首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of two spherical model membranes at the tips of two syringes has allowed us to study the role of gangliosides in membrane adhesion and look for changes in conductance between two such membranes during the process of adhesion. Membranes were formed in aqueous 100 mM NaCl, 10 mM KCl, 1 mM CaCl2 from 1% (w/v) egg phosphatidylcholine in n-decane, with or without mixed bovine brain gangliosides. After thinning to the 'black' bilayer state, two membranes were moved into contact. With gangliosides, the contact area and conductance increased colinearly with time over a 5 to 20 min period of adhesion. The role of electrostatic bridging by calcium was investigated. In the absence of calcium or in the presence of 2 mM EDTA, adhesion proceeded after a longer lag time at about one-half the normal rate. As the ganglioside concentration was increased from 0 to 15 mol%, the electrical conductance of individual membranes decreased 3-fold from 48 +/- 30 nS/cm2 to 17 +/- 13 nS/cm2. The conductance was pH dependent with a minimum at neutral values. At neutral pH, when two membranes containing 4.1 mol% gangliosides adhered, the region of adhesion had a specific conductance three times that of the nonadhering regions of membranes. Without gangliosides, the specific conductance of the contact region was the same as that of non-adhering regions of the membrane. These data suggest that mixed gangliosides can mediate an adhesion-dependent increase in conductance.  相似文献   

2.
Gangliosides are neuraminic acid-containing glycolipids preferently localized in nervous membranes and showing physicochemical peculiarities, e.g., drastically changing amphiphilic properties by Ca2+ binding. On account of this they are favorite compounds to act as modulators of membraneous organization and functions during synaptic transmission. Lipid monolayers are suitable experimental systems for the study of the surface behavior of amphipatic molecules and therefore are useful to interpret membraneous organization. The surface pressure/area isotherms of monolayers of different individual gangliosides (GM1, GD1a, GD1b, GT1b) of an artificial reconstituted and a natural ganglioside mixture from bovine brain and of ganglioside mixtures from different brain parts of summer- and winter-adapted dsungarian hamsters were compared at three temperatures (11, 20, and 37 degrees C) with egg phosphatidylcholine (PC) and phosphatidylserine (PS) monolayers. The monolayers were formed in a Teflon trough on a triethanolamine/HCl-buffered (pH 7.4) subphase, in some cases containing different amounts of CaCl2. The surface pressure/area isotherms of ganglioside monolayers, in contrast to phospholipids, generally showed slowly rising slopes, with transitions from the liquid-expanded to the liquid-condensed state at a surface pressure of 20-30 mN/m. Ganglioside monolayers, in particular from GD1a or GT1b versus GD1b or from mixtures from summer- versus winter-adapted hamster brain, were differently affected by temperature and/or by Ca2+. PS monolayers were slightly condensed only by Ca2+. PC monolayers, however, were influenced neither by temperature nor by Ca2+. In mixed monolayers of the unpolar natural lipid cholesterol (Ch) and the disialoganglioside GD1a, intermolecular interactions were indicated. Ganglioside monolayers, in contrast to phospholipids, were shown to be easily modulated by temperature and/or Ca2+ ions, thus enabling gangliosides to act as possible membrane modulators, e.g., during synaptic transmission. In particular, the differences concerning the influences of temperature and/or Ca2+ on the surface behavior of ganglioside mixtures from the brain of summer- compared with winter-adapted hamsters are correlated with other physiologically relevant data.  相似文献   

3.
The single-channel properties for monovalent and divalent cations of a voltage-independent cation channel from Tetrahymena cilia were studied in planar lipid bilayers. The single-channel conductance reached a maximum value as the K+ concentration was increased in symmetrical solutions of K+. The concentration dependence of the conductance was approximated to a simple saturation curve (a single-ion channel model) with an apparent Michaelis constant of 16.3 mM and a maximum conductance of 354 pS. Divalent cations (Ca2+, Ba2+, Sr2+, and Mg2+) also permeated this channel. The sequence of permeability determined by zero current potentials at high ionic concentrations was Ba2+ greater than or equal to K+ greater than or equal to Sr2+ greater than Mg2+ greater than Ca2+. Single-channel conductances for Ca2+ were nearly constant (13.9 pS-20.5 pS) in the concentrations between 0.5 mM and 50 mM Ca-gluconate. In the experiments with mixed solutions of K+ and Ca2+, a maximum conductance of Ca2+ (gamma Camax) and an apparent Michaelis constant of Ca2+ (K Cam) were obtained by assuming a simple competitive relation between the cations. Gamma Camax and K Cam were 14.0 pS and 0.160 mM, respectively. Single-channel conductances in mixed solutions were well-fitted to this competitive model supporting that this cation channel behaves as a single-ion channel. This channel had relatively high-affinity Ca2+-binding sites.  相似文献   

4.
We formed vesicles from mixtures of egg phosphatidylcholine (PC) and the gangliosides GM1, GD1a, or GT1 to model the electrokinetic properties of biological membranes. The electrophoretic mobilities of the vesicles are similar in NaCl, CsCl, and TMACl solutions, suggesting that monovalent cations do not bind significantly to these gangliosides. If we assume the sialic acid groups on the gangliosides are located some distance from the surface of the vesicle and the sugar moieties exert hydrodynamic drag, we can describe the mobility data in 1, 10, and 100 mM monovalent salt solutions with a combination of the Navier-Stokes and nonlinear Poisson-Boltzmann equations. The values we assume for the thickness of the ganglioside head group and the location of the charge affect the theoretical predictions markedly, but the Stokes radius of each sugar and the location of the hydrodynamic shear plane do not. We obtain a reasonable fit to the mobility data by assuming that all ganglioside head groups project 2.5 nm from the bilayer and all fixed charges are in a plane 1 nm from the bilayer surface. We tested the latter assumption by estimating the surface potentials of PC/ganglioside bilayers using four techniques: we made 31P nuclear magnetic resonance, fluorescence, electron spin resonance, and conductance measurements. The results are qualitatively consistent with our assumption.  相似文献   

5.
Dihydropyridine receptors were purified from rabbit skeletal muscle transverse tubule membranes and incorporated into planar lipid bilayers. Calcium channels from both the purified dihydropyridine receptor preparation and the intact transverse tubule membranes exhibited two sizes of unitary currents, corresponding to conductances of 7 +/- 1 pS and 16 +/- 3 pS in 80 mM BaCl2. Both conductance levels were selective for divalent cations over monovalent cations and anions. Cadmium, an inorganic calcium channel blocker, reduced the single channel conductance of calcium channels from the purified preparation. The organic calcium channel antagonist nifedipine reduced the probability of a single channel being open with little effect on the single channel conductance. The presence of two conductance levels in both the intact transverse tubule membranes and the purified dihydropyridine receptor preparation suggests that the calcium channel may have multiple conductance levels or that multiple types of calcium channels with closely related structures are present in transverse tubule membranes.  相似文献   

6.
Although store-operated calcium release-activated Ca(2+) (CRAC) channels are highly Ca(2+)-selective under physiological ionic conditions, removal of extracellular divalent cations makes them freely permeable to monovalent cations. Several past studies have concluded that under these conditions CRAC channels conduct Na(+) and Cs(+) with a unitary conductance of approximately 40 pS, and that intracellular Mg(2+) modulates their activity and selectivity. These results have important implications for understanding ion permeation through CRAC channels and for screening potential CRAC channel genes. We find that the observed 40-pS channels are not CRAC channels, but are instead Mg(2+)-inhibited cation (MIC) channels that open as Mg(2+) is washed out of the cytosol. MIC channels differ from CRAC channels in several critical respects. Store depletion does not activate MIC channels, nor does store refilling deactivate them. Unlike CRAC channels, MIC channels are not blocked by SKF 96365, are not potentiated by low doses of 2-APB, and are less sensitive to block by high doses of the drug. By applying 8-10 mM intracellular Mg(2+) to inhibit MIC channels, we examined monovalent permeation through CRAC channels in isolation. A rapid switch from 20 mM Ca(2+) to divalent-free extracellular solution evokes Na(+) current through open CRAC channels (Na(+)-I(CRAC)) that is initially eightfold larger than the preceding Ca(2+) current and declines by approximately 80% over 20 s. Unlike MIC channels, CRAC channels are largely impermeable to Cs(+) (P(Cs)/P(Na) = 0.13 vs. 1.2 for MIC). Neither the decline in Na(+)-I(CRAC) nor its low Cs(+) permeability are affected by intracellular Mg(2+) (90 microM to 10 mM). Single openings of monovalent CRAC channels were not detectable in whole-cell recordings, but a unitary conductance of 0.2 pS was estimated from noise analysis. This new information about the selectivity, conductance, and regulation of CRAC channels forces a revision of the biophysical fingerprint of CRAC channels, and reveals intriguing similarities and differences in permeation mechanisms of voltage-gated and store-operated Ca(2+) channels.  相似文献   

7.
Szule JA  Rand RP 《Biophysical journal》2003,85(3):1702-1712
Gramicidin is an antibiotic peptide that can be incorporated into the monolayers of cell membranes. Dimerization through hydrogen bonding between gramicidin monomers in opposing leaflets of the membrane results in the formation of an iontophoretic channel. Surrounding phospholipids influence the gating properties of this channel. Conversely, gramicidin incorporation has been shown to affect the structure of spontaneously formed lipid assemblies. Using small-angle x-ray diffraction and model systems composed of phospholipids and gramicidin, the effects produced by gramicidin on lipid layers were measured. These measurements explore how peptides are able to modulate the spontaneous curvature properties of phospholipid assemblies. The reverse hexagonal, H(II), phase formed by dioleoylphosphatidylethanolamine (DOPE) monolayers decreased in lattice dimension with increasing incorporation of gramicidin. This indicated that gramicidin itself was adding negative curvature to the lipid layers. In this system, gramicidin was measured to have an apparent intrinsic radius of curvature, R0pgram, of -7.1 A. The addition of up to 4 mol% gramicidin in DOPE did not result in the monolayers becoming stiffer, as measured by the monolayer bending moduli. Dioleoylphosphatidylcholine (DOPC) alone forms the lamellar (L(alpha)) phase when hydrated, but undergoes a transition into the reverse hexagonal (H(II)) phase when mixed with gramicidin. The lattice dimension decreases systematically with increased gramicidin content. Again, this indicated that gramicidin was adding negative curvature to the lipid monolayers but the mixture behaved structurally much less consistently than DOPE/gramicidin. Only at 12 mol% gramicidin in dioleoylphosphatidylcholine could an apparent radius of intrinsic curvature of gramicidin (R0pgram) be estimated as -7.4 A. This mixture formed monolayers that were very resistant to bending, with a measured bending modulus of 115 kT.  相似文献   

8.
A single cation-channel from Tetrahymena cilia was incorporated into planar lipid bilayers. This channel was voltage-independent and is permeable to K+ and Ca2+. In the experiments with mixed solutions where the concentrations of K+ and Ca2+ were varied, the single-channel conductance was found to be influenced by the Gibbs-Donnan ratio. The data are explained by assuming that the binding sites of this channel were always occupied by two potassium ions or one calcium ion under the present experimental conditions (5 mM-90 mM K+ and 0.5 mM-35 mM Ca2+) and these bound cations determined the channel conductivity.  相似文献   

9.
A gramicidin A derivative with a polyether linkage between both ethanolamine termini was synthesized and its ion channel properties were studied. The compound showed a duplication in the state of conductance for alkali cations in thick DOPC bilayer membranes, which is interpreted as the occurrence of twin-channels. In thinner DMPC membranes mono-channels were dominant. The influence of hydrophobic coupling on the mono channel/twin channel equilibrium is discussed.  相似文献   

10.
Y Oosawa 《Biophysical journal》1989,56(6):1217-1223
The cation-selective channel from Tetrahymena cilia is permeable to both monovalent and divalent cations. The single channel conductance in mixed solutions of K+ and Ca2+ was determined by the Gibbs-Donnan ratio of K+ and Ca2+, and the binding sites of this channel were considered to be always occupied by two potassium ions or by one calcium ion under the experimental conditions: 5-90 mM K+ and 0.5-35 mM Ca2+ (Oosawa and Kasai, 1988). A two-barrier model for the channel was introduced and the values of Michaelis-Menten constants and maximum currents carried by K+ and Ca2+ were calculated using this model. Single channel current amplitudes and reversal potentials were calculated from these values. The calculated single-channel currents were compared with those obtained experimentally. The calculated reversal potentials were compared with the resting potentials of Tetrahymena measured in various concentrations of extracellular K+ and Ca2+. The method of calculation of ionic currents and reversal potentials presented here is helpful for understanding the properties of the channels permeable to both monovalent and divalent cations.  相似文献   

11.
In order to examine whether calcium-dependent binding of annexin to acidic phospholipids could change the lipid bilayer environment sufficiently to perturb channel-mediated transmembrane ion-transport, gramicidin A channel activity in planar lipid bilayers was investigated in the presence of calcium and annexins II, III or V. The experiments were performed with membranes consisting of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine in 300 mM KCl solution buffered to pH 7.4 and with either 0.1 or 1 mM calcium added to the solution. Annexin (1 microM) was subsequently applied to the cis side of the membrane. All three annexins (II, III and V) when tested at 1 mM calcium decreased the gramicidin single-channel conductance. Annexins II and III increased the mean lifetime of the channels whereas annexin V seemed to have no influence on the mean lifetime. Since the lifetime of gramicidin A channels is a function of the rate constant for dissociation of the gramicidin dimer, which is dependent on the physical properties of the lipid phase, binding of annexins II and III seems to stabilize the gramicidin channel owing to a change of the bilayer structure.  相似文献   

12.
A Corcia  I Pecht  S Hemmerich  S Ran  B Rivnay 《Biochemistry》1988,27(19):7499-7506
Ion channels, activated upon IgE-Fc epsilon receptor aggregation by specific antigen, were studied in micropipet-supported lipid bilayers. These bilayers were reconstituted with purified IgE-Fc epsilon receptor complex and the intact 110-kDa channel-forming protein, both isolated from plasma membranes of rat basophilic leukemia cells (line RBL-2H3). In order to identify the current carrier through these ion channels and to determine their ion selectivity, we investigated the currents flowing through the IgE-Fc epsilon receptor gated channels in the presence of a gradient of Ca2+ ions. Thus, the solution in which the micropipet-supported bilayer was immersed contained 1.8 mM CaCl2, while the interior of the micropipet contained 0.1 microM Ca2+ (buffered with EGTA). Both solutions also contained 150 mM of a monovalent cation chloride salt (either K+ or Na+). The currents induced upon specific aggregation of the IgE (by either antigen or anti-IgE antibodies) were examined over a range of potentials imposed on the bilayer. The type of conductance event most frequently observed under the employed experimental conditions was a channel that has a slope conductance of 3 pS and a reversal potential practically identical with the calculated value for the reversal potential of calcium (134 +/- 11 mV in the presence of sodium, 125 +/- 13 mV in the presence of potassium). These results indicate that this channel is highly selective for calcium against the monovalent cations sodium and potassium. This same channel has a conductance of 4-5 pS in the presence of symmetrical solutions containing only 100 mM CaCl2 and 8 pS in the presence of 0.5 M NaCl with no calcium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Depletion of intracellular calcium stores induces transmembrane Ca2+ influx. We studied Ca(2+)- and Ba(2+)-permeable ion channels in A431 cells after store depletion by dialysis of the cytosol with 10 mM BAPTA solution. Cell-attached patches of cells held at low (0.5 microM) external Ca2+ exhibited transient channel activity, lasting for 1-2 min. The channel had a slope conductance of 2 pS with 200 mM CaCl2 and 16 pS with 160 mM BaCl2 in the pipette. Channel activity quickly ran down in excised inside-out patches and was not restored by InsP3 and/or InsP4. Thapsigargin induced activation in cells kept in 1 mM external Ca2+ after BAPTA dialysis. These channels represent one Ca2+ entry pathway activated by depletion of internal calcium stores and are clearly distinct from previously identified calcium repletion currents.  相似文献   

14.
Cellular responses rely on signaling. In plant cells, cytosolic free calcium is a major second messenger, and ion channels play a key role in mediating physiological responses. Self-incompatibility (SI) is an important genetically controlled mechanism to prevent self-fertilization. It uses interaction of matching S-determinants from the pistil and pollen to allow "self" recognition, which triggers rejection of incompatible pollen. In Papaver rhoeas, the S-determinants are PrsS and PrpS. PrsS is a small novel cysteine-rich protein; PrpS is a small novel transmembrane protein. Interaction of PrsS with incompatible pollen stimulates S-specific increases in cytosolic free calcium and alterations in the actin cytoskeleton, resulting in programmed cell death in incompatible but not compatible pollen. Here, we have used whole-cell patch clamping of pollen protoplasts to show that PrsS stimulates SI-specific activation of pollen grain plasma membrane conductance in incompatible but not compatible pollen grain protoplasts. The SI-activated conductance does not require voltage activation, but it is voltage sensitive. It is permeable to divalent cations (Ba(2+) ≥ Ca(2+) > Mg(2+)) and the monovalent ions K(+) and NH(4)(+) and is enhanced at voltages negative to -100 mV. The Ca(2+) conductance is blocked by La(3+) but not by verapamil; the K(+) currents are tetraethylammonium chloride insensitive and do not require Ca(2+). We propose that the SI-stimulated conductance may represent a nonspecific cation channel or possibly two conductances, permeable to monovalent and divalent cations. Our data provide insights into signal-response coupling involving a biologically important response. PrsS provides a rare example of a protein triggering alterations in ion channel activity.  相似文献   

15.
Under appropriate conditions, the interaction of the plant alkaloid ryanodine with a single cardiac sarcoplasmic reticulum Ca(2+)-release channel results in a profound modification of both channel gating and conduction. On modification, the channel undergoes a dramatic increase in open probability and a change in single-channel conductance. In this paper we aim to provide a mechanistic framework for the interpretation of the altered conductance seen after ryanodine binding to the channel protein. To do this we have characterized single-channel conductance with representative members of three classes of permeant cation; group 1a monovalent cations, alkaline earth divalent cations, and organic monovalent cations. We have quantified the change in single-channel conductance induced by ryanodine and have expressed this as a fraction of conductance in the absence of ryanodine. Fractional conductance seen in symmetrical 210 mM solutions is not fixed but varies with the nature of the permeant cation. The group 1a monovalent cations (K+, Na+, Cs+, Li+) have values of fractional conductance in a narrow range (0.60- 0.66). With divalent cations fractional conductance is considerably lower (Ba2+, 0.22 and Sr2+, 0.28), whereas values of fractional conductance vary considerably with the organic monovalent cations (ammonia 0.66, ethylamine 0.76, propanolamine 0.65, diethanolamine 0.92, diethylamine 1.2). To establish the mechanisms governing these differences, we have monitored the affinity of the conduction pathway for, and the relative permeability of, representative cations in the ryanodine-modified channel. These parameters have been compared with those obtained in previous studies from this laboratory using the channel in the absence of ryanodine and have been modeled by modifying our existing single-ion, four-barrier three-well rate theory model of conduction in the unmodified channel. Our findings indicate that the high affinity, essentially irreversible, interaction of ryanodine with the cardiac sarcoplasmic reticulum Ca(2+)-release channel produces a conformational alteration of the protein which results in modified ion handling. We suggest that, on modification, the affinity of the channel for the group 1a monovalent cations is increased while the relative permeability of this class of cations remains essentially unaltered. The affinity of the conduction pathway for the alkaline earth divalent cations is also increased, however the relative permeability of this class of cations is reduced compared to the unmodified channel. The influence of modification on the handling by the channel of the organic monovalent cations is determined by both the size and the nature of the cation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Nelson A 《Biophysical journal》2001,80(6):2694-2703
Potential step amperometry (chronoamperometry) of the Tl(I)/Tl(Hg) electrochemical reduction process has been used to investigate the underlying mechanisms of gramicidin activity in phospholipid monolayers. The experiments were carried out at gramicidin-modified dioleoyl phosphatidylcholine (DOPC)-coated electrodes. Application of a potential step to the coated electrode system results in a current transient that can be divided into two regions. An initial exponential decay of current corresponds to the inactivation of monomer channel conductance and a longer time scale quasi-steady-state represents the diffusion of ions to a bimolecular surface reaction. Concentrations of monomer conducting channels are relatively low, and the results indicate that two or more forms of gramicidin are in equilibrium with each other in the layer. Aromatic/conjugated compounds incorporated into the monolayer increase the reduction current by decreasing the rate of channel inactivation and increasing the stability of the conducting channel. This effect is positively correlated with the degree of the compound's aromaticity. The anomalous influence of alkali metal ions on the reduction current is consistent with the model of gramicidin being speciated in the monolayer in more than one form. The results have implications on the lability of the peptide conformation in biological membranes and its dependence on lipid environment, solution composition, and applied potential.  相似文献   

17.
The conduction properties of the alkaline earth divalent cations were determined in the purified sheep cardiac sarcoplasmic reticulum ryanodine receptor channel after reconstitution into planar phospholipid bilayers. Under bi-ionic conditions there was little difference in permeability among Ba2+, Ca2+, Sr2+, and Mg2+. However, there was a significant difference between the divalent cations and K+, with the divalent cations between 5.8- and 6.7-fold more permeant. Single-channel conductances were determined under symmetrical ionic conditions with 210 mM Ba2+ and Sr2+ and from the single-channel current-voltage relationship under bi-ionic conditions with 210 mM divalent cations and 210 mM K+. Single-channel conductance ranged from 202 pS for Ba2+ to 89 pS for Mg2+ and fell in the sequence Ba2+ greater than Sr2+ greater than Ca2+ greater than Mg2+. Near-maximal single-channel conductance is observed at concentrations as low as 2 mM Ba2+. Single-channel conductance and current measurements in mixtures of Ba(2+)-Mg2+ and Ba(2+)-Ca2+ reveal no anomalous behavior as the mole fraction of the ions is varied. The Ca(2+)-K+ reversal potential determined under bi-ionic conditions was independent of the absolute value of the ion concentrations. The data are compatible with the ryanodine receptor channel acting as a high conductance channel displaying moderate discrimination between divalent and monovalent cations. The channel behaves as though ion translocation occurs in single file with at most one ion able to occupy the conduction pathway at a time.  相似文献   

18.
The involvement of platelet glycoprotein (GP) IIb-IIIa complex in calcium channel activity on the plasma membrane was investigated using an electrophysiological approach. Plasma membrane vesicles were prepared from thrombin-stimulated platelets and incorporated into planar lipid bilayers. Voltage-independent Ca2+ channel currents with a conductance of about 10 pS (in 53 mM Ba2+) were observed, in membranes derived from thrombin-stimulated, but not unstimulated platelet membranes. These channel activities were markedly reduced by exposure of membranes to EGTA at 37 degrees C. This reduction was specifically related to the dissociation of the GPIIb-IIIa complex since preincubation of the membranes with a monoclonal antibody to the GPIIb-IIIa complex (AP-2) could protect the channel activities from the effect of EGTA. Thrombasthenic platelets, which lack the GPIIb-IIIa complex, showed impaired channel activities characterized by decreased open probability and lowered conductance states. Furthermore, when platelets were stimulated by thrombin in the presence of EGTA, AP2, or the synthetic peptide RGDS, to prevent fibrinogen binding to the GPIIb-IIIa complex, open probabilities of the channel currents in these membrane vesicles were also decreased. These results suggest that the GPIIb-IIIa complex is involved in platelet Ca2+ channel activation and that ligand binding to the complex during platelet activation may modify the activation of Ca2+ channels.  相似文献   

19.
'Patch-clamp' experiments in the cell-attached configuration have shown the existence of three distinct types of ion channels in the plasma membrane of Dictyostelium discoideum. Channels DI (slope conductance 11 pS) and DII (slope conductance 6 pS) promote an outward current at depolarizing voltages. A third ion channel (HI, slope conductance 3 pS) opens preferentially at hyperpolarization and promotes inward current flow. It is suggested that under physiological conditions current through the DI and DII channels is carried by K+, whereas Ca2+ may be the current carrier in the HI channel. The density of these ion channels in the membrane of D. discoideum is low: approx. 0.1/micron 2 for the DI and HI channel and 0.02/micron 2 for the DII channel. The gating properties of the ion channels appear to be complicated because openings are grouped into bursts of activity. The probability of the DI channel being in the open state increases with depolarization. The mean channel life-time is about 20 ms and voltage-independent. The burst duration increases with depolarization whereas the interburst time decreases. The minimal kinetic model accounting for the behaviour of the DI channel is a three-state model with two closed and one open state. A detailed analysis of the gating of the DII and the HI channel was prevented by their low rate of occurrence (DII) or fast inactivation (HI). The formation of a seal resistance greater than or equal to 1 G omega depends critically on the composition of the pipette solution. Examination of a series of monovalent and divalent cations as well as different organic and inorganic anions has shown that 'gigaseals' are formed only in the presence of at least 1 mM Ca2+ or Sr2+, whereas Ba2+, Mg2+ and monovalent cations (Li+, Na+, K+, Rb+, Cs+) do not support the formation of high seal resistances. Anions seem not to affect the seal formation.  相似文献   

20.
CRAC (calcium release-activated Ca(2+)) channels attain an extremely high selectivity for Ca(2+) from the blockade of monovalent cation permeation by Ca(2+) within the pore. In this study we have exploited the blockade by Ca(2+) to examine the size of the CRAC channel pore, its unitary conductance for monovalent cations, and channel gating properties. The permeation of a series of methylammonium compounds under divalent cation-free conditions indicates a minimum pore diameter of 3.9 A. Extracellular Ca(2+) blocks monovalent flux in a manner consistent with a single intrapore site having an effective K(i) of 20 microM at -110 mV. Block increases with hyperpolarization, but declines below -100 mV, most likely due to permeation of Ca(2+). Analysis of monovalent current noise induced by increasing levels of block by extracellular Ca(2+) indicates an open probability (P(o)) of approximately 0.8. By extrapolating the variance/mean current ratio to the condition of full blockade (P(o) = 0), we estimate a unitary conductance of approximately 0.7 pS for Na(+), or three to fourfold higher than previous estimates. Removal of extracellular Ca(2+) causes the monovalent current to decline over tens of seconds, a process termed depotentiation. The declining current appears to result from a reduction in the number of active channels without a change in their high open probability. Similarly, low concentrations of 2-APB that enhance I(CRAC) increase the number of active channels while open probability remains constant. We conclude that the slow regulation of whole-cell CRAC current by store depletion, extracellular Ca(2+), and 2-APB involves the stepwise recruitment of silent channels to a high open-probability gating mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号