共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary In Saccharomyces cerevisiae the HOM2 gene encodes aspartic semi-aldehyde dehydrogenase (ASA DH). The synthesis of this enzyme had been shown to be derepressed by growth in the presence of high concentrations of methionine. In the present work we have cloned and sequenced the HOM2 gene and found that the promoter region of this gene bears one copy of the consensus sequence for general control of amino acid synthesis. This prompted us to study the regulation of the expression of the HOM2 gene. We have found that ASA DH is the first reported enzyme of the related threonine and methionine pathway to be regulated by the general control of amino acid synthesis. 相似文献
3.
Toshimitsu Hoshino Kumiko Kose Yoshihiko Uratani 《Molecular & general genetics : MGG》1990,220(3):461-467
Summary The gene braB, encoding the Na–-coupled carrier for branched-chain amino acids in Pseudomonas aeruginosa PAO, was cloned on cosmid pMMB34. The cosmid clones carrying the braB gene were identified as those that restored growth at low leucine concentration and Na–-dependent leucine transport activity to P. aeruginosa PAO3536 defective in the transport of branched-chain amino acids. Determination of the nucleotide sequence of the DNA fragment shows that the braB gene comprises 1311 bp and encodes a hydrophobic protein of 437 amino acids with a calculated Mr of 45279. The hydropathy profile suggests that there exist in the carrier protein 12 hydrophobic segments long enough to traverse the membrane. The amino acid sequence shows a high degree of homology with thebrnQ product, a branched-chain amino acid carrier of Salmonella typhimurium, while no homology in the nucleotide sequences is found in the braB and brnQ genes. 相似文献
4.
Decay rates of mRNAs depend on many elements and among these, the role of the poly(A) tail is now well established. In the yeast Saccharomyces cerevisiae, thermosensitive mutations in two genes, RNA14 and RNA15, result in mRNAs having shorter poly(A) tails and reduced half-life. To identify other components interacting in the same process, we have used a genetic approach to isolate mutations that suppress the thermosensitivity of an rna14 mutant strain. Mutations in a single locus, named SSM4, not only suppress the cell growth phenotype but also the mRNA instability and extend the short mRNA poly(A) tails. The frequency of appearance and the recessive nature of these mutations suggested that the suppressor effect was probably due to a loss of function. We failed to clone the SSM4 gene directly by complementation, owing to its absence from gene banks; it later emerged that the gene is toxic to Escherichia coli, but we have nevertheless been able to clone the SSM4 sequence by Ty element transposition tagging. Disruption of the SSM4 gene does not affect cell viability and suppresses the rna14 mutant phenotypes. The protein encoded by the SSM4 gene has a calculated molecular mass of 151 kDa and does not contain any known motif or show homology with known proteins. The toxicity of the SSM4 gene in E. coli suggests that a direct biochemical activity is associated with the corresponding protein. 相似文献
5.
Akio Toh-e Kazuma Tanaka Yukifumi Uesono Reed B. Wickner 《Molecular & general genetics : MGG》1988,214(1):162-164
Summary The product of the PHO85 gene, which encodes one of the negative regulatory factors of the PHO system in Saccharomyces cerevisiae, shows significant amino acid sequence homology with the CDC28 protein kinase. However, overexpressing PHO85 did not suppress the temperature sensitive phenotype of the cdc28-1 mutation. The nucleotide sequence of the PHO85 gene strongly suggests the presence of an intron near the sequence encoding the N-terminal region. 相似文献
6.
In Saccharomyces cerevisiae the utilization of lactate occurs via specific oxidation of l- and d-lactate to pyruvate catalysed by l-lactate ferricytochrome c oxidoreductase (L-LCR) (EC 1.1.2.3) encoded by the CYB2 gene, and d-lactate ferricytochrome c oxidoreductase (D-LCR) (EC 1.1.2.4), respectively. We selected several lactate– pyruvate+ mutants in a cyb2 genetic background. Two of them were devoid of D -LCR activity (dld mutants, belonging to the same complementation group). The mutation mapped in the structural gene. This was demonstrated by a gene dosage effect and by the thermosensitivity of the enzyme activity of thermosensitive revertants. The DLD gene was cloned by complementation for growth on d-, l-lactate in the strain WWF18-3D, carrying both a CYB2 disruption and the dld mutation. The minimal complete complementing sequence was localized by subcloning experiments. From the sequence analysis an open reading frame (ORF) was identified that could encode a polypeptide of 576 amino-acids, corresponding to a calculated molecular weight of 64000 Da. The deduced protein sequence showed significant homology with the previously described microsomal flavoprotein l-gulono--lactone oxidase isolated from Rattus norvegicus, which catalyses the terminal step of l-ascorbic acid biosynthesis. These results are discussed together with the role of L-LCR and D-LCR in lactate metabolism of S. cerevisiae. 相似文献
7.
8.
9.
10.
Odile Ozier-Kalogeropoulos Franco Fasiolo Marie-Therèse Adeline Jocelyne Collin Fran?ois Lacroute 《Molecular & general genetics : MGG》1991,231(1):7-16
Summary The URA7 gene of Saccharomyces cerevisiae encodes CTP synthetase (EC 6.3.4.2) which catalyses the conversion of uridine 5-triphosphate to cytidine 5-triphosphate, the last step of the pyrimidine biosynthetic pathway. We have cloned and sequenced the URA 7 gene. The coding region is 1710 by long and the deduced protein sequence shows a strong degree of homology with bacterial and human CTP synthetases. Gene disruption shows that URA7 is not an essential gene: the level of the intracellular CTP pool is roughly the same in the deleted and the wild-type strains, suggesting that an alternative pathway for CTP synthesis exists in yeast. This could involve either a divergent duplicated gene or a different route beginning with the amination of uridine mono- or diphosphate. 相似文献
11.
Grant A. Bitter Kenneth K. H. Chang Kevin M. Egan 《Molecular & general genetics : MGG》1991,231(1):22-32
Summary The majority of the activation potential of the Saccharomyces cerevisiae TDH3 gene promoter is contained within nucleotides –676 to –381 (relative to the translation initiation codon). An upstream activation sequence (UAS) in this region has been characterized by in vitro and in vivo assays and demonstrated to be composed of two small, adjacent DNA sequence elements. The essential determinant of this upstream UAS is a general regulatory factor 1 (GRF1) binding site at nucleotides –513 to –501. A synthetic DNA element comprising this sequence, or an analogue in which two of the degenerate nucleotides of the GRF1 site consensus sequence were altered, activated 5 deleted TDH3 and CYC1 promoters. The second DNA element of the UAS is a 7 by sequence which is conserved in the promoters of several yeast genes encoding glycolytic enzymes and occurs at positions –486 to –480 of the TDH3 promoter. This DNA sequence represents a novel promoter element: it contains no UAS activity itself, yet potentiates the activity of a GRF1 UAS. The potentiation of the GRFl UAS by this element occurs when placed upstream from the TATA box of either the TDH3 or CYC1 promoters. The characteristics of this element (termed GPE for GRF1 site potentiator element) indicate that it represents a binding site for a different yeast protein which increases the promoter activation mediated by the GRF1 protein. Site-specific deletion and promoter reconstruction experiments suggest that the entire activation potential of the –676 to –381 region of the TDH3 gene promoter may be accounted for by a combination of the GRF1 site and the GPE. 相似文献
12.
13.
Japanese pear (Pyrus serotina Rehd.) exhibits gametophytic self-incompatibility. Following our previous findings that basic ribonucleases in the styles of Japanese pear are associated with self-incompatibility genes (S-RNases), stylar proteins with high pI values were analyzed by two-dimensional gel electrophoresis further to characterize S-RNases. A group of basic proteins of about 30 kDa associated with self-incompatibility genes were identified. These proteins contained sugar chains which reacted with concanavalin A and wheat germ agglutinin, and thus were designated as S-glycoproteins of Japanese pear. The fact that the S-glycoprotein was expressed at a much lower level in a self-compatible mutant than in the original variety suggested a role of S-glycoproteins in mediating self-incompatibility of Japanese pear. Immunoblot analysis indicated that S-glycoproteins are identical to previously identified S-RNases. The S-glycoproteins were predominantly expressed in the style, in the ovary in trace amounts, and not in leaf, pollen or germinated pollen. The N-terminal amino acid sequences of the S-glycoproteins showed homology not only with each other but also with those of the S-allele-associated proteins from plants of the family Solanaceae at levels of about 30–50%. 相似文献
14.
【目的】本论文研究酿酒酵母srp4039突变基因对酵母细胞异丁醇耐受性的影响。【方法】首先,以酿酒酵母野生型W303-1A和突变株EMS39染色体DNA为模板克隆野生型SRP40基因和srp4039突变基因;然后,将野生型SRP40基因和srp4039突变基因分别连接到质粒YCplac22上,构建质粒YCplac22-SRP40和YCplac22-srp4039。将质粒YCplac22-SRP40、YCplac22-srp4039以及YCplac22空质粒分别转化入野生型酿酒酵母W303-1A中,分别得到W303-1A-SRP40工程菌、W303-1A-srp4039工程菌和W303-1A-control工程菌。将3株工程菌分别置于含1.0%异丁醇、1.3%异丁醇、8.0%乙醇和0.5%异戊醇的CM培养基中进行发酵,测定细胞密度(OD600)和生长情况,并计算2–10 h的比生长速率(μ)。将3株工程菌于55°C热激4 min后做稀释... 相似文献
15.
The currently available yeast mitochondrial DNA (mtDNA) sequence is incomplete, contains many errors and is derived from several polymorphic strains. Here, we report that the mtDNA sequence of the strain used for nuclear genome sequencing assembles into a circular map of 85 779 bp which includes 10 kb of new sequence. We give a list of seven small hypothetical open reading frames (ORFs). Hot spots of point mutations are found in exons near the insertion sites of optional mobile group I intron-related sequences. Our data suggest that shuffling of mobile elements plays an important role in the remodelling of the yeast mitochondrial genome. 相似文献
16.
N. Rao Movva Dominique Semon Christina Meyer Eric Kawashima Paul Wingfield Judith L. Miller Charles G. Miller 《Molecular & general genetics : MGG》1990,223(2):345-348
Summary The pepM gene coding for a methionine-specific aminopeptidase was cloned from Salmonella typhimurium and its nucleotide sequence determined. The gene encoded a 264 amino acid protein that was homologous to a similar protein from Escherichia coli. The sequence of an overproducer mutant allele, pepM100, contained a single base change in the likely –35 region of the pepM promoter that increased its homology to the consensus promoter sequence. A region downstream from the pepM coding sequence contained extensive inverted repeats and was homologous to sequences found elsewhere in both Salmonella and other bacterial species. 相似文献
17.
18.
Lisiane B. Meira Nieve Magaña-Schwencke Dietrich Averbeck Joâo Antonio P. Henriques 《Molecular & general genetics : MGG》1994,245(6):750-759
Using a genetic system of haploid strains of Saccharomyces cerevisiae carrying a duplication of the his4 region on chromosome III, the pso3-1 mutation was shown to decrease the rate of spontaneous mitotic intrachromosomal recombination 2- to 13-fold. As previously found for the rad52-1 mutant, the pso3-1 mutant is specifically affected in mitotic gene conversion. Moreover, both mutations reduce the frequency of spontaneous recombination. However, the two mutations differ in the extent to which they affect recombination between either proximally or distally located markers on the two his4 heteroalleles. In addition, amplifications of the his4 region were detected in the pso3-1 mutant. We suggest that the appearance of these amplifications is a consequence of the inability of the pso3-1 mutant to perform mitotic gene conversion. 相似文献
19.
We have cloned DNA fragments of plasmid pFL40 from Alcaligenes xylosoxidans ssp. denitrificans ABIV encoding a D,L-2-haloalkanoic acid halidohydrolase (DhlIV). A 6.5-kb EcoRI/SalI-fragment with inducible expression of the halidohydrolase was cloned in Pseudomonas fluorescens and Escherichia coli. A 1.9-kb HindII-fragment demonstrated expression of the dehalogenase only due to the presence of the promoter from the pUC vector in Escherichia coli. The nucleotide sequence of this DNA-fragment was determined. It had an open reading frame coding for 296 amino acid residues (molecular weight of 32783 D). The dhlIV gene showed sequence homology to a short segment of a D-specific dehalogenase (hadD) from Pseudomonas putida AJ1, but not to any other known DNA sequences. Restriction enzyme patterns indicated similarity between dhlIV and the D,L-isomer specific dehI dehalogenase gene from Pseudomonas putida PP3. There are some indications from restriction enzyme patterns and initial sequencing data, that a gene encoding a 54 activator protein, similar to the dehR
Iregulatory gene from Pseudomonas putida PP3 is located upstream of dhlIV. In contrast to DehI, dehalogenation of D-or L-chloropropionic acid by the DhlIV-protein leads to lactic acid of inverted configuration. 相似文献