首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ADvF11 (F11), a Chinese Hamster Ovary (CHO) cell variant, is defective in its ability to adhere to fibronectin (Fn)-coated substrata but will adhere to substrata coated with poly-L-lysine, conA or extracellular matrix (ECM) [1]. We have observed that both F11 and CHO wild-type (WT) cells were able to bind 3H-Fn beads in a similar manner; however, only WT cells and not F11 cells aggregate in the presence of Fn beads. Both cell types aggregated similarly in the presence of lectins. Fn-bead-mediated aggregation was blocked by low temperature and aggregation did not occur when formaldehyde-fixed WT cells were used. Colchicine, tetracaine and cytochalasin B were not effective in blocking aggregation induced by Fn beads. These results suggest that: 1. Both WT and F11 cells have surface membrane-binding sites for Fn. 2. The aggregation defect in F11 cells is distal to the initial interaction between the cell surface and Fn, but proximal to the cytoskeletal rearrangements required for cell adhesion.  相似文献   

2.
The role of CD9 in cell adhesion and spreading on adhesive proteins was investigated using a transfected Chinese hamster ovary (CHO) cell system. CD9 cell surface expression resulted in reduced adhesion and increased spreading on fibronectin (Fn). Whereas mock-transfected (mock CHO) and na?ve CHO cells assumed a typical fibroblast spindle shape morphology, CD9-transfected (CD9-CHO) cells were polygonal with many filipodial projections and exhibited a twofold greater surface area. The spread morphology of CD9-CHO cells, but not mock CHO cells, was inhibited by PB1 mAb blockade of alpha(5)beta(1), suggesting that the coexpression of alpha(5)beta(1) and CD9 influenced cell activity on Fn. The second extracellular loop of CD9 was implicated in regulation of adhesion since reduced CD9-CHO cell adhesion on Fn was reversed by either anti-CD9 antibody ligation to the second extracellular loop or with cells expressing a CD9 mutant lacking the second extracellular loop domain. Using cell adhesion assays and ELISA, we demonstrated CD9 binding to the HEP2/IIICS region of Fn. Finally, CD9 expression resulted in a twofold reduction in Fn-rich pericellular matrix assembly. Our observations show that CD9 dramatically influences CHO cell interactions with Fn and suggest that CD9 has an important role in modulating cell-extracellular matrix interactions.  相似文献   

3.
The Ku heterodimer (Ku70/Ku80) plays a central role in DNA double-strand breaks recognition and repair. However, Ku is expressed also on the surface of different types of cells along with its intracellular pool within the nucleus and the cytoplasm. Participation of membrane-associated Ku in cell-cell interaction has been reported recently. Here, we describe a novel function of cell-surface Ku as an adhesion receptor for fibronectin (Fn). The role of Ku in cell adhesion was investigated by comparing the Ku80 deficient Chinese hamster ovary (CHO) cell line, xrs-6, with clones transfected stably with either the hamster or human Ku80 cDNA. Ku expression in transfectant cells resulted in a significant increased adhesion on Fn and type IV collagen as compared to control cells. The observed increase in cell adhesion relied on Ku cell-surface expression, since antibodies directed against Ku70 or Ku80 subunit inhibited adhesion on Fn of Ku80, but not control vector, transfected xrs-6 cells. In addition, both Ku70 and Ku80 present a structural relationship with integrin I (or A) domains and the A1 and A3 domains of von Willebrand factor, domains known to be involved in Fn binding. Both Ku70 and Ku80 exhibit a complete set of residues compatible in their position and chemical nature with the formation of a metal ion-dependent adhesion (MIDAS) site implicated in ligand binding and integrin activation. Taken together, these functional and structural approaches support a new role for Ku as an adhesion receptor for Fn.  相似文献   

4.
Immobilized glycoconjugates for cell recognition studies   总被引:2,自引:0,他引:2  
Specific cell-cell recognition and adhesion may involve cell surface glycoconjugates on one cell binding the complementary carbohydrate receptors on an apposing cell surface. Such interactions have been modeled by immobilizing simple synthetic glycosides, glycoproteins, glycosaminoglycans, and glycolipids on otherwise inert plastic surfaces and incubating them with intact cells. Using this approach, the ability of several cell types to recognize specific carbohydrates has been demonstrated. This carbohydrate-directed cell adhesion may depend on cell surface carbohydrate receptors which mediate both the initial specific adhesion and complex postrecognition cellular responses. While the relationship of the cell adhesion demonstrated here to cell-cell recognition in vivo has yet to be determined, this well-controlled biochemical approach may reveal new information on the way in which cells analyze and respond to their immediate external environment.  相似文献   

5.
Fibroblastic CHO cells readily adhere to fibronectin (Fn) coated substrata. From the parental cell population we have recently selected a series of adhesion variants (ADV cells) that cannot adhere to Fn substrata (Harper and Juliano. 1980. J. Cell. Biol. 87:755-763). However, ADV cells readily adhere to substrata coated with extracellular matrix material (ECM) derived from human diploid fibroblasts by a mechanism that does not involve fibronectin (Harper and Juliano. 1981. Nature (Lond.). 290:136-138). Te Fn-dependent adhesion mechanism of parental cells (type 1 adhesion) and the ECM- dependent adhesion of ADV cells (type II adhesion) can also be discriminated on the basis of their differential sensitivity to proteolysis, with the type II mechanism being far more sensitive. In this communication we report that parental CHO cells possess both type I and type II mechanisms whereas ADV cells possess only the type II mechanism. We also identify a high molecular weight membrane glycoprotein (gp 265) that seems to play a role in type II adhesion. This component is detected by [125I]lactoperoxidase of [3H]borohydride- galactose oxidase labeling of surface proteins in WT and AD cells. Cleavage of gp 265 with low doses of proteases correlates completely with the loss of type II adhesion capacity. Thus CHO cells possess two functionally and biochemically distinct adhesion mechanisms, one involving exogenous Fn and the other mediated by the membrane component gp 265.  相似文献   

6.
Two Chinese hamster ovary (CHO) cell mutants selected for resistance to wheat germ agglutinin (WGA) have been shown to exhibit defective sialylation of membrane glycoproteins and a membrane glycolipid, GM3. The mutants (termed WgaRII and WgaRIII) have been previously shown to belong to different genetic complementation groups and to exhibit different WGA-binding abilities. These mutants and a WGA-resistant CHO cell mutant termed WgaRI (which also possesses a surface sialylation defect arising from a deficient N-acetylglucosaminyltransferase activity), have enabled us to investigate the role of sialic acid in WGA binding at the cell surface. Scatchard plots of the binding of 125I- WGA (1 ng/ml to 1 mg/ml) to parental and WgaR CHO cells before and after a brief treatment with neuraminidase provide evidence for several different groups of sialic acid residues at the CHO cell surface which may be distinquished by their differential involvement in WGA binding to CHO cells.  相似文献   

7.
Dynamic cytoskeletal rearrangements are involved in neuronal growth cone motility and guidance. To investigate how cell surface receptors translate guidance cue recognition into these cytoskeletal changes, we developed a novel in vitro assay where beads, coated with antibodies to the immunoglobulin superfamily cell adhesion molecule apCAM or with purified native apCAM, replaced cellular substrates. These beads associated with retrograde F-actin flow, but in contrast to previous studies, were then physically restrained with a microneedle to simulate interactions with noncompliant cellular substrates. After a latency period of ~10 min, we observed an abrupt increase in bead-restraining tension accompanied by direct extension of the microtubule-rich central domain toward sites of apCAM bead binding. Most importantly, we found that retrograde F-actin flow was attenuated only after restraining tension had increased and only in the bead interaction axis where preferential microtubule extension occurred. These cytoskeletal and structural changes are very similar to those reported for growth cone interactions with physiological targets. Immunolocalization using an antibody against the cytoplasmic domain of apCAM revealed accumulation of the transmembrane isoform of apCAM around bead-binding sites. Our results provide direct evidence for a mechanical continuum from apCAM bead substrates through the peripheral domain to the central cytoplasmic domain. By modulating functional linkage to the underlying actin cytoskeleton, cell surface receptors such as apCAM appear to enable the application of tensioning forces to extracellular substrates, providing a mechanism for transducing retrograde flow into guided growth cone movement.  相似文献   

8.
Certain glycosaminoglycans (GAGs), including heparin, inhibit infection by murine leukemia virus (MLV). We now show that this is due to inhibition of virus attachment independent of the interaction between viral envelope proteins (Env) and their cellular receptors. Heparin blocked the binding of both Env-deficient and amphotropic MLV (MLV-A) particles to NIH 3T3 fibroblasts, CHO cells which lack the amphotropic retroviral receptor Pit-2, and CHO cells transfected with Pit-2 (CHO-Pit-2). Heparin also inhibited the transduction of NIH 3T3 cells by MLV-A over a similar concentration range. This effect was observed within 15 min of exposure to retrovirus. Preloading target cells with heparin had no effect on transduction and both MLV-A and Env-deficient retrovirus bound efficiently to heparin-coated agarose beads, suggesting that heparin interacts with the virus rather than the target cell. This requires both a strong negative charge and a specific structure since GAGs with different charge and carbohydrate composition inhibited virus infection variably. The specificity of GAG-virus interaction also depends on the producer cells, since virus packaged by murine GP+EnvAM12 cells was 1,000-fold more sensitive to inhibition by chondroitin sulfate A than was virus packaged by human FLYA13 packaging cells. No evidence for an interaction between MLV and cell surface proteoglycans was found, however, since the attachment of MLV-A and envelope-defective virus to proteoglycan-deficient CHOpgsA-745 cells was similar to that seen with both wild-type and CHO-Pit-2 cells. Although the molecular mechanism is unclear, this study presents evidence that Env receptor-independent attachment is an important step in MLV infection.  相似文献   

9.
Cell infection by adenovirus serotypes 2 and 5 (Ad2/5) initiates with the attachment of Ad fiber to the coxsackievirus and Ad receptor (CAR) followed by alpha(v) integrin-mediated entry. We recently demonstrated that heparan sulfate glycosaminoglycans (HS GAGs) expressed on cell surfaces are involved in the binding and infection of Ad2/5 (M. C. Dechecchi, A. Tamanini, A. Bonizzato, and G. Cabrini, Virology 268:382-390, 2000). The role of HS GAGs was investigated using extracellular soluble domain 1 of CAR (sCAR-D1) and heparin as soluble receptor analogues of CAR and HS GAGs in A549 and recombinant CHO cell lines with differential levels of expression of the two receptors and cultured to various densities. Complete inhibition of binding and infection was obtained by preincubating Ad2/5 with both heparin (10 microg/ml) and sCAR-D1 (200 microg/ml) in A549 cells. Partial inhibition was observed when heparin and sCAR-D1 were preincubated separately with Ad. The level of heparin-sensitive [(3)H]Ad2/5 binding doubled in sparse A549 cells (50 to 70,000 cells/cm(2)) with respect to that of cells grown to confluence (200 to 300,000 cells/cm(2)), in parallel with increased expression of HS GAGs. [(3)H]Ad2 bound to sparse CAR-negative CHO cells expressing HS GAGs (CHO K1). No [(3)H]Ad2 binding was observed in CHO K1 cells upon competitive inhibition with heparin and in HS GAG-defective CHO A745, D677, and E606 clones. HS-sensitive Ad2 infection was obtained in CAR-negative sparse CHO K1 cells but not in CHO A745 cells, which were permissive to infection only upon transfection with CAR. These results demonstrate that HS GAGs are sufficient to mediate the initial binding of Ad2/5.  相似文献   

10.
11.
《The Journal of cell biology》1989,109(6):3455-3464
We have examined the early events of cellular attachment and spreading (10-30 min) by allowing chick embryonic fibroblasts transformed by Rous sarcoma virus to interact with fibronectin immobilized on matrix beads. The binding activity of cells to fibronectin beads was sensitive to both the mAb JG22E and the GRGDS peptide, which inhibit the interaction between integrin and fibronectin. The precise distribution of cytoskeleton components and integrin was determined by immunocytochemistry of frozen thin sections. In suspended cells, the distribution of talin was diffuse in the cytoplasm and integrin was localized at the cell surface. Within 10 min after binding of cells and fibronectin beads at 22 degrees C or 37 degrees C, integrin and talin aggregated at the membrane adjacent to the site of bead attachment. In addition, an internal pool of integrin-positive vesicles accumulated. The mAb ES238 directed against the extracellular domain of the avian beta 1 integrin subunit, when coupled to beads, also induced the aggregation of talin at the membrane, whereas ES186 directed against the intracellular domain of the beta 1 integrin subunit did not. Cells attached and spread on Con A beads, but neither integrin nor talin aggregated at the membrane. After 30 min, when many of the cells were at a more advanced stage of spreading around beads or phagocytosing beads, alpha-actinin and actin, but not vinculin, form distinctive aggregates at sites along membranes associated with either fibronectin or Con A beads. Normal cells also rapidly formed aggregates of integrin and talin after binding to immobilized fibronectin in a manner that was similar to the transformed cells, suggesting that the aggregation process is not dependent upon activity of the pp60v-src tyrosine kinase. Thus, the binding of cells to immobilized fibronectin caused integrin-talin coaggregation at the sites of membrane-ECM contact, which can initiate the cytoskeletal events necessary for cell adhesion and spreading.  相似文献   

12.
We describe a simple but versatile method to decorate solid surfaces randomly with colloidal gold particles to which ligands of cell receptors can be coupled to generate local attraction sites for the control of cell adhesion. A self-assembled monolayer of (3-mercaptopropyl)trimethoxysilane was deposited on glass slides. Gold beads were anchored to the functionalized surface through the sulfur group. We characterized the gold bead distribution on the functionalized surface with reflection interference contrast microscopy. The gold beads were functionalized with a disulfide-coupled cyclic pentapeptide containing an arginine-glycine-aspartic acid (RGD) tripeptide sequence which is selectively recognized by integrin receptors alpha(V)beta(3) of endothelial cells. A blocking layer of bovine serum albumin was adsorbed onto the surface to prevent non-specific binding of the cells. We demonstrate that the RGD-functionalized colloidal gold beads act as local attraction centers, mediating rapid cell anchoring on a substrate impeding cell adhesion in the absence of attraction centers. Surprisingly, microinterferometry shows that after a time delay of about 1 h, the regions of the cell surface between the gold beads form close contacts with the substrate, which is attributed to strong van der Waals attraction after escape of repeller molecules from the contact surface.  相似文献   

13.
Specific protein receptors that mediate internalization and entry of influenza A virus (IAV) have not been identified for any cell type. Sialic acid (SIA), the primary attachment factor for IAV hemagglutinin, is expressed by numerous cell surface glycoproteins and glycolipids, confounding efforts to identify specific receptors involved in virus infection. Lec1 Chinese hamster ovary (CHO) epithelial cells express cell surface SIA and bind IAV yet are largely resistant to infection. Here, we demonstrate that expression of the murine macrophage galactose-type lectin 1 (MGL1) by Lec1 cells enhanced Ca2+-dependent IAV binding and restored permissivity to infection. Lec1 cells expressing MGL1 were infected in the presence or absence of cell surface SIA, indicating that MGL1 can act as a primary receptor or as a coreceptor with SIA. Lec1 cells expressing endocytosis-deficient MGL1 mediated Ca2+-dependent IAV binding but were less sensitive to IAV infection, indicating that direct internalization via MGL1 can result in cellular infection. Together, these studies identify MGL1 as a cell surface glycoprotein that can act as an authentic receptor for both attachment and infectious entry of IAV.  相似文献   

14.
Heparin-binding proteins (HBPs) have been demonstrated in both infective forms of Trypanosoma cruzi and are involved in the recognition and invasion of mammalian cells. In this study, we evaluated the potential biological function of these proteins during the parasite-vector interaction. HBPs, with molecular masses of 65·8 kDa and 59 kDa, were isolated from epimastigotes by heparin affinity chromatography and identified by biotin-conjugated sulfated glycosaminoglycans (GAGs). Surface plasmon resonance biosensor analysis demonstrated stable receptor-ligand binding based on the association and dissociation values. Pre-incubation of epimastigotes with GAGs led to an inhibition of parasite binding to immobilized heparin. Competition assays were performed to evaluate the role of the HBP-GAG interaction in the recognition and adhesion of epimastigotes to midgut epithelial cells of Rhodnius prolixus. Epithelial cells pre-incubated with HBPs yielded a 3·8-fold inhibition in the adhesion of epimastigotes. The pre-treatment of epimastigotes with heparin, heparan sulfate and chondroitin sulfate significantly inhibited parasite adhesion to midgut epithelial cells, which was confirmed by scanning electron microscopy. We provide evidence that heparin-binding proteins are found on the surface of T. cruzi epimastigotes and demonstrate their key role in the recognition of sulfated GAGs on the surface of midgut epithelial cells of the insect vector.  相似文献   

15.
Many lines of evidence suggest an interaction between glycosaminoglycans (GAGs) and the PrP proteins as well as a possible role for GAGs in prion disease pathogenesis. In this work, we sought to determine whether the PrP-GAG interaction affects the incorporation of PrP(Sc) (the scrapie isoform of PrP) to normal cells. This may be the first step in prion disease pathogenesis. To this effect, we incubated proteinase K-digested hamster scrapie brain homogenates with several lines of Chinese hamster ovary (CHO) cells in the presence or absence of heparin. Our results show that over a large range of PrP(Sc) concentrations the binding of PrP(Sc) to wild type CHO cells, which do not express detectable PrP, was equivalent to the binding of PrP(Sc) to CHO cells overexpressing PrP. A significant part of PrP(Sc) binding to both lines could be inhibited by heparin. Additional evidence that PrP(Sc) binding to cells was dependent on the presence of GAGs could be concluded from the fact that the binding of PrP(Sc) to CHO cells missing GAGs on the cell surface was significantly reduced. Interestingly, preincubation of scrapie brain homogenate with heparin before intraperitoneal inoculation into normal hamsters resulted in a significant delay in prion disease manifestation.  相似文献   

16.
Chinese hamster ovary (CHO) suspension culture cells adhere readily to substrata coated with extracellular matrix proteins such as fibronectin, vitronectin, or laminin. In the case of fibronectin, it is known that adhesion is mediated by an integrin-type, cell surface fibronectin receptor (FnR). We demonstrate here that treatment of CHO cells with submicromolar concentrations of phorbol ester produces a remarkable increase in the ability of these cells to adhere to fibronectin. Both the rate of adhesion and the efficiency of adhesion are enhanced about four- to fivefold. Further, phorbol ester treatment renders the fibronectin-mediated adhesion process less sensitive to inhibitors, including GRGDSP peptide and PB1, a monoclonal anti-FnR antibody. By contrast, nonspecific adhesion processes, for example cell attachment to substrata coated with polylysine or concanavalin A, are not affected by phorbol ester treatment. Thus integrin-mediated adhesion is modulated by phorbol esters, but nonspecific adhesion is not. Neither the number of cell surface FnRs nor the receptor affinity, as measured by 125I-fibronectin and 125I-anti-FnR antibody binding, is altered by phorbol ester treatment. Thus, the effect of phorbol ester on cell adhesion seems to occur at a step subsequent to initial ligand-receptor binding events. Since phorbol ester is a potent activator of protein kinase C, we examined phosphorylation patterns in control and phorbol-treated cells. In immunoprecipitates of lysates from suspension culture cells, there was no evidence of phorbol ester-stimulated phosphorylation of FnR or of talin, a protein thought to interact with FnR. These results suggest that phorbol ester effects on fibronectin-dependent adhesion are not due to phosphorylation of the FnR itself but rather may be due to postreceptor events, possibly the phosphorylation of cytoskeletal proteins involved in integrin-mediated adhesion.  相似文献   

17.
《The Journal of cell biology》1983,97(5):1515-1523
The binding and phagocytosis of fibronectin (pFN)-coated latex beads by baby hamster kidney (BHK) cells was studied as a function of fibronectin concentration and bead diameter. Cells were incubated with radioactive pFN-coated beads, and total bead binding (cell surface or ingested) was measured as total radioactivity associated with the cells. Of the bound beads, those that also were phagocytosed were distinguished by their insensitivity to release from the cells by trypsin treatment. In continuous incubations, binding of pFN-coated beads to cells occurred at 4 degrees C or 37 degrees C, but phagocytosis was observed only at 37 degrees C. In addition, degradation of 3H-pFN from ingested beads occurred at 37 degrees C, as shown by the release of trichloroacetic acid-soluble radioactivity into the incubation medium. When the fibronectin density on the beads was varied, binding at 4 degrees C and ingestion at 37 degrees C were found to have the same dose-response dependencies, which indicated that pFN densities that permitted bead binding were sufficient for phagocytosis to occur. The fibronectin density for maximal binding of ingestion was approximately 250 ng pFN/cm2. When various sized beads (0.085-1.091 micron), coated with similar densities of pFN, were incubated with cells at 4 degrees C, no variation in binding as a function of bead size was observed. Under these conditions, the absolute amount of pFN ranged from less than 100 molecules on the 0.085-micron beads to greater than 15,000 molecules on the 1.091-micron beads. Based upon these results it can be concluded that the critical parameter controlling fibronectin-mediated binding of latex beads by BHK cells is the spacing of the pFN molecules on the beads. Correspondingly, it can be suggested that the spacing between pFN receptors on the cell surface that is optimal for multivalent interactions to occur is approximately 18 nM. When phagocytosis of various sized beads was compared, it was found that the largest beads were phagocytosed slightly better (two fold) than the smallest beads. This occurred both in continuous incubations of cells with beads and when the beads were prebound to the cells. Finally, the kinetic constants for the binding of 0.085 microM pFN-coated beads to the cells were analyzed. There appeared to be approximately 62,000 binding sites and the KD was 4.03 X 10(-9) M. Assuming a bivalent interaction, it was calculated that BHK cells have approximately 120,000 pFN receptors/cell and the binding affinity between pFN and its receptor is approximately 6 X 10(-5) M.  相似文献   

18.
The appearance of multicellular forms of life has been tightly coupled to the ability of an organism to retain its own anatomical integrity and to distinguish self from non-self. Large glycoconjugates, which make up the outermost cell surface layer of all Metazoans, are the primary candidates for the primordial adhesion and recognition functions in biological self-assembly systems. Atomic force microscopy experiments demonstrated that the binding strength between a single pair of Porifera cell surface glyconectin 1 glycoconjugates from Microciona prolifera can hold the weight of 1600 cells, proving their adhesion functions. Here, measurement of molecular self-recognition of glyconectins (GNs) purified from three Porifera species was used as an experimental model for primordial xenogeneic self/non-self discrimination. Physicochemical and biochemical characterization of the three glyconectins, their glycans, and peptides using gel electrophoresis, ultracentrifugation, NMR, mass spectrometry, glycosaminoglycan-degrading enzyme treatment, amino acid and carbohydrate analyses, and peptide mapping showed that GNs define a new family of proteoglycan-like molecules exhibiting species-specific structures with complex and repetitive acidic carbohydrate motives different from the classical proteoglycans and mucins. In functional self-assembly color-coded bead, cell, and blotting assays, glyconectins displayed species-specific recognition and adhesion. Affinity-purified monospecific polyclonal antibodies prepared against GN1, -2, and -3 glycans selectively inhibited cell adhesion of the respective sponge species. These results together with species-specific coaggregation of GN carbohydrate-coated beads with cells showed that GN glycans are functional in cell recognition and adhesion. The specificity of carbohydrate-mediated homophilic GN interactions in Porifera approaches the binding selectivity of the evolutionarily advanced immunoglobulin superfamily. Xenoselectivity of primordial glyconectin to glyconectin recognition may be a new paradigm in the self-assembly and non-self discrimination pathway of cellular adhesion leading to multicellularity.  相似文献   

19.
Carbohydrate-specific cell adhesion is mediated by immobilized glycolipids   总被引:5,自引:0,他引:5  
We describe a technique for examining the ability of one important class of cell surface complex carbohydrates, glycosphingolipids, to mediate carbohydrate-specific cell recognition and adhesion. Analogs of natural glycosphingolipids were synthesized, consisting of 1-glycosyl derivatives of 3-deoxyceramide (N-palmitoyl-2-aminostearol) radiolabeled in the fatty acid portion. Methods were developed to efficiently adsorb both these synthetic glycolipids and natural glycosphingolipids (including gangliosides) from aqueous ethanol solution onto plastic wells. The glycolipids remained firmly attached to the surface in aqueous solutions, but could be recovered using detergents or organic solvents. The ability of the adsorbed glycolipids to elicit specific adhesion of intact hepatocytes was tested using specific adhesion of intact hepatocytes was tested using a cell adhesion assay based on that of McClay, D. R., Wessel, G. M., and Marchase, R. B. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 4975-4979. When otherwise nonadhesive plastic surfaces were adsorbed with N-acetylglucosaminyl 3-deoxyceramide, they supported adhesion of 80-95% of the chicken hepatocytes added to the well. No adhesion above background levels (10-25%) was observed to surfaces adsorbed with other synthetic glycolipids including glucosyl, galactosyl, mannosyl, or lactosyl 3-deoxyceramide, 3-deoxyceramide, or to the naturally occurring glycosphingolipids, lactosyl ceramide or ganglioside GM1. Chicken hepatocyte adhesion to surfaces adsorbed with N-acetylglucosaminyl 3-deoxyceramide was inhibited by soluble N-acetylglucosamine (IC50 = 3 m M), but not by other soluble sugars. Rat hepatocytes adhered preferentially to surfaces adsorbed with lactosyl 3-deoxyceramide, but not to surfaces adsorbed with the N-acetylglucosaminyl derivative. These studies demonstrate the ability of adsorbed glucolipids to mediate carbohydrate- and cell-specific adhesion from intact cells. Using these techniques, the ability of naturally occurring complex glycosphingolipids to elicit specific cellular responses from a variety of cell types can be examined.  相似文献   

20.
Recently, we cloned and characterized a full-length cDNA of the hamster Muc1 gene, the expression of which appears to be associated with secretory cell differentiation (Park HR, Hyun SW, and Kim KC. Am J Respir Cell Mol Biol 15: 237-244, 1996). The role of Muc1 mucins in the airway, however, is unknown. In this study, we investigated whether cell surface mucins are adhesion sites for Pseudomonas aeruginosa. Chinese hamster ovary (CHO) cells not normally expressing Muc1 mucin were stably transfected with the hamster Muc1 cDNA, and binding to P. aeruginosa was examined. Our results showed that 1) stably transfected CHO cells expressed both Muc1 mRNA and Muc1 mucins based on Northern and Western blot analyses, 2) Muc1 mucins present on the cell surface were degraded by neutrophil elastase, and 3) expression of Muc1 mucins on the cell surface resulted in a significant increase in adhesion of P. aeruginosa that was completely abolished by either proteolytic cleavage with neutrophil elastase or deletion of the extracellular domain by mutation. We conclude that Muc1 mucins expressed on the surface of CHO cells serve as adhesion sites for P. aeruginosa, suggesting a possible role for these glycoproteins in the early stage of airway infection and providing a model system for studying epithelial cell responses to bacterial adhesion that leads to airway inflammation in general and cystic fibrosis in particular.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号