首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This study was designed to test the efficiency of recently developed vitrification technology followed by microscope-free thawing and transfer of sheep embryos. In a first set of experiments, in vivo derived embryos at the morula to blastocyst stage were frozen in an automated freezer in ethylene glycol, and after thawing and removal of cryoprotectants, were transferred to recipient ewes according to a standard protocol (control group). A second group of embryos were loaded into open-pulled straws (OPS) and plunged into liquid nitrogen after exposure at room temperature to the media: 10% glycerol (G) for 5 min, 10% G+20% ethylene glycol (EG) for 5 min, 25% G+25% EG for 30s; or 10% EG+10% DMSO for 3 min, 20% EG+20% DMSO+0.3M trehalose for 30s. The OPS were thawed by plunging into tubes containing 0.5M trehalose. After this rapid thawing, the embryos were directly transferred using OPS as the catheter for the transplantation process. In a second set of experiments, in vivo derived and in vitro produced expanded blastocysts were vitrified in OPS and then transferred as described above. The lambing rates recorded (59% for the conventionally cryopreserved in vivo derived embryos, 56% for the vitrified in vivo derived embryos, and 20% for the vitrified in vitro produced embryos), suggest the suitability of the vitrification technique for the transfer of embryos obtained both in vivo and in vitro. This simple technology gives rise to a high embryo survival rate and will no doubt have applications in rearing sheep or other small ruminants.  相似文献   

2.
Vitrification using open pulled straw (OPS) has provided encouraging results with embryos from other species. The aim of this study was to compare the survival of 6.5- and 6.75-day-old equine embryos after OPS vitrification and slow-cooling. Eighteen embryos were frozen using a slow-cooling method. Embryos were placed in modified PBS with increasing glycerol concentration (2.5%, 5%, 7.5% and 10% (v/v) 5 min each). Embryos were loaded into 0.25 ml straws then placed in a programmable freezer and subsequently plunged into liquid nitrogen. After thawing, cryoprotectant was removed by five steps with decreasing glycerol and sucrose concentrations. Twenty embryos were vitrified using the OPS method. Embryos were exposed to 7.5% dimethyl-sulfoxide (DMSO)+7.5% ethylene glycol (EG) for 3 min and in 18% DMSO+18% EG+0.4M sucrose for 1 min, loaded in OPS and plunged into liquid nitrogen. After warming, embryos were placed in decreasing sucrose concentrations. All embryos were cultured in synthetic oviduct fluid (SOF) medium for 3h and evaluated using 4',6-diamidino-2-phenylindole (DAPI) staining. The percentage of cells entering in S-phase (%SC) was evaluated by incorporation of BrdU. No significant differences were observed for mean diameter, morphological grade and percentage of degenerate embryos after 3h of culture for slow-cooling and OPS methods. The percentage of dead cells per embryo was similar for the two procedures (42+/-6 versus 46+/-9). The percentage of cells entering in S-phase did not differ significantly between the two procedures (27+/-5 versus 26+/-6). OPS vitrification may be as efficient as slow-cooling for the cryopreservation of equine embryos. However, these results should be confirmed by the transfer of OPS vitrified embryos to recipient mares.  相似文献   

3.
This study evaluated the efficiency and toxicity of two cryopreservation methods, solid-surface vitrification (SSV) and cryoloop vitrification (CLV), on in vitro matured oocytes and in vivo derived early stage goat embryos. In the SSV method, oocytes were vitrified in a solution of 35% ethylene glycol (EG), 5% polyvinyl-pyrrolidone (PVP), and 0.4% trehalose. Microdrops containing the oocytes were cryopreserved by dropping them on a cold metal surface that was partially immersed in liquid nitrogen. In the cryoloop method, oocytes were transferred onto a film of the CLV solution (20% DMSO, 20% EG, 10mg/ml Ficoll and 0.65 M sucrose) suspended in the cryoloop. The cryoloop was then plunged into the liquid nitrogen. In vivo derived embryos were vitrified using the same procedures. The SSV microdrops were warmed in a solution of 0.3M trehalose and those vitrified with CLV were warmed with incubation in 0.25 and 0.125 M sucrose. Oocytes and embryos vitrified by the SSV method had a significantly lower survival rate than the control (60 and 39% versus 100%, respectively; P<0.05), while the survival rate of CLV oocytes and embryos (89 and 88%, respectively) did not differ from controls. Cleavage and blastocyst rates of the surviving vitrified oocytes (parthenogenetically activated) and embryos (cultured for 9 days) were not significantly different (P>0.05) from the control nor did they differ between vitrification methods. Embryos vitrified with the CLV method gave rise to blastocysts (2/15). Our data demonstrated that the two vitrification methods employed resulted in acceptable levels of survival and cleavage of goat oocytes and embryos.  相似文献   

4.
Cryopreservation of equine embryos with conventional slow-cooling procedures has proven challenging. An alternative approach is vitrification, which can minimize chilling injuries by increasing the rates of cooling and warming. The open pulled straw (OPS) and cryoloop have been used for very rapid cooling and warming rates. The objective of this experiment was to compare efficacy of vitrification of embryos in OPS and the cryoloop to conventional slow cool procedures using 0.25 mL straws. Grade 1 or 2 morulae and early blastocysts (< or = 300 microm in diameter) were recovered from mares on Day 6 or 7 post ovulation. Twenty-seven embryos were assigned to three cryopreservation treatments: (1) conventional slow cooling (0.5 degrees C/min) with 1.8 M ethylene glycol (EG) and 0.1 M sucrose, (4) vitrification in OPS in 16.5% EG, 16.5% DMSO and 0.5 M sucrose, or (3) vitrification with a cryoloop in 17.5% EG, 17.5% DMSO, 1 M sucrose and 0.25 microM ficoll. Embryos were evaluated for size and morphological quality (Grade 1 to 4) before freezing, after thawing, and after culture for 20 h. In addition, propidium iodide (PI) and Hoechst 33342 staining were used to assess percent live cells after culture. There were no differences (P > 0.1) in morphological grade or percent live cells among methods. Mean grades for embryos after culture were 2.9 +/- 0.2, 3.1 +/- 0.1, and 3.3 +/- 0.2 for conventional slow cooling, OPS and cryoloop methods, respectively. Embryo grade and percent live cells were correlated, r = 0.66 (P < 0.004). Thus OPS and the cryoloop were similarly effective to conventional slow-cooling procedures for cryopreserving small equine embryos.  相似文献   

5.
Dattena M  Ptak G  Loi P  Cappai P 《Theriogenology》2000,53(8):1511-1519
Ovine blastocysts were produced by maturation, fertilization and in vitro culture (IVM/IVF/IVC) of oocytes from slaughtered adult and prepubertal ewes and collection from superovulated and inseminated adult animals. Dulbecco's PBS supplemented with 0.3 mM Na Pyruvate and 20% FCS was used as the basic cryopreservation solution. The embryos were exposed to the vitrification solution as follows: 10% glycerol (G) for 5 min, then 10% G +20% ethylene glycol (EG) for 5 min. Embryos were placed into 25% G + 25% EG in the center of 0.25- mL straws and plunged immediately into LN2. Warming was done by placing the straws into a water bath at 37 degrees C for 20 sec, and their contents were expelled into a 0.5 M sucrose solution for 3 min; the embryos were then transferred into 0.25 M and 0.125 M sucrose solution for 3 min each. Warmed blastocysts were transferred to the culture medium for 24 h. Survival was defined as the re-expansion of the blastocoele. All surviving blastocysts were transferred to synchronized recipient ewes, and the pregnancy was allowed to go to term. Of 68 vitrified in vitro produced blastocysts, 46 re-expanded (67.6%) and 10 lambs were born (14.7%). From the 62 in vivo derived and vitrified embryos, 52 re-expanded (83.8%) and 39 lambs were born (62.9%). The lambing rate of in vitro produced fresh transfer embryos was 40% (20 lambs/50 blastocysts transferred), and of the 32 in vivo derived blastocysts and transferred fresh, 26 lambs were born (81.2%). The results indicate that in vitro produced embryos can be successfully cryopreserved by vitrification.  相似文献   

6.
CY Yang  CY Pang  BZ Yang  RC Li  YQ Lu  XW Liang 《Theriogenology》2012,78(7):1437-1445
The objective of this study was to optimize cryopreservation conditions for buffalo in vitro produced (IVP) embryos. The in vitro fertilized (IVF) and somatic cell nuclear transferred (SCNT) blastocysts were vitrified with either 40% ethylene glycol (EG), 25% EG + 25% dimethylsulfoxide (DMSO), or 20% EG + 20% DMSO + 0.5 m sucrose, and the IVF blastocysts produced from abattoir-derived ovaries were also slow-frozen with either 10% EG or 0.05 m trehalose dehydrate + 1.8% EG + 0.4% BSA. Cryosurvival rates of blastocysts harvested on various days or at various developmental stages were also examined. In this study: (1) vitrification with 20% EG + 20% DMSO + 0.5 m sucrose had the best cryopreservation efficiency; (2) IVF and SCNT blastocysts had similar cryotolerance (P > 0.05); (3) after thawing, slow-frozen blastocysts reexpanded earlier than the vitrified blastocysts (P < 0.01); (4) cryosurvival rate of expanded blastocysts was higher than that of early blastocysts (P < 0.05); (5) cryosurvival rates of Days 5 to 7 blastocysts (Day 0 = day of IVF or SCNT) were higher than those of Days 8 to 9 blastocysts (P < 0.01); and (6) after embryo transfer, pregnancy rates for fresh and cryopreserved blastocysts were not different (P > 0.05). In conclusion, vitrification of Days 6 to 7 expanded blastocysts with 20% EG + 20% DMSO + 0.5 m sucrose was optimal for cryopreservation of buffalo IVP embryos.  相似文献   

7.
Rabbit zygotes at the pronuclear-stage were cryopreserved by vitrification using a gel-loading tip (GL-tip), Cryoloop or Cryotop. In GL-tip and Cryoloop methods, zygotes were first exposed to 10% ethylene glycol (EG)+10% DMSO in TCM199+20% fetal bovine serum (FBS) for 2 min, and then equilibrated for 30 s in a vitrification solution composed of 20% EG+20% DMSO+0.6 M sucrose in TCM199+20% FBS. In Cryotop method, zygotes were first exposed to 7.5% EG+7.5% DMSO+20% FBS in TCM199 for 3 min, and then equilibrated for 1 min in a vitrification solution composed of 15% EG+15% DMSO+0.5 M sucrose+20% FBS in TCM199. In vitro culture of vitrified-warmed zygotes using GL-tip and Cryoloop resulted in low cleavage rates (2 and 5%, respectively) and no development into blastocysts. In contrast, zygotes vitrified-warmed using Cryotop exhibited higher proportions of cleavage (58%) and development into blastocysts (24%). When compacted morulae or early blastocysts were vitrified by these three procedures, 80-93% of them exhibited blastocoele expansion or zona hatching during the subsequent 48 h of culture. Use of Cryotop instead of GL-tip or Cryoloop for zygote vitrification, without changing conditions of solutions and periods for exposure, equilibration and post-warm dilution, resulted in cleavage and blastocyst development rates of 88 and 45%, respectively. A longer exposure time (10 min) of zygotes to 7.5% EG+7.5% DMSO+20% FBS in TCM199 resulted in higher proportions of zygotes cleaving (94%) and developing into blastocysts (51%) after Cryotop vitrification. Proportions of post-warm zygotes (10-min exposure group) and fresh control zygotes developing into newborn offspring were 36 and 53%, respectively. Pronuclear-stage rabbit zygotes were successfully cryopreserved by vitrification using the Cryotop method.  相似文献   

8.
The study was designed to evaluate the efficiency of a modified (sealed) open pulled straw (mOPS) method for cryopreserving rabbit embryos by vitrification or rapid freezing. An additional objective was to determine whether the mOPS method could cause the vitrification of a cryoprotectant solution generally used in rapid freezing procedures. Two consecutive experiments of in vitro and in vivo viability were performed. In Experiment 1, the in vitro viability of rabbit embryos at the morula, compacted morula, early blastocyst and blastocyst stages was assessed after exposure to a mixture of 25% glycerol and 25% ethylene glycol (25GLY:25EG: vitrification solution) or 4.5 M (approximately 25% EG) ethylene glycol and 0.25 M sucrose (25EG:SUC: rapid freezing solution). Embryos were loaded into standard straws or mOPS and plunged directly into liquid nitrogen. The mOPS consisted of standard straws that were heat-pulled, leaving a wide opening for the cotton plug and a narrow one for loading embryos by capillarity. The embryos were aspirated into the mOPS in a column positioned between two columns of cryoprotectant solution separated by air bubbles. The mOPS were then sealed with polyvinyl-alcohol (PVA) sealing powder. The vitrification 25GLY:25EG solution became vitrified both in standard straws and mOPS, whereas the rapid freezing 25EG:SUC solution crystallized in standard straws, but vitrified in mOPS. The total number of embryos cryopreserved was 1695. Embryos cryopreserved after exposure to each solution in mOPS showed higher rates (88.2%) of survival immediately after thawing and removal of the cryoprotectant than those cryopreserved in 0.25 ml standard straws (78.8%; P < 0.0001). After culture, the developmental stage of the cryopreserved embryos significantly affected the rates of development to the expanded blastocyst stage. Regardless of the cryoprotectant used, lower rates of in vitro development were obtained when the embryos were cryopreserved at the morula stage, and higher rates achieved using embryos at blastocyst stages. Based on the results of Experiment 1, the second experiment was performed on blastocysts using the mOPS method. Experiment 2 was designed to evaluate the in vivo viability of cryopreserved rabbit blastocysts loaded into mOPS after exposure to 25GLY:25EG or 25EG:SUC. Embryos cryopreserved in mOPS and 25GLY:25EG solution gave rise to rates of live offspring (51.7%) not significantly different to those achieved using fresh embryos (58.5%). In conclusion, the modified (sealed) OPS method allows vitrification of the cryoprotectant solution at a lower concentration of cryoprotectants than that generally used in vitrification procedures. Rabbit blastocysts cryopreserved using a 25GLY:25EG solution in mOPS showed a similar rate of in vivo development after thawing to that shown by fresh embryos.  相似文献   

9.
Vitrification of in vitro cultured rabbit morulae   总被引:2,自引:0,他引:2  
In the present work, we attempt to establish an efficient vitrification procedure for 32-cell rabbit embryos obtained in vitro. In experiment 1, both the effect of the composition of the vitrification solutions and the cryoprotectant addition (either in one or two steps) were studied. For one-step addition, straws with embryos in the final vitrification solution (total time 60s) were plunged into liquid nitrogen. For two-step addition, previously embryos were 2 min pre-equilibrated in 0.5 ml of (1:1) PBS plus 20% FCS: vitrification solution without sucrose. Different solutions of cryoprotectants were compared: 25 vol.% ethylene glycol supplemented with 0.25 M sucrose (25EG+S) and 20% ethylene glycol plus 20% dimethyl sulfoxide, alone (20EG+20DMSO-S) or supplemented with 0.25 M sucrose (20EG+20DMSO+S). Six percent (30/487) of the total of 32-cell embryos obtained by in vitro culture in each experimental session was slow-frozen by a classical method as a technical efficiency control. Only 30% slow-frozen embryos reached blastocyst stage. Significant differences in embryo development were detected between the one-step (25EG+S) and two-step (25EG+S) groups and the one-step (20EG-20DMSO+S) and two-step (20EG-20DMSO-S) groups (0-6% versus 36-50%, respectively). Consequently, in the following experiments only these two vitrification procedures were used. In experiment 2, we attempted to substitute the use of PBS by HEPES-buffered Ham's F-10 (h-CM) in all cryoprotective solutions or media. When h-CM was used, a significant reduction in the in vitro embryo development was observed when the HEPES-buffered groups were compared with one-step (20EG-20DMSO+S) group in s-PBS (35-45% versus 73%). In experiment 3, the one-step (20EG+20DMSO+S) and two-step (20EG+20DMSO-S) procedures were assayed using two FCS levels (20 and 40%) in the PBS-based media. Relative to in vitro development, the highest rates were reached with one step (20EG-20DMSO+S), using PBS plus 20% FCS, which was different from two steps (20EG-20DMSO-S), regardless of percentage of FCS in the PBS-based media (81% versus 41-45%; P<0.05). In conclusion, we propose either the one step (20EG-20DMSO+S) or two steps (20EG-20DMSO-S) prepared in PBS plus 20% serum for use in future works.  相似文献   

10.
Little is known on the cryopreservation of mouse pronuclear (PN) stage embryos. In the present experiment the mouse 2-PN stage embryos were cryopreserved by conventional freezing, straw, or open-pulled straw (OPS) vitrificaiton methods. The conventional freezing solution was 1.5 mol/L ethylene glycol (EG), and vitrification solutions were EFS30 (30% EG, Ficoll, and sucrose), EFS40 (40% EG, Ficoll, and sucrose), EDFS30 (15% EG, 15%dimethyl sulfoxide [DMSO], Ficoll, and sucrose), or EDFS40 (20% EG, 20%DMSO, Ficoll, and sucrose). The blastocyst rate of 2-PN stage embryos cryopreserved by conventional method (30.4%) was lower than those vitrified by straw method with EDFS (56.9% to 69.1%), by OPS method (66.0% to 85.7%), and that of control (80.8%) (P < 0.05). With a given vitrificaiton solution EFS30, EFS40, EDFS30, or EDFS40, the blastocyst rate of embryos vitrified by the OPS method (66.7%, 66.0%, 85.7%, or 76.9%) was higher than that of those vitrified by the straw method (46.8%, 43.8%, 69.1%, or 56.9%) (P < 0.05). When mouse 2-PN-stage embryos were vitrified with EDFS30 by straw or OPS method, the highest blastocyst rate was achieved (69.1% or 85.7%) and was similar to that of the control, respectively. The embryos transfer results revealed that the full-term development of blastocysts derived from 2-PN stage embryos vitrified by OPS method with EDFS30 (19.9%) was similar to that of the control (23.5%), and higher than that of those cryopreserved by conventional freezing (9.3%) (P < 0.05). The present research demonstrates that the OPS method, especially with EDFS30, is more effective in cryopreserving mouse 2-PN embryos.  相似文献   

11.
Comparisons were made of the osmotic and cryoprotective effects on rabbit embryos preserved by vitrification with 2 solutions and by conventional freezing. Embryos obtained from rabbits killed 70 to 72 h after mating were used in the study (n = 948). Initially, toxicity of the 3 cryoprotectants was studied in fresh (unfrozen) embryos (n = 135). Subsequently, embryos placed in ethylene glycol (EG, 40% v/v; n = 88) and ethylene glycol with dimethyl sulfoxide (EG+DMSO, 20% v/v each, respectively; n = 344) were loaded into straws and plunged directly into liquid nitrogen. Embryos placed in 1.5 M DMSO and 20% heat inactivated rabbit serum were subjected to conventional freezing in a programmable freezer (control group, n = 363). The osmotic effect was estimated by measuring the changes in the embryonic and interzonal volume (crossectional area) and in the thickness of the mucin coat (n = 18). Cryoprotective effectivity was determined by development to the blastocyst stage in vitro, or birth of normal pups after transfer into synchronized recipients. Osmotic effects of cryoprotective solutions on embryonic and interzonal volume and mucin coat thickness were variable and overall not significant. Survival rate of cryopreserved embryos in vitro and development to blastocysts, was worst in the EG-treated embryos. Survival rate at birth was higher in vitrified vs frozen embryos. We conclude that rabbit morulae can be vitrified successfully in EG+DMSO medium.  相似文献   

12.
In this study, the cryoprotectant ethylene glycol (EG) was tested for its ability to improve and facilitate the cryopreservation of in vitro produced (IVP) bovine embryos. Embryos were cryopreserved in EG solutions supplemented with either newborn calf serum (NBCS) or polyvinyl alcohol (PVA). To assess EG toxicity, the embryos were equilibrated in EG concentrations from 1.8 to 8.9 M at room temperature for 10 min and then cultured for 72 h on a cumulus cell monolayer. The hatching rate was highest for day 7 blastocysts frozen in 3.6 M EG (98%) and was not different from the control group (85%). The controlled freezing (0.3 degrees C/min to -35 degrees C) of expanded day 7 blastocysts resulted in a hatching rate of 81%, which was similar to that of the nonfrozen controls (76%). Differential staining revealed only very few degenerate blastomeres attributed to freezing and thawing. Upon direct nonsurgical transfer of day 7 expanded blastocysts frozen in 3.6 M EG, a pregnancy rate of 43% was achieved, while the pregnancy rate after transfer of other developmental stages was significantly lower (22% with expanded day 8 blastocysts). When bovine IVP embryos were incubated at room temperature in 7.2 M EG preceded by preequilibration in 3.6 M EG, the hatching rate of day 7 expanded blastocysts reached 93%. Upon vitrification of IVP day 7 and day 8 blastocysts and expanded blastocysts in 7.2 M EG, the latter showed a higher hatching rate (42%) than blastocysts (12%). Overall, PVA as supplement to the basic freezing solution instead of NBCS had deleterious effects on survival after controlled freezing or vitrification. The simple cryopreservation protocol employed in this study and the low toxicity of ethylene glycol highlight the usefulness of this approach for controlled freezing of IVP embryos. However, further experiments are needed to improve the pregnancy rate following embryo transfer and to enhance survival after vitrification.  相似文献   

13.
Unhatched blastocysts from Large White hyperprolific gilts (n=103) were identified, measured and vitrified using the Open Pulled Straw (OPS) technique to evaluate the effects of the collected blastocyst size and cryoprotectant concentrations used for vitrification, and the number of embryos transferred per recipient. Vitrified/warmed blastocyst viability was estimated in vitro, as the percentage of embryos developing after 72h, and in vivo, on pregnancy Day 30. In the in vitro study, we compared the use of three cryoprotectant concentrations (16.5, 18, or 20% DMSO+16.5, 18, or 20% EG+0.4M sucrose). Survival rates differed significantly between the control (98.3%) and the three cryoprotectant concentrations (67, 62.3, and 57%, respectively). Blastocyst size at vitrification determined the further in vitro development of embryos (26% survival for blastocysts 126-144microm versus 100% for blastocysts >199microm). For the in vivo study, blastocysts were vitrified using cryoprotectant concentrations of 16.5 or 18% DMSO+EG and transferred surgically in groups of 20 or 30 per recipient (n=40). Recipients were slaughtered on pregnancy D30. No significant differences were detected in gestation rates (50-70%) and embryo survival rates (14.7-25%), although survival was higher (P=0.0003) when 20 blastocysts were transferred compared to 30 (24.7% versus 15.5%). Our findings indicate that best results, in terms of subsequent in vivo embryo survival, were achieved after transferring 20 embryos at the blastocyst or expanded blastocyst stage, previously vitrified using cryoprotectant concentrations of 16.5 or 18%.  相似文献   

14.
从20头供体母猪获得的291枚可用胚胎(囊胚/桑葚胚),采用二步法开放式拉长细管(OPS,openpulledstraw)玻璃化冷冻技术进行保存,即胚胎首先在冷冻液I(TCM199 20?S 10%EG 10%DMSO)中平衡3min,然后立即转入冷冻液II(TCM199 20?S 20%EG 20%DMSO 0.4mol/LSUC)中并在1min内装管,直接投入液氮保存;3个月后解冻移植给8头受体母猪,其中1头怀孕产仔(8头活仔),在我国首次获得猪胚胎超低温(-196℃)冷冻后代。  相似文献   

15.
The aim of the present investigation was to test the effectiveness of a method of vitrifying rat embryos at different stages of development (from early morula to expanding blastocyst) in a double vitrification procedure. Wistar rat embryos were vitrified and warmed in super-fine open-pulled straws (SOPS). Before being plunged into liquid nitrogen, the embryos were exposed to 40% ethylene glycol+0.75 M sucrose in TCM-199+20% fetal calf serum (FCS) for 20s at 38 degrees C. Subsequent warming and direct rehydration of the embryos was conducted in culture medium (TCM-199+20% FCS) at 38 degrees C. Early morula stage (7-10 blastomeres) embryos (n=358) were vitrified, warmed and cultured in vitro (EM group). Batches of these embryos were then cryopreserved again (revitrified) at the early blastocyst (EB group, n=87), blastocyst (B group, n=93) or expanding blastocyst stage (ExpB group, n=73). After the first (EM group) and repeated (EB, B, and ExpB groups) vitrification procedures, developmental rates of 81, 83, 34 and 76%, respectively were achieved (for EM-EB-ExpB P>0.1; for EM, EB, ExpB-B P<0.005). Our data demonstrate the possibility of using the described identical protocol for the SOPS vitrification of rat early morulae, early blastocysts and expanding blastocysts. The low survival rate of blastocysts subjected to double vitrification requires further investigation.  相似文献   

16.
The present study was undertaken to determine whether the source of oocytes (ovum pick up versus slaughterhouse ovaries) affected in vitro embryo production and embryo survival (as measured by blastocyst hatching rates) following vitrification in buffaloes (Bubalus bubalis). Oocytes recovered from live buffaloes (n=6) by ovum pick up (OPU) and by manual aspiration from slaughterhouse ovaries were in vitro matured, fertilized and cultured to blastocyst stage under same culture conditions. Vitrification of blastocysts was carried out in two steps at 24 degrees C. Embryos were equilibrated in 10% EG+10% DMSO+0.3 M sucrose in base medium for 4 min. Subsequently, the embryos were transferred into 25% EG+25% DMSO+0.3 M sucrose in base medium for 45 s and then the embryos were loaded into straws and immersed in liquid nitrogen. Following warming, blastocysts were cultured in vitro for 48 h to assess hatching. Oocytes derived from live animals by OPU resulted in a significantly higher blastocyst yield then those derived from slaughterhouse ovaries (30.6+/-4.3 versus 18.5+/-1.8). Blastocyst hatching rates following vitrification of buffalo embryos produced from the oocytes collected from live animals by OPU was significantly higher than the oocytes collected from slaughterhouse ovaries (52.8+/-4.2 versus 40.2+/-4.4). In conclusion, the present study showed that source of oocytes (OPU versus slaughterhouse ovaries) affects the in vitro embryo development and blastocyst hatching rates following vitrification of embryos in buffaloes.  相似文献   

17.
Summary In vitro-grown apical meristems of wasabi (Wasabia japonica Matsumura) were successfully cryopreserved by vitrification. Excised apical meristems precultured on solidified M S medium containing 0.3M sucrose at 20°C for 1 day were loaded with a mixture of 2M glycerol and 0.4M sucrose for 20 min at 25°C. Cryoprotected meristems were then sufficiently dehydrated with a highly concentrated vitrification solution (designated PVS2) for 10 min at 25°C prior to a plunge into liquid nitrogen. After rapid warming, the meristems were expelled into 2 ml of 1.2M sucrose for 20 min and then plated on solidified culture medium. Successfully vitrified and warmed meristems remained green after plating, resumed growth within 3 days, and directly developed shoots within two weeks. The average rate of normal shoot formation amounted to about 80 to 90% in the cryopreserved meristems. This method was successfully applied to three other cultivars of wasabi. This vitrification procedure promises to become a routine method for cryopreserving meristems of wasabi.Abbreviations BA 6-benzylaminopurine - DMSO dimethylsulfoxide - EG ethylene glycol - LN liquid nitrogen - MS medium Murashige and Skoog medium (1962) - PVS2 vitrification solution  相似文献   

18.
Little is known on the cryopreservation of mouse pronuclear (PN) stage embryos. In the present experiment the mouse 2-PN stage embryos were cryopreserved by conventional freezing, straw, or open-pulled straw (OPS) vitrificaiton methods. The conventional freezing solution was 1.5 mol/L ethylene glycol (EG), and vitrification solutions were EFS30 (30% EG, Ficoll, and sucrose), EFS40 (40% EG, Ficoll, and sucrose), EDFS30 (15% EG, 15%dimethyl sulfoxide [DMSO], Ficoll, and sucrose), or EDFS40 (20% EG, 20%DMSO, Ficoll, and sucrose). The blastocyst rate of 2-PN stage embryos cryopreserved by conventional method (30.4%) was lower than those vitrified by straw method with EDFS (56.9% to 69.1%), by OPS method (66.0% to 85.7%), and that of control (80.8%) (P < 0.05). With a given vitrificaiton solution EFS30, EFS40, EDFS30, or EDFS40, the blastocyst rate of embryos vitrified by the OPS method (66.7%, 66.0%, 85.7%, or 76.9%) was higher than that of those vitrified by the straw method (46.8%, 43.8%, 69.1%, or 56.9%) (P < 0.05). When mouse 2-PN-stage embryos were vitrified with EDFS30 by straw or OPS method, the highest blastocyst rate was achieved (69.1% or 85.7%) and was similar to that of the control, respectively. The embryos transfer results revealed that the full-term development of blastocysts derived from 2-PN stage embryos vitrified by OPS method with EDFS30 (19.9%) was similar to that of the control (23.5%), and higher than that of those cryopreserved by conventional freezing (9.3%) (P < 0.05). The present research demonstrates that the OPS method, especially with EDFS30, is more effective in cryopreserving mouse 2-PN embryos.  相似文献   

19.
Piglets born after vitrification of embryos using the open pulled straw method   总被引:13,自引:0,他引:13  
Morulae and unhatched blastocysts from Large White hyperprolific (LWh) and Meishan (MS) gilts were selected to test an ultrarapid open pulled straw (OPS) vitrification method with two media. The viability of vitrified/warmed embryos was estimated by the percentage of embryos that developed to the hatched blastocyst stage in vitro or by birth after transfer. In Experiment 1, two cryoprotectant dilution media were compared for cryopreservation of MS and LWh blastocysts: TCM was a standard Hepes-buffered TCM199 + 20% NBCS medium and PBS was a PBS + 20% NBCS medium. After a two-step equilibration in ethylene glycol, dimethyl sulfoxide, and sucrose, 2-5 blastocysts were loaded into OPS and plunged into liquid nitrogen. Embryos were warmed; a four-step dilution with decreasing concentrations of sucrose was applied. In PBS, LWh blastocysts (27%) had a lower viability in vitro than MS blastocysts (67%; P = 0.001). In TCM, no significant difference was observed between genotypes (41% for LWh and 43% for MS blastocysts) and both viability rates were lower than that of the control groups. In Experiment 2, morula-stage LWh and MS embryos were vitrified and warmed using PBS. The viability rate was low and did not differ between LWh (11%) and MS (14%). In Experiment 3, 200 MS and 200 LWh blastocysts were vitrified/warmed as described in Experiment 1 (PBS). In each of 20 MS recipients, 20 embryos were transferred. The farrowing rate was 55% and recipients farrowed four and five piglets (median) for MS and LWh blastocysts, respectively. The OPS method is therefore appropriate for cryopreservation of unhatched porcine blastocysts.  相似文献   

20.
This study was performed to pursue the optimal condition for the cryopreservation of mouse morulae by a two-step OPS method and to investigate the feasibility of the optimal condition for vitrification of embryos at other developmental stages. First, the mouse morulae were vitrified in OPS using one-step procedure-that is, embryos were vitrified after direct exposure to EDFS30 (15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll and sucrose), or two-step method-that is, embryos were first pretreated in 10%E + 10%D (10% EG and 10% DMSO in mPBS) for 30 sec, then exposed to EDFS30 for 15 to 60 sec, respectively. After vitrification and warming, the embryos were morphologically evaluated and assessed by their development to blastocysts, expanded/hatched blastocysts, or to term after transfer. The result showed that all the vitrified-warmed morulae had similar blastocyst rate compared to that of control (91.7% vs. 100%), and the highest developmental rate to expanded blastocysts (100%) or hatched blastocysts (62.3%) was observed when the morulae were pretreated with 10%E + 10%D for 0.5 min, exposed to EDFS30for 25 sec before vitrification and warming in 0.5 M sucrose for 5 min. After transfer, the survival rate (33.1%) in vivo of the vitrified morulae was higher (P > 0.05) than that of the fresh embryos (24.6%). Secondly, embryos at different stages were cryopreserved and thawed following the above program. Most (93.4 to 100%) of the embryos recovered after vitrification were morphologically normal at all the developmental stages. The blastocyst rates of the vitrified one-cell (52.5 to 66.7%) and the two-cell (63.3 to 68.9%) embryos were lower (P < 0.05) than those of the vitrified four-cell embryos (81.7 to 86.4%), the eight-cell embryos (90.0 to 93.3%), morulae (96.7 to 100%), and the expanded blastocysts rate (98.3 to 100.0%) of the vitrified early blastocysts. The highest survival rate in vivo of vitrified embryos were from the early blastocysts (40.4%), which was similar to that of fresh embryos (48.6%). The data demonstrate that the optimal protocol for the cryopreservation of morulae was suitable for the four-cell embryos to early blastocyst stages and that the early blastocyst stage is the most feasible stage for mouse embryo cryopreservation under our experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号