首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recently described MB-02 human cell line requires Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) for continuous growth and terminally differentiates into enucleate, hemoglobinized cells in response to erythropoietin. Here, analysis of globin production now demonstrates that uninduced MB-02 cells produce alpha globin and the fetal globin chains G gamma and A gamma in a ratio of 1:3. Addition of erythropoietin results in de novo synthesis of beta globin chains and a marked increase in total Hb/cell. Thus, the MB-02 cell line partially recapitulates the fetal to adult globin switch that occurs during erythroid and human fetal development and provides a new clonal human erythroid progenitor system for investigating the biochemical and molecular events involved in globin gene switching.  相似文献   

2.
The fusion of human fetal erythroid (HFE) cells with mouse erythroleukemia (MEL) cells produces stable synkaryons (HFE x MEL) which can be monitored for extended periods of time in culture. Initially these hybrids express a human fetal globin program (gamma >> beta), but after weeks or months in culture, they switch to an adult pattern of globin expression (beta >> gamma). The rate at which hybrids switch to the adult phenotype is roughly dependent on the gestational age of the fetal erythroid cells used in the fusion, suggesting that the rate of switching in vitro may be determined by a developmental clock type of mechanism, possibly involving the cumulative number of divisions experienced by the human fetal cells. To investigate whether the number or rate of cell divisions postfusion can influence the rate of switching, we monitored the rate of switching in hybrids from independent fusions under growth-promoting (serum-replete) and growth-suppressing (serum-deprived) conditions. We found that hybrids grown under serum-deprived or serumless conditions switched more rapidly to adult globin expression than did their counterparts in serum-replete conditions. Neither the number of cumulative cell divisions nor time in culture per se predicted the rate of switching in vitro. Our data suggest that factors present in serum either retard switching of hybrids by their presence or promote switching by their absence, indicating that globin switching in vitro can be modulated by the environment; however, once switching in HFE x MEL hybrids is complete, serum factors cannot reverse this process.  相似文献   

3.
The developmental regulation of the human globin genes involves a key switch from fetal (gamma-) to adult (beta-) globin gene expression. It is possible to study the mechanism of this switch by expressing the human globin genes in transgenic mice. Previous work has shown that high-level expression of the human globin genes in transgenic mice requires the presence of the locus control region (LCR) upstream of the genes in the beta-globin locus. High-level, correct developmental regulation of beta-globin gene expression in transgenic mice has previously been accomplished only in 30- to 40-kb genomic constructs containing the LCR and multiple genes from the locus. This suggests that either competition for LCR sequences by other globin genes or the presence of intergenic sequences from the beta-globin locus is required to silence the beta-globin gene in embryonic life. The results presented here clearly show that the presence of the gamma-globin gene (3.3 kb) alone is sufficient to down-regulate the beta-globin gene in embryonic transgenic mice made with an LCR-gamma-beta-globin mini construct. The results also show that the gamma-globin gene is down-regulated in adult mice from most transgenic lines made with LCR-gamma-globin constructs not including the beta-globin gene, i.e., that the gamma-globin gene can be autonomously regulated. Evidence presented here suggests that a region 3' of the gamma-globin gene may be important for down-regulation in the adult. The 5'HS2 gamma en beta construct described is a suitable model for further study of the mechanism of human gamma- to beta-globin gene switching in transgenic mice.  相似文献   

4.
5.
6.
7.
8.
To investigate the control of the gamma-globin gene during development, we produced transgenic mice in which sequences of the beta-gene promoter were replaced by equivalent sequences of the gamma-gene promoter in the context of a human beta-globin locus yeast artificial chromosome (betaYAC) and analyzed the effects on globin gene expression during development. Replacement of 1,077 nucleotides (nt) of the beta-gene promoter by 1,359 nt of the gamma promoter resulted in striking inhibition of the gamma-promoter/beta-gene expression in the adult stage of development, providing direct evidence that the expression of the gamma gene in the adult is mainly controlled by autonomous silencing. Measurements of the expression of the gamma promoter/beta-globin gene as well as the wild gamma genes showed that gene competition is also involved in the control of gamma-gene expression in the fetal stage of development. We conclude that autonomous silencing is the main mechanism controlling gamma-gene expression in the adult, while autonomous silencing as well as competition between gamma and beta genes contributes to the control of gamma to beta switching during fetal development.  相似文献   

9.
The analysis of nondeletion forms of hereditary persistence of fetal hemoglobin (ndHPFH) has led to the identification of cis-acting elements, located in the promoter regions of the fetal genes, that appear to be involved in the process of fetal to adult hemoglobin switching. Individuals with these disorders demonstrate elevated levels of fetal hemoglobin and lowered levels of adult hemoglobin during adult life. This phenotype could be either the result of an abnormality in the switching process or the result of two independent mutations: one mutation increasing the level of fetal (gamma) gene expression and another mutation decreasing the level of adult (beta) globin gene expression. Here we demonstrate that the adult beta genes linked to two different forms of ndHPFH, G gamma beta + HPFH and Greek ndHPFH, produce normal levels of correctly processed mRNA in transient-expression systems. We also report that the nucleotide sequences of the beta genes are normal. These results indicate that these gamma gene promoter mutations are linked to functionally normal beta-globin genes and are consistent with the hypothesis that these mutations interfere with the normal switching process.  相似文献   

10.
Elevated levels of fetal γ-globin can cure disorders caused by mutations in the adult β-globin gene. This clinical finding has motivated studies to improve our understanding of hemoglobin switching. Unlike humans, mice do not express a distinct fetal globin. Transgenic mice that contain the human β-globin locus complete their fetal-to-adult hemoglobin switch prior to birth, with human γ-globin predominantly restricted to primitive erythroid cells. We established humanized (100% human hemoglobin) knock-in mice that demonstrate a distinct fetal hemoglobin (HbF) stage, where γ-globin is the dominant globin chain produced during mid- to late gestation. Human γ- and β-globin gene competition is evident around the time of birth, and γ-globin chain production diminishes in postnatal life, with transient production of HbF reticulocytes. Following completion of the γ- to-β-globin switch, adult erythroid cells synthesize low levels of HbF. We conclude that the knock-in globin genes are expressed in a pattern strikingly similar to that in human development, most notably with postnatal resolution of the fetal-to-adult hemoglobin switch. Our findings are consistent with the importance of BCL11A in hemoglobin switching, since removal of intergenic binding sites for BCL11A results in human γ-globin expression in mouse definitive erythroid cells.  相似文献   

11.
The expression of epsilon- and gamma-globin mRNA and protein has been determined in three Old World monkey species (Macaca mulatta, Macaca nemestrina, and Cercopithecus aethiops). Using RT-PCR with primers for epsilon- and gamma-globin, both mRNAs were detected in early fetal stages, whereas at 128 days (85% of full term), only gamma was expressed. High-performance liquid chromatography was used for separation and quantitation, and matrix-assisted laser desorption/ionization mass spectrometry was used for identification of globin polypeptides. An alpha-globin polymorphism was observed in all of the species examined. During fetal life, gamma-globin was the predominant expressed beta-type globin. The red blood cells of infants still contained substantial amounts of gamma-globin, which declined to negligible levels in 14 weeks as beta-globin expression reached adult values. The ratio of gamma1- to gamma2-globins (equivalent to Ggamma/Agamma in humans) was approximately 2.5, similar to the Ggamma/Agamma ratio observed in humans. Thus, gamma-globin gene expression in these Old World monkeys species has three features in common with human expression: expression of both duplicated gamma genes, the relative preponderance of gamma1 over gamma2 expression, and the delay of the switch from gamma- to beta-globin until the perinatal period. Thus, the catarrhines seem to share a common pattern of developmental switching in the beta-globin gene cluster, which is distinct from the timing of expression in either prosimians or the New World monkeys. Our results indicate that an Old World monkey, such as Rhesus, could serve as a model organism (resembling humans) for experimentally investigating globin gene expression patterns during the embryonic, fetal, and postnatal stages.  相似文献   

12.
An enhancer element lies 3'' to the human A gamma globin gene.   总被引:29,自引:1,他引:28       下载免费PDF全文
D M Bodine  T J Ley 《The EMBO journal》1987,6(10):2997-3004
  相似文献   

13.
We have analyzed the expression of human gamma-globin genes during development in F2 progeny of transgenic mice carrying two types of constructs. In the first type, gamma-globin genes were linked individually to large (approximately 4-kb) sequence fragments spanning locus control region (LCR) hypersensitive site 2 (HS2) or HS3. These LCR fragments contained not only the core HS elements but also extensive evolutionarily conserved flanking sequences. The second type of construct contained tandem gamma- and beta-globin genes linked to identical HS2 or HS3 fragments. We show that gamma-globin expression in transgenic mice carrying HS2 gamma or HS3 gamma constructs is highly sensitive to position effects and that such effects override the cis regulatory elements present in these constructs to produce markedly different developmental patterns of gamma-globin expression in lines carrying the same transgene. In contrast, gamma-globin expression in both HS2 gamma beta and HS3 gamma beta mice is sheltered from position effects and the developmental patterns of gamma-globin expression in lines carrying the same transgene are identical and display stage-specific regulation. The results suggest that cis regulatory sequences required for proper developmental control of fetal globin expression in the presence of an LCR element reside downstream from the gamma genes.  相似文献   

14.
15.
16.
17.
The human G gamma-globin and beta-globin genes are expressed in erythroid cells at different stages of human development, and previous studies have shown that the two cloned genes are also expressed in a differential stage-specific manner in transgenic mice. The G gamma-globin gene is expressed only in murine embryonic erythroid cells, while the beta-globin gene is active only at the fetal and adult stages. In this study, we analyzed transgenic mice carrying a series of hybrid genes in which different upstream, intragenic, or downstream sequences were contributed by the beta-globin or G gamma-globin gene. We found that hybrid 5'G gamma/3'beta globin genes containing G gamma-globin sequences upstream from the initiation codon were expressed in embryonic erythroid cells at levels similar to those of an intact G gamma-globin transgene. In contrast, beta-globin upstream sequences were insufficient for expression of 5'beta/3'G gamma hybrid globin genes or a beta-globin-metallothionein fusion gene in adult erythroid cells. However, beta-globin downstream sequences, including 212 base pairs of exon III and 1,900 base pairs of 3'-flanking DNA, were able to activate a 5'G gamma/3'beta hybrid globin gene in fetal and adult erythroid cells. These experiments suggest that positive regulatory elements upstream from the G gamma-globin and downstream from the beta-globin gene are involved in the differential expression of the two genes during development.  相似文献   

18.
19.
We have analyzed the expression of endogenous murine genes and of transfected human fetal A gamma globin gene in GM 979, a mouse erythroleukemia line which produces adult as well as embryonic globins. Optimal induction of the endogenous murine adult globin genes was obtained with DMSO or HMBA while the epsilon y and beta h1 embryonic genes were preferentially induced by butyrate. Similarly, the transferred human A gamma-globin gene was preferentially induced by butyrate. These results as well as previous observations in vivo or in erythroid cell cultures suggest that butyrate preferentially induces the expression of fetal globin genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号