  B B Gorzalka 《Peptides》1987,8(2):309-317
The effects of opioid peptides that are highly selective ligands for mu receptors (morphiceptin). delta receptors (delta-receptor peptide), kappa receptors (dynorphin 1-9), and the mu/delta complex (beta-endorphin), were tested on lordosis behavior in ovariectomized rats primed with estrogen and progesterone. Intracerebroventricular infusions of beta-endorphin or morphiceptin both inhibited and facilitated lordosis in a dose-dependent fashion whereas all doses of delta-receptor peptide facilitated lordosis. Dynorphin 1-9 had no significant effect at any dose, although a trend toward increased lordosis quotients was observed 30 min after infusion. The effects of beta-endorphin, morphiceptin, and delta-receptor peptide were reversed with naloxone, although naloxone alone had no effect on lordosis behavior. These results indicate that the specific activation of opioid receptor subtypes differentially affects lordosis behavior. It appears that binding to high-affinity mu 1 receptors exerts an inhibitory influence on lordosis, whereas binding to low-affinity mu 2 receptors or delta receptors exerts a facilitatory influence. Binding to kappa receptors does not appear to affect lordosis behavior.  相似文献   

13.
八肽胆囊收缩素对抗mu和Kappa型受体介导的镇痛作用   总被引:3,自引:1,他引:3  
王霄虹  王晓京 《生理学报》1990,42(3):219-225
以往的资料表明,八肽胆襄收缩素(CCK-8)能对抗阿片镇痛,本实验进一步分析 CCK-8对抗哪一类型阿片受体激动剂的镇痛作用。给大鼠脊髓蛛网膜下腔(I.T.)注射 CCK-8(剂量4ng到1.0μg)既不产生痛敏也不产生镇痛。I.T.注射特异性的μ受体激动剂 PL01710 ng 或 k 受体激动剂 NDA P500 ng 引起的镇痛作用可被注射 CCK-8 4ng 所对抗。而L.T.注射δ受体激动剂 DPDPE(6.5,13.0和26.Oμg)引起的镇痛作用不能被 CCK-8(4ng,40ng I.T.)所对抗。但 CCK-8对抗 PL017和 NDAP 镇痛的作用可被 I.T.CCK 受体拮抗剂 proglumide(3μg)所翻转。以上结果表明,I.T.注射 CCK-8可有效地对抗μ和 k 受体介导的镇痛,并且这种对抗作用是经 CCK 受体介导而实现的。  相似文献   

14.
Three-dimensional structures of the transmembrane, seven alpha-helical domains and extracellular loops of delta, mu, and kappa opioid receptors, were calculated using the distance geometry algorithm, with hydrogen bonding constraints based on the previously developed general model of the transmembrane alpha-bundle for rhodopsin-like G-protein coupled receptors (Biophys. J. 1997. 70:1963). Each calculated opioid receptor structure has an extensive network of interhelical hydrogen bonds and a ligand-binding crevice that is partially covered by a beta-hairpin formed by the second extracellular loop. The binding cavities consist of an inner "conserved region" composed of 18 residues that are identical in delta, mu, and kappa opioid receptors, and a peripheral "variable region," composed of 19 residues that are different in delta, mu, and kappa subtypes and are responsible for the subtype specificity of various ligands. Sixteen delta-, mu-, or kappa-selective, conformationally constrained peptide and nonpeptide opioid agonists and antagonists and affinity labels were fit into the binding pockets of the opioid receptors. All ligands considered have a similar spatial arrangement in the receptors, with the tyramine moiety of alkaloids or Tyr1 of opioid peptides interacting with conserved residues in the bottom of the pocket and the tyramine N+ and OH groups forming ionic interactions or H-bonds with a conserved aspartate from helix III and a conserved histidine from helix VI, respectively. The central, conformationally constrained fragments of the opioids (the disulfide-bridged cycles of the peptides and various ring structures in the nonpeptide ligands) are oriented approximately perpendicular to the tyramine and directed toward the extracellular surface. The results obtained are qualitatively consistent with ligand affinities, cross-linking studies, and mutagenesis data.  相似文献   

15.
A series of 2-amino-oxazole (7 and 8) analogs and 2-one-oxazole analogs (9 and 10) were synthesized from cyclorphan (1) or butorphan (2) and evaluated in-vitro by their binding affinity at mu, delta, and kappa opioid receptors and compared with their 2-aminothiozole analogs 5 and 6. Ligands 7-10 showed decreased affinities at kappa and mu receptors. Urea analogs (11-14) were also prepared from 2-aminocyclorphan (3) or 2-aminobutorphan (4) and evaluated in-vitro by their binding affinity at mu, delta, and kappa opioid receptors. The urea derived opioids retained their affinities at mu receptors while showing increased affinities at delta receptors and decreased affinities at kappa receptors. Functional activities of these compounds were measured in the [35S]GTPgammaS binding assay, illustrating that all of these ligands were kappa agonists. At the mu receptor, compounds 11 and 12 were mu agonist/antagonists.  相似文献   

16.
BACKGROUND: Tyr-Tic (1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) and Tyr-Tic-Ala were the first peptides with delta opioid antagonist activity lacking Phe, considered essential for opioid activity based on the N-terminal tripeptide sequence (Tyr-D-Xaa-Phe) of amphibian skin opioids. Analogs were then designed to restrain the rotational flexibility of Tyr by the substitution of 2,6-dimethyl-L-tyrosine (Dmt). MATERIALS AND METHODS: Tyr and Dmt peptides were synthesized by solid phase and solution methods using Fmoc technology or condensing Boc-Dmt-OH or Boc-Tyr(But)-OH with H-L-Tic-OBut or H-D-Tic-OBut, respectively. Peptides were purified (> 99%) by HPLC and characteristics determined by 1H-NMR, FAB-MS, melting point, TLC, and amino acid analyses. RESULTS: H-Dmt-Tic-OH had high affinity (Ki delta = 0.022 nM) and extraordinary selectivity (Ki mu/Ki delta = 150,000); H-Dmt-Tic-Ala-OH had a Ki delta = 0.29 nM and delta selectivity = 20,000. Affinity and selectivity increased 8700- and 1000-fold relative to H-Tyr-Tic-OH, respectively. H-Dmt-Tic-OH and H-Dmt-Tic-NH2 fitted one-site receptor binding models (eta = 0.939-0.987), while H-Dmt-Tic-ol, H-Dmt-Tic-Ala-OH and H-Dmt-Tic-Ala-NH2 best fitted two-site models (eta = 0.708-0.801, F 18.9-26.0, p < 0.0001). Amidation increased mu affinity by 10- to 100-fold and acted synergistically with D-Tic2 to reverse selectivity (delta-->mu). Dmt-Tic di- and tripeptides exhibited delta antagonist bioactivity (Ke = 4-66 nM) with mouse vas deferens and lacked agonist mu activity (> 10 microM) in guinea-pig ileum preparations. Dmt-Tic analogs weakly interacted with kappa receptors in the 1 to > 20 microM range. CONCLUSIONS: Dmt-Tic opioidmimetic peptides represent a highly potent class of opioid peptide antagonists with greater potency than the nonopioid delta antagonist naltrindole and have potential application as clinical and therapeutic compounds.  相似文献   

17.
Tetrapeptides of primary sequence Tyr-X-Phe-YNH2, where X is D-Cys or D-Pen (penicillamine) and where Y is D-Pen or L-Pen, were prepared and were cyclized via the side chain sulfurs of residues 2 and 4 to disulfide or dithioether-containing analogs. These peptides are related to previously reported penicillamine-containing pentapeptide enkephalin analogs but lack the central glycine residue of the latter and were designed to assess the effect of decreased ring size on opioid activity. Binding affinities of the tetrapeptides were determined to both mu and delta opioid receptors. Binding affinity and selectivity in the tetrapeptide series were observed to be highly dependent on primary sequence. For example, L-Pen4 analogs displayed low affinity and were nonselective, while the corresponding D-Pen4 diastereomers were of variable affinity and higher selectivity. Among the latter compounds were examples of potent analogs in which selectivity shifted from delta selective to mu selective as the ring size was increased. The relatively high binding affinity and delta receptor selectivity observed with one of the carboxamide terminal disulfide analogs led to the synthesis of the corresponding carboxylic acid terminal, Tyr-D-Cys-Phe-D-PenOH. This analog displayed delta receptor binding selectivity similar to that of the standard delta ligand, [D-Pen2,D-Pen5]enkephalin (DPDPE), and was found to have a 3.5-fold higher binding affinity than DPDPE. All the tetrapeptides were further evaluated in the isolated mouse vas deferens (mvd) assay and all displayed opioid agonist activity. In general, tetrapeptide potencies in the mouse vas deferens correlated well with binding affinities but were somewhat lower. Receptor selectivity in the mvd, assessed by examining the effect of opioid antagonists on the tetrapeptide concentration-effect curves, was similar to that determined in the binding studies.  相似文献   

18.
C F Smith 《Life sciences》1987,40(3):267-274
16-Me cyprenorphine (RX 8008M) has been investigated in a number of isolated tissue preparations and found to be a pure opioid antagonist with Ke values at the delta, mu and kappa receptors of 0.73, 1.77 and 59.6 nM respectively. Comparisons of the mu, kappa and delta Ke values with a number of other antagonists in the mouse vas deferens have been made and show that the 16-Me substituent results in a marked enhancement of delta activity, making RX 8008M the most selective non-peptide delta antagonist available at the present time.  相似文献   

19.
J Wang  M Ren  J Han 《Peptides》1992,13(5):947-951
In enzymatically dissociated brain cells prepared from neonatal rats, KCl produced a significant increase in [Ca2+]i and this increase could be prevented by verapamil or nifedipine, known to block voltage-sensitive calcium channels. The opioid receptor agonists ohmefentanyl (OMF, mu agonist), [D-Pen2,D-Pen5]enkephalin (DPDPE, delta agonist), and 66A-078 (kappa agonist) produced a marked suppression of the Ca2+ influx induced by high K+ depolarization. The suppressive effect of OMF, DPDPE, and 66A-078 on the high K(+)-induced increase in [Ca2+]i was markedly reversed by their respective antagonists beta-funaltrexamine (beta-FNA), ICI174864, and nor-binaltorphimine (nor-BNI). Cholecystokinin octapeptide (CCK-8), at concentrations of 0.3, 3.0, and 30 nM, dose-dependently mobilized Ca2+ from intracellular stores. While CCK-8 30 nM did not affect significantly the increase of [Ca2+]i following high K+, it did reverse the suppression of the high K(+)-induced increase in [Ca2+]i by the mu agonist OMF and the kappa agonist 66A-078, but not that by the delta agonist DPDPE. The results suggested that while opioid ligands suppress [Ca2+]i by blocking voltage-operated Ca2+ influx, the antiopioid effect of CCK-8 seems to be operated via mobilization of Ca2+ from intracellular stores.  相似文献   

20.
Sun HL  Zheng JW  Wang K  Liu RK  Liang JH 《Life sciences》2003,72(11):1221-1230
Tramadol, an atypical opioid analgesic, stimulates both opiatergic and serotonergic systems. Here we have investigated the effect of tramadol in mice on 5-hydroxyptrytophan (5-HTP)-induced head twitch response (HTR), which is an animal model for the activation of the CNS 5-HT(2A) receptors in mice. Tramadol attenuated 5-HTP-induced HTR in a dose-dependent manner as morphine. Furthermore, the nonselective opioid receptor antagonists, naloxone and diprenorphine (M5050), reversed the effect of tramadol on 5-HTP-induced HTR dose-dependently. Interestingly, in contrast to the selective delta opioid receptor antagonist NTI, beta-FNA, a selective mu receptor antagonist, and nor-BNI, a selective kappa opioid receptor antagonist, antagonized the attenuation of 5-HTP-induced HTR by tramadol. In conclusion, administration of tramadol systemically inhibits 5-HTP-induced HTR in mice by activating opiatergic system in the CNS. Our findings show that mu and kappa opioid receptors, but not delta opioid receptor, play an important role in the regulation of serotonergic function in the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号