首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Gephyrin was originally identified as a membrane-associated protein that is essential for the postsynaptic localization of receptors for the neurotransmitters glycine and GABA(A). A sequence comparison revealed homologies between gephyrin and proteins necessary for the biosynthesis of the universal molybdenum cofactor (MoCo). Because gephyrin expression can rescue a MoCo-deficient mutation in bacteria, plants, and a murine cell line, it became clear that gephyrin also plays a role in MoCo biosynthesis. Human MoCo deficiency is a fatal disease resulting in severe neurological damage and death in early childhood. Most patients harbor MOCS1 mutations, which prohibit formation of a precursor, or carry MOCS2 mutations, which abrogate precursor conversion to molybdopterin. The present report describes the identification of a gephyrin gene (GEPH) deletion in a patient with symptoms typical of MoCo deficiency. Biochemical studies of the patient's fibroblasts demonstrate that gephyrin catalyzes the insertion of molybdenum into molybdopterin and suggest that this novel form of MoCo deficiency might be curable by molybdate supplementation.  相似文献   

5.
Molybdenum cofactor deficiency (MIM#252150) is a severe autosomal-recessive disorder with a devastating outcome. The cofactor is the product of a complex biosynthetic pathway involving four different genes (MOCS1, MOCS2, MOCS3 and GEPH). This disorder is caused almost exclusively by mutations in the MOCS1 or MOCS2 genes. Mutations affecting this biosynthetic pathway result in a lethal phenotype manifested by progressive neurological damage via the inactivation of the molybdenum cofactor-dependent enzyme, sulphite oxidase. Here we describe a total of ten novel disease-causing mutations in the MOCS1 and MOCS2 genes. Nine out of these ten mutations were classified as pathogenic in nature, since they create a stop codon, affect constitutive splice site positions, or change strictly conserved motifs. The tenth mutation abolishes the stop codon of the MOCS2B gene, thus elongating the corresponding protein. The mutation was expressed in vitro and was found to abolish the binding affinities of the large subunit of molybdopterin synthase (MOCS2B) for both precursor Z and the small subunit of molybdopterin synthase (MOCS2A).  相似文献   

6.
7.
Molybdenum cofactor (MoCo) deficiency is a progressive neurological disorder that inevitably leads to early childhood death because of the lack of any effective therapy. In a mouse model of MoCo deficiency type A, the most frequent form of this autosomal recessively inherited disease, the affected animals show the biochemical characteristics of sulphite and xanthine intoxication and do not survive >2 wk after birth. We have constructed a recombinant-expression cassette for the gene MOCS1, which, via alternative splicing, facilitates the expression of the proteins MOCS1A and MOCS1B, both of which are necessary for the formation of a first intermediate, cyclic pyranopterin monophosphate (cPMP), within the biosynthetic pathway leading to active MoCo. A recombinant adeno-associated virus (AAV) vector was used to express the artificial MOCS1 minigene, in an attempt to cure the lethal MOCS1-deficient phenotype. The vector was used to transduce Mocs1-deficient mice at both 1 and 4 d after birth or, after a pretreatment with purified cPMP, at 40 d after birth. We report here that all Mocs1-deficient animals injected with a control AAV-enhanced green fluorescent protein vector died approximately 8 d after birth or after withdrawal of cPMP supplementation, whereas AAV-MOCS1-transduced animals show significantly increased longevity. A single intrahepatic injection of AAV-MOCS1 resulted in fertile adult animals without any pathological phenotypes.  相似文献   

8.
9.
Biosynthesis of the molybdenum cofactor involves the initial formation of precursor Z, its subsequent conversion to molybdopterin (MPT) by MPT synthase, and attachment of molybdenum to the dithiolene moiety of MPT. The sulfur used for the formation of the dithiolene group of MPT exists in the form of a thiocarboxylate group at the C terminus of the smaller subunit of MPT synthase. Human MPT synthase contains the MOCS2A and MOCS2B proteins that display homology to the Escherichia coli proteins MoaD and MoaE, respectively. MOCS2A and MOCS2B were purified after heterologous expression in E. coli, and the separately purified subunits readily assemble into a functional MPT synthase tetramer. The rate of conversion of precursor Z to MPT by the human enzyme is slower than that of the eubacterial homologue. To obtain insights into the molecular mechanism leading to human molybdenum cofactor deficiency, site-specific mutations identified in patients showing symptoms of molybdenum cofactor deficiency were generated. Characterization of a V7F substitution in MOCS2A, identified in a patient with an unusual mild form of the disease, showed that the mutation weakens the interaction between MOCS2A and MOCS2B, whereas a MOCS2B-E168K mutation identified in a severely affected patient attenuates binding of precursor Z.  相似文献   

10.
A new Zea mays viviparous seed mutant, viviparous15 (vp15), was isolated from the UniformMu transposon-tagging population. In addition to precocious germination, vp15 has an early seedling lethal phenotype. Biochemical analysis showed reduced activities of several enzymes that require molybdenum cofactor (MoCo) in vp15 mutant seedlings. Because MoCo is required for abscisic acid (ABA) biosynthesis, the viviparous phenotype is probably caused by ABA deficiency. We cloned the vp15 mutant using a novel high-throughput strategy for analysis of high-copy Mu lines: We used MuTAIL PCR to extract genomic sequences flanking the Mu transposons in the vp15 line. The Mu insertions specific to the vp15 line were identified by in silico subtraction using a database of MuTAIL sequences from 90 UniformMu lines. Annotation of the vp15-specific sequences revealed a Mu insertion in a gene homologous to human MOCS2A, the small subunit of molybdopterin (MPT) synthase. Molecular analysis of two allelic mutations confirmed that Vp15 encodes a plant MPT synthase small subunit (ZmCNX7). Our results, and a related paper reporting the cloning of maize viviparous10, demonstrate robust cloning strategies based on MuTAIL-PCR. The Vp15/CNX7, together with other CNX genes, is expressed in both embryo and endosperm during seed maturation. Expression of Vp15 appears to be regulated independently of MoCo biosynthesis. Comparisons of Vp15 loci in genomes of three cereals and Arabidopsis thaliana identified a conserved sequence element in the 5' untranslated region as well as a micro-synteny among the cereals.  相似文献   

11.
12.
Most mycobacterial species possess a full complement of genes for the biosynthesis of molybdenum cofactor (MoCo). However, a distinguishing feature of members of the Mycobacterium tuberculosis complex is their possession of multiple homologs associated with the first two steps of the MoCo biosynthetic pathway. A mutant of M. tuberculosis lacking the moaA1-moaD1 gene cluster and a derivative in which moaD2 was also deleted were significantly impaired for growth in media containing nitrate as a sole nitrogen source, indicating a reduced availability of MoCo to support the assimilatory function of the MoCo-dependent nitrate reductase, NarGHI. However, the double mutant displayed residual respiratory nitrate reductase activity, suggesting that it retains the capacity to produce MoCo. The M. tuberculosis moaD and moaE homologs were further analyzed by expressing these genes in mutant strains of M. smegmatis that lacked one or both of the sole molybdopterin (MPT) synthase-encoding genes, moaD2 and moaE2, and were unable to grow on nitrate, presumably as a result of the loss of MoCo-dependent nitrate assimilatory activity. Expression of M. tuberculosis moaD2 in the M. smegmatis moaD2 mutant and of M. tuberculosis moaE1 or moaE2 in the M. smegmatis moaE2 mutant restored nitrate assimilation, confirming the functionality of these genes in MPT synthesis. Expression of M. tuberculosis moaX also restored MoCo biosynthesis in M. smegmatis mutants lacking moaD2, moaE2, or both, thus identifying MoaX as a fused MPT synthase. By implicating multiple synthase-encoding homologs in MoCo biosynthesis, these results suggest that important cellular functions may be served by their expansion in M. tuberculosis.  相似文献   

13.
The molybdenum cofactor (MoCo)-containing enzymes aldehyde oxidase (AO; EC 1.2.3.1) and xanthine dehydrogenase (XDH; EC 1.2.1.37) require for activity a sulfuration step that inserts a terminal sulfur ligand into the MoCo. The tomato flacca mutation was originally isolated as a wilty phenotype due to a lack of abscisic acid (ABA) that is related to simultaneous loss of AO and XDH activities. An expressed sequence tag candidate from tomato was selected on the basis of homology to sulfurases from animals, fungi and the recently isolated Arabidopsis genes LOS5/ABA3. The tomato homologue maps as a single gene to the bottom of chromosome 7, consistent with the genetic location of the flacca mutation. The structure of FLACCA shows a multidomain protein with an N-terminal NifS-like sulfurase domain; a mammal-specific intermediate section; and a C-terminus containing conserved motifs. Prominent among these are molybdopterin oxidoreductases and thioredoxin redox-active centre/iron-sulfur-binding region signatures which may be relevant to the specific sulfuration of MoCo. Indeed, the molecular analysis of flacca identifies the mutation in a highly conserved motif located in the C-terminus. Activity gel assays show that FLACCA is expressed throughout the plant. Transient and stable complementation of flacca and the Arabidopsis aba3 mutants with Aspergillus nidulans hxB and FLACCA yielded full, partial and tissue-specific types of Mo-hydroxylase activities. Restoration of activity in the root alone is sufficient to augment plant ABA content and rectify the wild-type phenotype. Thus the pleiotropic flacca phenotype is due to the loss of activity of enzymes requiring a sulfurated MoCo.  相似文献   

14.
As a prerequisite to site-directed mutagenesis on cytochrome c oxidase, two different mutants are constructed by inactivating the cta gene locus encoding subunits II and III (ctaC and ctaE) of the Paracoccus denitrificans oxidase. Either a short fragment encoding part of the putative copper binding site near the C terminus of subunit II, or a substantial fragment, comprising parts of the coding region for both subunits and all of the intervening three open reading frames, are removed and replaced by the kanamycin resistance gene. Each construct, ligated into a suicide vector, is mated into Paracoccus, and mutants originating from double homologous recombination events are selected. We observe complete loss of alpha-type heme and of oxidase subunits, as well as a substantial decrease in the cytochrome c oxidase activity. Upon complementation with the ctaC gene (plus various lengths of downstream sequence extending into the operon), subunit II gets expressed in all cases. Wild-type phenotype, however, is only restored with the whole operon. Using smaller fragments for complementation gives interesting clues on roles of the open reading frames for the assembly process of the oxidase complex; two of the open reading frame genes most likely code for two independent assembly factors. Since homologous genes have been described not only for other bacterial oxidases, but their gene products shown to participate also in the assembly of the yeast enzyme, they seem to constitute a group of evolutionary conserved proteins.  相似文献   

15.
《FEBS letters》1985,193(2):164-168
An open reading frame (ORF) preceding the cytochrome oxidase subunit II (CO II) gene in Oenothera mitochondria has four nucleotides in common with this gene. The last two nucleotides of the CO II initiation codon ATG are the first two nucleotides of the TGA termination codon in the upstream ORF. Both reading frames are cotranscribed in a bicistronic mRNA species of 1250 nucleotides in length in Oenothera. The open reading frame codes for a protein of 58 amino acids with structural homology to the ATPase subunit 8 genes in fungal and mammalian mitochondria. Using coding space optimally though overlapping genes appears to be without economical reason considering the large size of higher plant mitochondrial genomes.  相似文献   

16.
Matthies A  Nimtz M  Leimkühler S 《Biochemistry》2005,44(21):7912-7920
The human MOCS3 protein contains an N-terminal domain similar to the Escherichia coli MoeB protein and a C-terminal segment displaying similarities to the sulfurtransferase rhodanese. MOCS3 is proposed to catalyze both the adenylation and the subsequent generation of a thiocarboxylate group at the C-terminus of the smaller subunit of molybdopterin (MPT) synthase during Moco biosynthesis in humans. Recent studies have shown that the MOCS3 rhodanese-like domain (MOCS3-RLD) catalyzes the transfer of sulfur from thiosulfate to cyanide and is also able to provide the sulfur for the thiocarboxylation of MOCS2A in a defined in vitro system for the generation of MPT from precursor Z. MOCS3-RLD contains four cysteine residues of which only C412 in the six amino acid active loop is conserved in homologous proteins from other organisms. ESI-MS/MS studies gave direct evidence for the formation of a persulfide group that is exclusively formed on C412. Simultaneous mutagenesis of the remaining three cysteine residues showed that none of them is involved in the sulfur transfer reaction in vitro. A disulfide bridge was identified to be formed between C316 and C324, and possible roles of the three noncatalytic cysteine residues are discussed. By ESI-MS/MS a partially gluconoylated N-terminus of the His6-tagged MOCS3-RLD was identified (mass increment of 178 Da) which resulted in a heterogeneity of the protein but did not influence sulfurtransferase activity.  相似文献   

17.
18.
We have shown previously that lack of molybdenum cofactor (MoCo) in Escherichia coli leads to hypersensitivity to the mutagenic and toxic effects of N -hydroxylated base analogues, such as 6- N -hydroxylaminopurine (HAP). However, the nature of the MoCo-dependent mechanism is unknown, as inactivation of all known and putative E. coli molybdoenzymes does not produce any sensitivity. Presently, we report on the isolation and characterization of two novel HAP-hypersensitive mutants carrying defects in the ycbX or yiiM open reading frames. Genetic analysis suggests that the two genes operate within the MoCo-dependent pathway. In the absence of the ycbX - and yiiM -dependent pathways, biotin sulfoxide reductase plays also a role in the detoxification pathway. YcbX and YiiM are hypothetical members of the MOSC protein superfamily, which contain the C-terminal domain (MOSC) of the eukaryotic MoCo sulphurases. However, deletion of ycbX or yiiM did not affect the activity of human xanthine dehydrogenase expressed in E. coli , suggesting that the role of YcbX and YiiM proteins is not related to MoCo sulphuration. Instead, YcbX and YiiM may represent novel MoCo-dependent enzymatic activities. We also demonstrate that the MoCo/YcbX/YiiM-dependent detoxification of HAP proceeds by reduction to adenine.  相似文献   

19.
The function of the MoeA protein in the biosynthesis of the molybdenum cofactor (MoCo) was analyzed in vitro, using purified His(6)-MoeA from Escherichia coli, molybdopterin (MPT) isolated from buttermilk xanthine oxidase and molybdate. The formation of MoCo was monitored by the reconstitution of nitrate reductase activity in extracts of the Neurospora crassa nit-1 mutant. Formation of MoCo from MPT and molybdate required MoeA and L-cysteine or glutathione. The reaction proceeded at micromolar molybdate levels and was time- and MoeA concentration-dependent. A physical interaction between MoeA and MPT was demonstrated by HPLC analysis of MoeA-bound MPT.  相似文献   

20.
A genomic lambda-library of Pelobacter acidigallici has been established. Proteolytic digestion of homogeneous pyrogallol-phloroglucinol transhydroxylase from the same microorganism afforded polypeptide fragments whose N-terminal sequences allowed the generation of oligonucleotide primers. Together with primers deduced from the known N-terminal sequences of the two intact subunits these were used in PCR experiments to obtain three amplificates. Screening the lambda-library with the three amplificates led eventually to clones containing the whole gene coding for the transhydroxylase. Sequencing the gene revealed two open reading frames coding for 875 and 275 amino acids which correspond to the alpha- and beta-subunits of THL, respectively. The two subunits are separated by a 48-bp noncoding region. Comparison of the sequence with those of other molybdopterin cofactor (MoCo)-enzymes places THL in the dimethylsulfoxide reductase family. Possible contact sites to the MoCo and to the iron-sulphur clusters were spotted. Using the expression vectors pQE 30 and pT 7-7 three constructs harbouring the THL gene were created. One of them carried a His6-tag at the N-terminus of the alpha-subunit, another at the C-terminus of the beta-subunit. Immunoblot analysis showed high expression of THL, but the inclusion bodies could not be refolded to active enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号