首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibitors of the catalytic activity of the 20S proteasome are cytotoxic to tumor cells and are currently in clinical use for treatment of multiple myeloma, whilst the deubiquitinase activity associated with the 19S regulatory subunit of the proteasome is also a valid target for anti-cancer drugs. The mechanisms underlying the therapeutic efficacy of these drugs and their selective toxicity towards cancer cells are not known. Here, we show that increasing the cellular levels of proteasome substrates using an inhibitor of Sec61-mediated protein translocation significantly increases the extent of apoptosis that is induced by inhibition of proteasomal deubiquitinase activity in both cancer derived and non-transformed cell lines. Our results suggest that increased generation of misfolded proteasome substrates may contribute to the mechanism(s) underlying the increased sensitivity of tumor cells to inhibitors of the ubiquitin-proteasome system.  相似文献   

2.
Conventional chemotherapy is still of great utility in oncology and rationally constructing combinations with it remains a top priority. Drug-induced mitochondrial apoptotic priming, measured by dynamic BH3 profiling (DBP), has been shown in multiple cancers to identify drugs that promote apoptosis in vivo. We therefore hypothesized that we could use DBP to identify drugs that would render cancers more sensitive to conventional chemotherapy. We found that targeted agents that increased priming of non-small cell lung cancer (NSCLC) tumor cells resulted in increased sensitivity to chemotherapy in vitro. To assess whether targeted agents that increase priming might enhance the efficacy of cytotoxic agents in vivo as well, we carried out an efficacy study in a PC9 xenograft mouse model. The BH3 mimetic navitoclax, which antagonizes BCL-xL, BCL-w, and BCL-2, consistently primed NSCLC tumors in vitro and in vivo. The BH3 mimetic venetoclax, which electively antagonizes BCL-2, did not. Combining navitoclax with etoposide significantly reduced tumor burden compared to either single agent, while adding venetoclax to etoposide had no effect on tumor burden. Next, we assessed priming of primary patient NSCLC tumor cells on drugs from a clinically relevant oncology combination screen (CROCS). Results confirmed for the first time the utility of BCL-xL inhibition by navitoclax in priming primary NSCLC tumor cells and identified combinations that primed further. This is a demonstration of the principle that DBP can be used as a functional precision medicine tool to rationally construct combination drug regimens that include BH3 mimetics in solid tumors like NSCLC.Subject terms: Non-small-cell lung cancer, Apoptosis, Predictive markers  相似文献   

3.
The limited ability of conventional therapies to achieve the long-term survival of metastatic lung and colon cancer patients suggests the need for new treatment options. In this respect, genes encoding cytotoxic proteins have been proposed as a new strategy to enhance the activity of drugs, and combined therapies involving such genes and classical antitumoral drugs have been studied intensively. The E gene from phiX174 encodes a membrane protein with a toxic domain that leads to a decrease in tumour cell growth rates. Therefore, in order to improve the anti-tumour effects of currently used chemotherapeutic drugs on cancer cells, we investigated the association of the E suicide gene with these antineoplastic drugs. The E gene has antitumoral effects in both lung and colon cancer cells. In addition, expression of this gene induces ultrastructural changes in lung cancer transfected cells (A-549), although the significance of these changes remains unknown. The effect of combined therapy (gene and cytotoxic therapy) enhances the inhibition of tumour cell proliferation in comparison to single treatments. Indeed, our in vitro results indicate that an experimental therapeutic strategy based on this combination of E gene therapy and cytotoxic drugs may result in a new treatment strategy for patients with advanced lung and colon cancer.  相似文献   

4.

Background

Telomere/telomerase system has been recently recognized as an attractive target for anticancer therapy. Telomerase inhibition results in tumor regression and increased sensitivity to various cytotoxic drugs. However, it has not been fully established yet whether the mediator of these effects is telomerase inhibition per se or telomere shortening resulting from inhibition of telomerase activity. In addition, the characteristics and mechanisms of sensitization to cytotoxic drugs caused by telomerase inhibition has not been elucidated in a systematic manner.

Methodology/Principal Findings

In this study we characterized the relative importance of telomerase inhibition versus telomere shortening in cancer cells. Sensitization of cancer cells to cytotoxic drugs was achieved by telomere shortening in a length dependent manner and not by telomerase inhibition per se. In our system this sensitization was related to the mechanism of action of the cytotoxic drug. In addition, telomere shortening affected also other cancer cell functions such as migration. Telomere shortening induced DNA damage whose repair was impaired after administration of cisplatinum while doxorubicin or vincristine did not affect the DNA repair. These findings were verified also in in vivo mouse model. The putative explanation underlying the phenotype induced by telomere shortening may be related to changes in expression of various microRNAs triggered by telomere shortening.

Conclusions/Significance

To our best knowledge this is the first study characterizing the relative impact of telomerase inhibition and telomere shortening on several aspects of cancer cell phenotype, especially related to sensitivity to cytotoxic drugs and its putative mechanisms. The microRNA changes in cancer cells upon telomere shortening are novel information. These findings may facilitate the development of telomere based approaches in treatment of cancer.  相似文献   

5.
Photodynamic therapy (PDT) is a minimally invasive and promising new modality to combat cancer. The method is based on selective accumulation of sensitizers in tumor cells. The high degree of selectivity offered by this modality has been applied for fluorescent diagnostics of cancer. Photosensitization of a tissue-localized sensitizer in the presence of oxygen generates cytotoxic reactive oxygen species results in the selective destruction of tumor. The PDT’s major advantages compared to traditional methods of cancer treatment are better selectivity, and low toxicity of administered drugs. This review highlights basic principles of this method, mechanisms underlying damage of tumor tissue and first and second generations of sensitizers. Future developments in PDT will include the development of new methods of treatment and diagnostics of tumor diseases.  相似文献   

6.
Bezielle is a botanical extract that has selective anti-tumor activity, and has shown a promising efficacy in the early phases of clinical testing. Bezielle inhibits mitochondrial respiration and induces reactive oxygen species (ROS) in mitochondria of tumor cells but not in non-transformed cells. The generation of high ROS in tumor cells leads to heavy DNA damage and hyper-activation of PARP, followed by the inhibition of glycolysis. Bezielle therefore belongs to a group of drugs that target tumor cell mitochondria, but its cytotoxicity involves inhibition of both cellular energy producing pathways. We found that the cytotoxic activity of the Bezielle extract in vitro co-purified with a defined fraction containing multiple flavonoids. We have isolated several of these Bezielle flavonoids, and examined their possible roles in the selective anti-tumor cytotoxicity of Bezielle. Our results support the hypothesis that a major Scutellaria flavonoid, scutellarein, possesses many if not all of the biologically relevant properties of the total extract. Like Bezielle, scutellarein induced increasing levels of ROS of mitochondrial origin, progressive DNA damage, protein oxidation, depletion of reduced glutathione and ATP, and suppression of both OXPHOS and glycolysis. Like Bezielle, scutellarein was selectively cytotoxic towards cancer cells. Carthamidin, a flavonone found in Bezielle, also induced DNA damage and oxidative cell death. Two well known plant flavonoids, apigenin and luteolin, had limited and not selective cytotoxicity that did not depend on their pro-oxidant activities. We also provide evidence that the cytotoxicity of scutellarein was increased when other Bezielle flavonoids, not necessarily highly cytotoxic or selective on their own, were present. This indicates that the activity of total Bezielle extract might depend on a combination of several different compounds present within it.  相似文献   

7.
The tumor microenvironment (TME) is a hypoxic, acidic, and immune/inflammatory cell–enriched milieu that plays crucial roles in tumor development, growth, progression, and therapy resistance. Targeting TME is an attractive strategy for the treatment of solid tumors. Conventional cancer chemotherapies are mostly designed to directly kill cancer cells, and the effectiveness is always compromised by their penetration and accessibility to cancer cells. Small-molecule inhibitors, which exhibit good penetration and accessibility, are widely studied, and many of them have been successfully applied in clinics for cancer treatment. As TME is more penetrable and accessible than tumor cells, a lot of efforts have recently been made to generate small-molecule inhibitors that specifically target TME or the components of TME or develop special drug-delivery systems that release the cytotoxic drugs specifically in TME. In this review, we briefly summarize the recent advances of small-molecule inhibitors that target TME for the tumor treatment.  相似文献   

8.
Several chemotherapeutics exert immunomodulatory effects. One of these is the nucleoside analogue gemcitabine, which is widely used in patients with lung cancer, ovarian cancer, breast cancer, mesothelioma and several other types of cancer, but with limited efficacy. We hypothesized that the immunopotentiating effects of this drug are partly restrained by the inhibitory T cell molecule CTLA-4 and thus could be augmented by combining it with a blocking antibody against CTLA-4, which on its own has recently shown beneficial clinical effects in the treatment of patients with metastatic melanoma. Here we show, using two non-immunogenic murine tumor models, that treatment with gemcitabine chemotherapy in combination with CTLA-4 blockade results in the induction of a potent anti-tumor immune response. Depletion experiments demonstrated that both CD4+ and CD8+ T cells are required for optimal therapeutic effect. Mice treated with the combination exhibited tumor regression and long-term protective immunity. In addition, we show that the efficacy of the combination is moderated by the timing of administration of the two agents. Our results show that immune checkpoint blockade and cytotoxic chemotherapy can have a synergistic effect in the treatment of cancer. These results provide a basis to pursue combination therapies with anti-CTLA-4 and immunopotentiating chemotherapy and have important implications for future studies in cancer patients. Since both drugs are approved for use in patients our data can be immediately translated into clinical trials.  相似文献   

9.
《Autophagy》2013,9(9):1263-1265
Two primary forms of autophagy have been identified in the field of cancer therapy based on their apparent functions in the tumor cell; these are the cytoprotective form that could, in theory, be inhibited for the purpose of sensitization to radiation and chemotherapeutic drugs and the “cytotoxic” form that either mediates or contributes to the actions of these treatment modalities. Surprisingly, to date, no clear-cut biochemical or molecular characteristics have been identified that might serve to distinguish between these two forms. In this commentary, we develop the concept of an additional form of autophagy that is nonprotective in that its inhibition neither sensitizes the tumor cell to exogenous stress (again, chemotherapy or radiation) nor protects the cell from the impact of these treatments. This form of autophagy also fails to exhibit any characteristics that might distinguish it from the cytoprotective and/or cytotoxic forms of autophagy. However, the existence of nonprotective autophagy is of potential significance in that it contributes to the challenge of predicting when the strategy of autophagy suppression might prove to have therapeutic benefit in the clinical treatment of cancer.  相似文献   

10.
Expression of matrix metalloproteinase 9 (MMP9) is elevated in a variety of inflammatory and oncology indications, including ulcerative colitis and colorectal cancer. MMP9 is a downstream effector and an upstream mediator of pathways involved in growth and inflammation, and has long been viewed as a promising therapeutic target. However, previous efforts to target matrix metalloproteinases (MMPs), including MMP9, have utilized broad-spectrum or semi-selective inhibitors. While some of these drugs showed signs of efficacy in patients, all MMP-targeted inhibitors have been hampered by dose-limiting toxicity or insufficient clinical benefit, likely due to their lack of specificity. Here, we show that selective inhibition of MMP9 did not induce musculoskeletal syndrome (a characteristic toxicity of pan-MMP inhibitors) in a rat model, but did reduce disease severity in a dextran sodium sulfate-induced mouse model of ulcerative colitis. We also found that MMP9 inhibition decreased tumor growth and metastases incidence in a surgical orthotopic xenograft model of colorectal carcinoma, and that inhibition of either tumor- or stroma-derived MMP9 was sufficient to reduce primary tumor growth. Collectively, these data suggest that selective MMP9 inhibition is a promising therapeutic strategy for treatment of inflammatory and oncology indications in which MMP9 is upregulated and is associated with disease pathology, such as ulcerative colitis and colorectal cancer. In addition, we report the development of a potent and highly selective allosteric MMP9 inhibitor, the humanized monoclonal antibody GS-5745, which can be used to evaluate the therapeutic potential of MMP9 inhibition in patients.  相似文献   

11.
Molecular-focused cancer therapies, e.g., molecularly targeted therapy and immunotherapy, so far demonstrate only limited efficacy in cancer patients. We hypothesize that underestimating the role of biophysical factors that impact the delivery of drugs or cytotoxic cells to the target sites (for associated preferential cytotoxicity or cell signaling modulation) may be responsible for the poor clinical outcome. Therefore, instead of focusing exclusively on the investigation of molecular mechanisms in cancer cells, convection-diffusion of cytotoxic molecules and migration of cancer-killing cells within tumor tissue should be taken into account to improve therapeutic effectiveness. To test this hypothesis, we have developed a mathematical model of the interstitial diffusion and uptake of small cytotoxic molecules secreted by T-cells, which is capable of predicting breast cancer growth inhibition as measured both in vitro and in vivo. Our analysis shows that diffusion barriers of cytotoxic molecules conspire with γδ T-cell scarcity in tissue to limit the inhibitory effects of γδ T-cells on cancer cells. This may increase the necessary ratios of γδ T-cells to cancer cells within tissue to unrealistic values for having an intended therapeutic effect, and decrease the effectiveness of the immunotherapeutic treatment.  相似文献   

12.
The vast majority of anticancer drugs in clinical use are limited by systemic host toxicity due to their non-specific side effects. These shortcomings have led to the development of tumour specific drugs which target a single-deregulated pathway or over expressed receptor in cancer cells. Whilst this approach has achieved clinical success, we have also learnt that targeting a single entity in cancer is rarely curative due to the large number of deregulated pathways, receptors and kinases which are also present, in addition to the target. An attractive alternative to improve targeting would be to harness the already established activity of known anticancer drugs by attaching them to a molecule that is transported into cancer cells via a selective transport system. One possibility for this approach is the polyamine pathway. This review provides a brief overview of the polyamine pathway and how, over the years, it has proved an exciting target for the development of novel anticancer agents. However, the focus of this article will be on the properties of the polyamine transport system and how these features could potentially be exploited to develop a novel and selective anticancer drug delivery system.  相似文献   

13.
Induction of apoptosis in endothelial cells is considered an attractive strategy to therapeutically interfere with a solid tumor's blood supply. In the present paper, we constructed cytotoxic conjugates that specifically target angiogenic endothelial cells, thus preventing typical side effects of apoptosis-inducing drugs. For this purpose, we conjugated the potent antimitotic agent monomethyl-auristatin-E (MMAE) via a lysosomal cleavable linker to human serum albumin (HSA) and further equipped this drug-albumin conjugate with cyclic c(RGDfK) peptides for multivalent interaction with alphavbeta3-integrin. The RGD-peptides were conjugated via either an extended poly(ethylene glycol) linker or a short alkyl linker. The resulting drug-targeting conjugates RGDPEG-MMAE-HSA and RGD-MMAE-HSA demonstrated high binding affinity and specificity for alphavbeta3-integrin expressing human umbilical vein endothelial cells (HUVEC). Both types of conjugates were internalized by endothelial cells and killed the target cells at low nM concentrations. Furthermore, we observed RGD-dependent binding of the conjugates to C26 carcinoma. Upon i.v. administration to C26-tumor bearing mice, both drug-targeting conjugates displayed excellent tumor homing properties. Our results demonstrate that RGD-modified albumins are suitable carriers for cell selective intracellular delivery of cytotoxic compounds, and further studies will be conducted to assess the antivascular and tumor inhibitory potential of RGDPEG-MMAE-HSA and RGD-MMAE-HSA.  相似文献   

14.
In spite of all the advances in cancer treatment made in recent years, one of the main problems in this field that remains extremely urgent is the development of drug resistance to the chemotherapeutic agents currently in use due to clonal microevolution of tumor tissue. Numerous publications devoted to the study of cationic antimicrobial peptides (AMPs) as molecular factors of the innate immune system suggest that these compounds possess significant therapeutic potential and can be considered as candidates for the role of not only antimicrobial, but also next-generation anticancer drugs. AMPs are characterized by a variety of mechanisms of cytotoxic action that can lead to either necrosis or apoptosis of the target cells. These effects are based on the selective interaction with the membranes of tumor cells, which have a number of similarities, in structural and physiological aspects, with the microbial membranes. AMPs were found to be able to inhibit tumor growth by interrupting the formation of its vascular network. The antitumor effect of AMPs may also be enhanced by the modulation of host immune system, as previously observed for their antimicrobial effects. The described properties of AMPs give hope for the development of new drugs that will be able to overcome the resistance of tumor cells.  相似文献   

15.
Interleukin 12 (IL-12) seemed to represent the ideal candidate for tumor immunotherapy, due to its ability to activate both innate (NK cells) and adaptive (cytotoxic T lymphocytes) immunities. However, despite encouraging results in animal models, very modest antitumor effects of IL-12 in early clinical trials, often accompanied by unacceptable levels of adverse events, markedly dampened  hopes of the successful use of this cytokine in cancer patients. Recently, several clinical studies have been initiated in which IL-12 is applied as an adjuvant in cancer vaccines, in gene therapy including locoregional injections of IL-12 plasmid and in the form of tumor-targeting immunocytokines (IL-12 fused to monoclonal antibodies). The near future will show whether this renewed interest in the use of IL-12 in oncology will result in meaningful therapeutic effects in a select group of cancer patients.  相似文献   

16.
The use of bacteria in the regression of certain forms of cancer has been recognized for more than a century. Much effort, therefore, has been spent over the years in developing wild-type or modified bacterial strains to treat cancer. However, their use at the dose required for therapeutic efficacy has always been associated with toxicity problems and other deleterious effects. Recently, the old idea of using bacteria in the treatment of cancer has attracted considerable interest and new genetically engineered attenuated strains as well as microbial compounds that might have specific anticancer activity without side effects are being evaluated for their ability to act as new anticancer agents. This involves the use of attenuated bacterial strains and expressing foreign genes that encode the ability to convert non-toxic prodrugs to cytotoxic drugs. Novel strategies also include the use of bacterial products such as proteins, enzymes, immunotoxins and secondary metabolites, which specifically target cancer cells and cause tumor regression through growth inhibition, cell cycle arrest or apoptosis induction. In this review we describe the current knowledge and discuss the future directions regarding the use of bacteria or their products, in cancer therapy.  相似文献   

17.
《Chirality》2017,29(1):10-13
The elevated activity of fatty acid synthase has been reported in a number of cancer types. Inhibition of this enzyme has been demonstrated to induce cancer cell death and reduce tumor growth. In addition, the fatty acid synthase inhibitor drug C75 has been reported to synergistically enhance the cancer‐killing ability of ionizing radiation. However, clinical use of C75 has been limited due to its producing weight loss, believed to be caused by alterations in the activity of carnitine palmitoyltransferase‐1. C75 is administered in the form of a racemic mixture of (−) and (+) enantiomers that may differ in their regulation of fatty acid synthase and carnitine palmitoyltransferase‐1. Therefore, we assessed the relative cancer‐killing potency of different enantiomeric forms of C75 in prostate cancer cells. These results suggest that (−)‐C75 is the more cytotoxic enantiomer and has greater radiosensitizing capacity than (+)‐C75. These observations will stimulate the development of fatty acid synthase inhibitors that are selective for cancer cells and enhance the tumor‐killing activity of ionizing radiation, while minimizing weight loss in cancer patients.  相似文献   

18.
We previously reported that novel targeted “hybrid peptide” in which epidermal growth factor receptor (EGFR) binding peptide was conjugated with lytic-type peptide had selective cytotoxic activity to EGFR expressing cancer cell lines, and in vivo analysis revealed that this EGFR-lytic peptide displayed significant antitumor activity in a xenograft model of human breast cancer which was resistant to tyrosine kinase inhibitor drugs. As an attempt to improve the selective anticancer activity of EGFR-lytic peptide, we modified the EGFR-binding peptide through introducing the mutation of amino acid according to biophysical analysis by biomolecular interaction and circular dichroism (CD) spectra. When cytotoxic activity of EGFR-lytic or EGFR(2R)-lytic hybrid peptides was investigated in various human cancer and normal cell lines, it was demonstrated that EGFR(2R)-lytic, in which second histidine (H) of EGFR-binding peptide was replaced to arginine (R) had 1.2–1.9-fold higher cytotoxic activity than that of original EGFR-lytic peptide. In vivo analysis also revealed that this modified peptide displayed significant antitumor activity at as low as 1 mg/kg dosage. These results suggest that mutated arginine on EGFR-lytic peptide produces higher binding ability to EGFR on cancer cells, and thereby the improved anticancer activity.  相似文献   

19.
The effect of blocking VEGF activity in solid tumors extends beyond inhibition of angiogenesis. However, no studies have compared the effectiveness of mechanistically different anti-VEGF inhibitors with respect to changes in tumor growth and alterations in the tumor microenvironment. In this study we use three distinct breast cancer models, a MDA-MB-231 xenograft model, a 4T1 syngenic model, and a transgenic model using MMTV-PyMT mice, to explore the effects of various anti-VEGF therapies on tumor vasculature, immune cell infiltration, and cytokine levels. Tumor vasculature and immune cell infiltration were evaluated using immunohistochemistry. Cytokine levels were evaluated using ELISA and electrochemiluminescence. We found that blocking the activation of VEGF receptor resulted in changes in intra-tumoral cytokine levels, specifically IL-1β, IL-6 and CXCL1. Modulation of the level these cytokines is important for controlling immune cell infiltration and ultimately tumor growth. Furthermore, we demonstrate that selective inhibition of VEGF binding to VEGFR2 with r84 is more effective at controlling tumor growth and inhibiting the infiltration of suppressive immune cells (MDSC, Treg, macrophages) while increasing the mature dendritic cell fraction than other anti-VEGF strategies. In addition, we found that changes in serum IL-1β and IL-6 levels correlated with response to therapy, identifying two possible biomarkers for assessing the effectiveness of anti-VEGF therapy in breast cancer patients.  相似文献   

20.
W Xiao  L Wang  J M Ryan  A Pater  H Liu 《Radiation research》1999,152(3):250-256
The feasibility of using low-density lipoprotein (LDL) to deliver cytotoxic drugs to tumor cells has been explored since the 1980s, when cells of a number of cancer cell lines were found to have higher LDL receptor activity than normal cells. Such differential uptake between tumor and normal cells may provide a unique opportunity to use LDL as a tumor-specific carrier of radiopharmaceuticals for the clinical management of cancer. In this study, an (125)I-labeled hexa-iodinated diglyceride analog, 1, 3-dihydroxypropan-2-one 1,3-diiopanoate (DPIP), was synthesized and incorporated into LDL using a fusion technique. It was found that approximately 500 [(125)I] DPIP molecules were incorporated into each LDL particle. Cells of three human cervical tumor cell lines, HeLa, SiHa and C-33A, were used to examine the cellular uptake of the [(125)I]DPIP-LDL conjugate. It was shown that the [(125)I]DPIP-LDL conjugate was specifically bound to and taken up by cervical tumor cells through an LDL receptor-mediated endocytosis pathway. The results suggest that LDL may be a selective carrier for delivering hydrophobic radiopharmaceuticals to cancer cells and particularly for the diagnosis of cervical tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号