首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrous oxide reductase from Wolinella succinogenes, an enzyme containing one heme c and four Cu atoms/subunit of Mr = 88,000, was studied by electron paramagnetic resonance (EPR) at 9.2 GHz from 6 to 80 K. In the oxidized state, low spin ferric cytochrome c was observed with gz = 3.10 and an axial Cu resonance was observed with g parallel = 2.17 and g perpendicular = 2.035. No signals were detected at g values greater than 3.10. For the Cu resonance, six hyperfine lines each were observed in the g parallel and g perpendicular regions with average separations of 45.2 and 26.2 gauss, respectively. The hyperfine components are attributed to Cu(I)-Cu(II) S = 1/2 (half-met) centers. Reduction of the enzyme with dithionite caused signals attributable to heme c and Cu to disappear; exposure of that sample to N2O for a few min caused the reappearance of the g = 3.10 component and a new Cu signal with g parallel = 2.17 and g perpendicular = 2.055 that lacked the simple hyperfine components attributed to a single species of half-met center. The enzyme lost no activity as the result of this cycle of reduction and reoxidation. EPR provided no evidence for a Cu-heme interaction. The EPR detectable Cu in the oxidized and reoxidized forms of the enzyme comprised about 23 and 20% of the total Cu, respectively, or about one spin/subunit. The enzyme offers the first example of a nitrous oxide reductase which can have two states of high activity that present very different EPR spectra of Cu. These two states may represent enzyme in two different stages of the catalytic cycle.  相似文献   

2.
The x-ray crystal structures of the cyanide derivative of Lucina pectinata monomeric hemoglobin I (L. pectinata HbI) and sperm whale (Physeter catodon) myoglobin (Mb), generally taken as reference models for monomeric hemoproteins carrying hydrogen sulfide and oxygen, respectively, have been determined at 1.9 A (R-factor = 0. 184), and 1.8 A (R-factor = 0.181) resolution, respectively, at room temperature (lambda = 1.542 A). Moreover, the x-ray crystal structure of the L. pectinata HbI:cyanide derivative has been studied at 1.4-A resolution (R-factor = 0.118) and 100 K (on a synchrotron source lambda = 0.998 A). At room temperature, the cyanide ligand is roughly parallel to the heme plane of L. pectinata HbI, being located approximately 2.5 A from the iron atom. On the other hand, the crystal structure of the L. pectinata HbI:cyanide derivative at 100 K shows that the diatomic ligand is coordinated to the iron atom in an orientation almost perpendicular to the heme (the Fe-C distance being 1.95 A), adopting a coordination geometry strictly reminescent of that observed in sperm whale Mb, at room temperature. The unusual cyanide distal site orientation observed in L. pectinata HbI, at room temperature, may reflect reduction of the heme Fe(III) atom induced by free radical species during x-ray data collection using Cu Kalpha radiation.  相似文献   

3.
A systemic study has been made of copper and heme a binding to subunits of beef heart cytochrome c oxidase. Copper and heme a were readily mobilized by ionic detergents, high ionic strengths, temperatures above 0 degrees C, thiol compounds, and gel-bound peroxides and free radicals when the subunits of the oxidase were dissociated from one another during polyacrylamide gel electrophoresis. Most subunits showed some affinity for heme a and copper under these conditions. However, in the presence of specific mixtures of ionic and nonionic detergents (e.g. 0.1% sodium dodecyl sulfate, 0.025% Triton X-100) at temperatures below 0 degrees C and in buffers of low ionic strength using 10 to 12% polyacrylamide gels preelectrophoresed for 3 days with thioglycolate, about 90% of the Cu was found on subunit II (Mr = 24,100), and heme a was found in equal amounts of subunits I (Mr = 35,800) and II. The oxidized-reduced and reduced-CO absorption spectra of these subunits resembled those of cytochrome c oxidase. It appears probable that in the native enzyme, subunit I contains heme a and subunit II contains copper and heme a. A relationship of mammalian cytochrome c oxidase to the two-subunit microbial cytochrome oxidase systems appears to exist.  相似文献   

4.
L-Tryptophan, 2,3-dioxygenase (EC 1.13.11.11) has been purified to homogenity from L-tryptophan induced Pseudomonas acidovorans (ATCC 11299b) and from L-tryptophan and cortisone induced rat liver. The enzyme from both sources is composed of four subunits and contains two g-atoms copper and two moles heme per mole tetramer. The proteins from the two sources are not identical. Three oxidation states of tryptophan oxygenase have been isolated: (1) fully oxidized, [Cu(II)]2[Ferriheme]2; (2) half reduced, [Cu(i)]2[ferriheme]2; and (3) fully reduced, [Cu(I)]2[ferroheme]2. Catalytic activity is dependent solely on the presence of Cu(I) in the enzyme, the heme may be either ferro or ferri. The presence of Cu(II) in the enzyme results in a requirement for an exogenous reductant, such as ascorbate, in order to elicit enzymic activity. Ligands, such as cyanide and carbon monoxide, can inhibit catalysis by binding to either or to both the copper and heme moieties. Metal complexing agents, such as bathocuproinesulfonate and bathophenanthrolinesulfonate, can inhibit catalysis by binding to Cu(I) resent only in catalytically active enzyme molecules. During catalysis by the fully reduced form of the enzyme, molecular oxygen binds to the heme moieties, while during catalysis by the half reduced form of the enzyme it does not, presumably binding instead to the Cu(I) moieties. Enzymes that catalyze similar reactions have been purified from other sources. Indoleamine 2,3-dioxygenase appears to be a heme protein, but its copper content is unknown. Pyrrolooxygenases appear to be completely different enzymes, although they have not yet been purified to homegeneity.  相似文献   

5.
Cytochrome bd-type ubiquinol oxidase contains two hemes b (b(558) and b(595)) and one heme d as the redox metal centers. To clarify the structure of the reaction center, we analyzed Escherichia coli cytochrome bd by visible absorption, EPR and FTIR spectroscopies using azide and cyanide as monitoring probes for the exogenous ligand binding site. Azide-binding caused the appearance of a new EPR low-spin signal characteristic of ferric iron-chlorin-azide species and a new visible absorption band at 647 nm. However, the bound azide ((14)N(3)) anti-symmetric stretching infrared band (2, 010.5 cm(-1)) showed anomalies upon (15)N-substitutions, indicating interactions with surrounding protein residues or heme b(595) in close proximity. The spectral changes upon cyanide-binding in the visible region were typical of those observed for ferric iron-chlorin species with diol substituents in macrocycles. However, we found no indication of a low-spin EPR signal corresponding to the ferric iron-chlorin-cyanide complexes. Instead, derivative-shaped signals at g = 3.19 and g = 7.15, which could arise from the heme d(Fe(3+))-CN-heme b(595)(Fe(3+)) moiety, were observed. Further, after the addition of cyanide, a part of ferric heme d showed the rhombic high-spin signal that coexisted with the g(z) = 2.85 signal ascribed to the minor heme b(595)-CN species. This indicates strong steric hindrance of cyanide-binding to ferric heme d with the bound cyanide at ferric heme b(595).  相似文献   

6.
Coral allene oxide synthase (AOS), a hemoprotein with weak sequence homology to catalase, is the N-terminal domain of a naturally occurring fusion protein with an 8R-lipoxygenase. AOS converts 8R-hydroperoxyeicosatetraenoic acid to the corresponding allene oxide. The UV--visible absorption and magnetic circular dichroism spectra of ferric AOS and of its cyanide and azide complexes, and the electron paramagnetic resonance spectra of native AOS (high-spin, g = 6.56, 5.22, 2.00) and of its cyanide adduct (low-spin, g = 2.86, 2.24, 1.60) closely resemble the corresponding spectra of bovine liver catalase (BLC). These results provide strong evidence for tyrosinate ligation to the heme iron of AOS as has been established for catalases. On the other hand, the positive circular dichroism bands in the Soret region for all three derivatives of ferric AOS are almost the mirror image of those in catalase. In addition, the cyanide affinity of native AOS (K(d) = 10 mM at pH 7) is about 3 orders of magnitude lower than that of BLC. Thus, while these results conclusively support a common tyrosinate-ligated heme in AOS as in catalase, significant differences exist in the interaction between their respective heme prosthetic groups and protein environments, and in the access of small molecules to the heme iron.  相似文献   

7.
Methylococcus capsulatus (Bath) possesses a multi-component methane monooxygenase which catalyzes in vivo the conversion of methane to methanol. Component A of this enzyme system, believed to be the oxygenase component, has been purified to near homogeneity (95%). The native protein has a molecular weight of approximately 210,000 and is comprised of three subunits of Mr = 54,000, 42,000, and 17,000, which appear to be present in stoichiometric amounts suggesting an alpha 2, beta 2, gamma 2 arrangement in the native protein. Purified preparations of the protein are virtually colorless and examination of the uv/visible absorption spectrum revealed a peak around 280-290 nm and thereafter a steady decrease in absorbance to longer wavelengths. The ESR spectrum of the oxidized protein gave a signal at g = 4.3, presumably due to rhombic iron, and a radical signal at g = 2.01. Upon reduction with dithionite, a signal at g = 1.934 appeared. Chemical analyses of our purified preparations revealed the presence of iron (2.3 mol/mol) and zinc (0.2-0.5 mol/mol): molybdenum, copper, nickel, heme, and acid-labile sulfur were all virtually absent. On ultra thin layer isoelectric focusing, purified component A was judged to have a pI between 5.0 and 5.1. Extracts prepared from a variety of other methanotrophs failed to show any cross-reaction to antibody raised against M. capsulatus component A.  相似文献   

8.
The protein formula of beef heart cytochrome c oxidase   总被引:1,自引:0,他引:1  
Beef heart cytochrome c oxidase consist of 12 different polypeptides stoichiometrically arranged in respiratory complex IV. The functional 2 heme a, 2 copper monomer of this complex consist of 1793 amino acids; the exact Mr is 202,787 Da. From 17 cysteine residues, six are involved in the formation of three disulphide bonds. The theoretical heme a content of the enzyme is 9.86 nmol/mg protein. The theoretical iron and copper contents are 0.55 and 0.63 microgram/mg protein, respectively.  相似文献   

9.
Blair-Johnson M  Fiedler T  Fenna R 《Biochemistry》2001,40(46):13990-13997
The 1.9 A X-ray crystal structure of human myeloperoxidase complexed with cyanide (R = 0.175, R(free) = 0.215) indicates that cyanide binds to the heme iron with a bent Fe-C-N angle of approximately 157 degrees, and binding is accompanied by movement of the iron atom by 0.2 A into the porphyrin plane. The bent orientation of the cyanide allows the formation of three hydrogen bonds between its nitrogen atom and the distal histidine as well as two water molecules in the distal cavity. The 1.85 A X-ray crystal structure of an inhibitory complex with thiocyanate (R = 0.178, R(free) = 0.210) indicates replacement of chloride at a proximal helix halide binding site in addition to binding in the distal cavity in an orientation parallel with the heme. The thiocyanate replaces two water molecules in the distal cavity and is hydrogen bonded to Gln 91. The 1.9 A structures of the complexes formed by bromide (R = 0.215, R(free) = 0.270) and thiocyanate (R = 0.198, R(free) = 0.224) with the cyanide complex of myeloperoxidase show how the presence of bound cyanide alters the binding site for bromide in the distal heme cavity, while having little effect on thiocyanate binding. These results support a model for a single common binding site for halides and thiocyanate as substrates or as inhibitors near the delta-meso carbon of the porphyrin ring in myeloperoxidase.  相似文献   

10.
Cu x-ray absorption spectroscopy (XAS) has been used to investigate the effect of cyanide treatment on the structures of the copper sites in beef heart cytochrome c oxidase. The Cu K-edge spectrum changes significantly upon cyanide binding to resting state enzyme, as does the Cu extended x-ray absorption fine structure (EXAFS) spectrum. The Cu EXAFS Fourier transfer (FT) exhibits an enhanced peak for the cyanide-treated enzyme in the region containing the Cu...Fe peak in the resting state FT (at R' approximately equal to 2.6-2.7 A). This peak in the cyanide-treated sample is hypothesized to arise from "outer shell" scattering from a linear Cu-cyanide moiety, suggesting cyanide binding to CuB only (CuB 2+-CN-) or cyanide bridging between the Fe of heme a3 and CuB (Fe3+-(CN-)-CuB 2+).  相似文献   

11.
1. Ascorbate oxidase has been isolated from the green squash Cucurbita pepo medullosa by a new purification method. Furthermore a low-molecular-weight copper protein containing one type-1 copper/20000 Mr could be separated during the purification of the oxidase. The six-step procedure developed improved the yield of ascorbate oxidase by a factor of 2.5. The method is well reproducible and a constant value of 8 Cu (7.95 +/- 0.1/140000 Mr) has been established. By ultracentrifugal and electrophoretic criteria the enzyme preparations have been found to be homogeneous. They exhibited a specific activity of 3930 +/- 50 units/mg protein or 1088 +/- 15 units/microgram copper. 2. The pure enzyme is characterized by the following optical purity indices: A280/A610 = 25 +/- 0.5, A330/A610 = 0.65 +/- 0.05 and A610/A500 = 7.0 +/- 0.25. The molar absorption coeffient of the characteristic absorption maximum at 610 nm (oxidized minus reduced) amounts of 9700 M-1 cm-1 . 3. Computer simulations of the electron paramagnetic resonance (EPR) spectra of the oxidized enzyme reveal the following parameters: for the type-1 (blue) copper gz = 2.227, gy = 2.058, gx = 2.036; Az = 5.0 mT, Ay = Ax = 0.5 mT, for the type-2 (non-blue) copper g parallel to = 2.242, g perpendicular = 2.053; A parallel to = 19.0 mT, A perpendicular 0.5 mT. Out of the eight copper atoms present in the oxidase four are detectable by EPR. Of these, three belong to the type-1 class, and one to the type-2 class, as demonstrated by computer simulations of the EPR spectra. 4. To achieve full reduction of the enzyme, as measured by bleaching of the blue chromophore, four equivalents of L-ascorbate or reductase must be added in the absence of molecular oxygen. Upon reduction of the enzyme the fluorescence at 330 nm (lambda max ex = 295 nm) is enhanced by a factor of 1.5 to 1.75. The reduced enzyme is readily reoxidized by dioxygen, ferricyanide or hydrogen peroxide. It binds two molecules of hydrogen peroxide in the oxidized state (1/type-3 Cu pair), which can be monitored by a characteristic increase of the absorbance around 310 nm (delta epsilon = 1000 +/- 50 M-1 cm-1). Corresponding changes in EPR and fluorescence spectra have not been detected.  相似文献   

12.
The absorption spectra of alkaline pyridine hemochrome of myeloperoxidase in its native, acid, and modified forms were similar to those of heme a, and the molar extinction coefficient of myeloperoxidase heme was very similar to that of heme a, assuming that myeloperoxidase contains only one heme. The anaerobic titration of myeloperoxidase with dithionite showed that one electron was consumed per molecule of the enzyme for its conversion to its reduced form. The EPR spectrum of myeloperoxidase indicated that the enzyme contains both high-spin heme and non-heme iron. Carbonyl reagents, such as borohydride, hydrazine, and benzhydrazide, reacted with myeloperoxidase, causing blue shifts in its absorption spectrum. The heme was labeled with a tritium of boro[3H]hydride, suggesting that the reagents reacted with a formyl group on the porphyrin ring of the myeloperoxidase heme. When hydrazine was added to cyanide complex I of myeloperoxidase the complex was converted to the hydrazine-enzyme compound. Myeloperoxidase reacted with bisulfite to form a compound with an absorption spectrum similar to that of cyanide complex I. Borohydride-treated myeloperoxidase formed only one cyanide complex, while the native enzyme formed two different cyanide complexes, I (Kd = 0.3 muM) and II (approximate Kd = 0.1 mM). The EPR spectrum indicated that cyanide complex I of myeloperoxidase still contained high-spin heme. The results suggested that cyanide complex I and the bisulfite compound of myeloperoxidase were adducts between the nucleophilic reagents and the formyl group of myeloperoxidase heme. Based on these results, we concluded that one of the two iron atoms in a myeloperoxidase molecule exists in a formyl-heme moiety similar to heme a and the other exists as a non-heme iron.  相似文献   

13.
Recombinant human myoglobin mutants with the distal His residue (E7, His64) replaced by Leu, Val, or Gln residues were prepared by site-directed mutagenesis and expression in Escherichia coli. Electronic and coordination structures of the ferric heme iron in the recombinant myoglobin proteins were examined by optical absorption, EPR, 1H NMR, magnetic circular dichroism, and x-ray spectroscopy. Mutations, His-->Val and His-->Leu, remove the heme-bound water molecule resulting in a five-coordinate heme iron at neutral pH, while the heme-bound water molecule appears to be retained in the engineered myoglobin with His-->Gln substitution as in the wild-type protein. The distal Val and distal Leu ferric myoglobin mutants at neutral pH exhibited EPR spectra with g perpendicular values smaller than 6, which could be interpreted as an admixture of intermediate (S = 3/2) and high (S = 5/2) spin states. At alkaline pH, the distal Gln mutant is in the same so-called "hydroxy low spin" form as the wild-type protein, while the distal Leu and distal Val mutants are in high spin states. The ligand binding properties of these recombinant myoglobin proteins were studied by measurements of azide equilibrium and cyanide binding. The distal Leu and distal Val mutants exhibited diminished azide affinity and extremely slow cyanide binding, while the distal Gln mutant showed azide affinity and cyanide association rate constants similar to those of the wild-type protein.  相似文献   

14.
A novel aco-type cytochrome-c oxidase was highly purified from the facultative alkalophilic bacterium, Bacillus YN-2000, grown at pH 10. The enzyme contained 9.0 nmol heme a/mg protein. It contained 1.23 mol of protoheme, 1.06 mol of heme c, 2.0 g atoms of copper, 2.5 g atoms of iron, and 1.8 g atoms of magnesium per mol of heme a. The enzyme molecule seemed to be composed of two subunits with Mrs of 52,000 and 41,600. On the basis of these results, the enzyme seemed to contain one molecule each of heme a, protoheme, and heme c per minimal structural unit (Mr, 93,600). Only protoheme among the three kinds of hemes in the enzyme reacted with CO and CN-. Heme a did not react with CO; cytochrome a3 did not seem to be present in the enzyme. The enzyme oxidized 314 mol of horse ferrocytochrome c per heme a per sec at pH 6.5 and the catalytic activity was 50% inhibited by 7.65 microM KCN. The enzymatic activity was found to be optimal at pH 6.0.  相似文献   

15.
Purified prostaglandin H synthase (EC 1.14.99.1) apoprotein, a polypeptide of 72 kDA, was titrated with hemin and EPR spectra of high-spin ferric heme were observed at liquid-helium temperature. With up to one hemin per polypeptide, a signal at g = 6.6 and 5.4, rhombicity 7.5%, evolved owing to specifically bound, catalytic active heme. At higher heme/polypeptide ratios signals at g = 6.3 and 5.9 were observed which were assigned to non-specific heme with no catalytic function. In microsomes from ram seminal vesicles the native enzyme showed the signal at g = 6.7 and 5.2 which could not be increased by the addition of hemin. Cyanide, an inhibitor of the enzyme, reacted at lower concentrations with the specific heme abolishing its signal at g = 6.6 and 5.4. Higher concentrations of cyanide were needed for the disappearance of the signal of non-specific heme. The reduced enzyme reacted with NO and formed two types of NO complexes. A transient complex, with a rhombic signal at gx = 2.07, gz = 2.01 and gy = 1.97, was assigned to a six-coordinate complex. The final, stable complex showed an axial signal at g = 2.12 and g = 2.001 and was assigned to a five-coordinate complex, where the protein ligand was no longer bound to the heme iron. Neither type of signal showed a hyperfine splitting from nitrogen of histidine indicating the absence of a histidine-iron bond in the enzyme. From these results and the similarity of the EPR signal at g = 6.6 and 5.4 to the signal of native catalase (EC 1.11.1.6) we speculated that tyrosinate might be the endogenous ligand of the heme in prostaglandin H synthase.  相似文献   

16.
17.
1.Upon addition of sulphide to oxidized cytochrome c oxidase, a low-spin heme sulphide compound is formed with an EPR signal at gx = 2.54, gy = 2.23 and gz = 1.87. Concomitantly with the formation of this signal the EPR-detectable low-spin heme signal at g = 3 and the copper signal near g = 2 decrease in intensity, pointing to a partial reduction of the enzyme by sulphide. 2. The addition of sulphide to cytochrome c oxidase, previously reduced in the presence of azide or cyanide, brings about a disappearance of the azido-cytochrome c oxidase signal at gx = 2.9, gy = 2.2, and gz = 1.67 and a decrease of the signal at g = 3.6 of cyano-cytochrome c oxidase. Concomitantly the sulphide-induced EPR signal is formed. 3. These observations demonstrate that azide, cyanide and sulphide are competitive for an oxidized binding site on cytochrome c oxidase. Moreover, it is shown that the affinity of cyanide and sulphide for this site is greater than that of azide.  相似文献   

18.
The rapid and reversible electron transfer reaction of cytochrome b562 was observed at an In2O3 electrode. The estimated heterogeneous electron transfer rate constant (k0') was k0' > or = 5.0 x 10(-3) cm s(-1) at pH 6.5. When the methionine-7 (Met-7) residue, which coordinates to the heme iron as an axial ligand, of the wild-type cytochrome b562 was replaced by an Ala or Gly residue, a water molecule bound to the heme iron and the electron transfer rate constants decreased to 1.3 x 10(-3) and 1.8 x 10(-3) cm s(-1), respectively. This decrease in the electron transfer rate would be due to the larger reorganization energy for the structural change at the redox site. The midpoint potential of cytochrome b562 was shifted negatively by approximately 135 mV by replacing Met-7 with Ala or Gly. Similar dissociation kinetics of cyanide for the mutated molecules as compared to native myoglobin was obtained.  相似文献   

19.
1. The reaction of myeloperoxidase with fluoride, chloride and azide has been studied by EPR. 2. Fluoride decreases the rhombicity of the high-spin heme signal of myeloperoxidase and the nuclear spin of the fluoride atom induces a splitting in g parallel of 35 G. This observation demonstrates that fluoride binds as an axial ligand to the heme iron of the enzyme. 3. Addition of chloride to the fluoride-treated enzyme increases the rhombicity of the high-spin heme signal and brings about a disappearance of the splitting at g parallel. The addition of azide to the fluoride-treated enzyme changes the spin state of the heme iron from a high-to a low-spin state (gx = 2.68, gy = 2.22 and gz = 1.80). 4. Upon addition of chloride or fluoride to low-spin azido-myeloperoxidase this compound is converted into the high-spin chlorido- or fluorido-myeloperoxidase. These observations demonstrate that these ligands compete for a binding site at or close to the heme iron of myeloperoxidase.  相似文献   

20.
The effect of CO on the optical absorbance spectrum of partially reduced cytochrome c oxidase has been studied. The changes at 432 and 590 nm suggest that the cytochrome alpha2/3+ - CO compound is formed preferentially and that concomitantly a second electron is taken up by the enzyme. From the CO-induced changes at 830 nm it is concluded that in the partially reduced enzyme addition of CO causes reoxidation of the copper component of cytochrome c oxidase. Addition of CO to partially reduced enzyme (2 electrons per 4 metal ions) also brings about a decrease in the intensities of electron paramagnetic resonance signals of high-spin heme iron near g = 6 and of the low-spin heme at g = 2.6. Concomitantly both the low-spin heme a signal at g = 3 and the copper signal at g = 2 increase in intensity. These results demonstrate that formation of the reduced diamagnetic cytochrome a3 - CO compound is accompanied by reoxidation of both the copper component detectable by electron paramagnetic resonance and possibly also by cytochrome a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号