首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The stigma of Brassica species contain NS-glycoproteins thatexhibit a high degree of structural homology to the S-glycoproteinsof self-incompatibility. Inheritance of and variations in theNS-glycoprotein were studied with reference to self-incompatibility.The detection of NS-glycoproteins was performed by cross-reactionwith an antiserum raised against a purified NS-glycoprotein.In B. campestris, four isoforms of the NS-glycoprotein weredifferentiated by their pI values, but their molecular weightswere identical to one another. The genes for these isoformsof NS-glycoprotein were controlled by alleles at a single locus,tentatively named the NS allele, which was independent of Salleles at both the protein and the DNA level. Segregation ofF2 plants with respect to the self-incompatibility behaviorof pollen tubes can be explained by the S allele model, butit appears not to be affected by the NS alleles. NS-glycoproteinswere found in all 21 species of Brassica and its allies examinedto date. The pI values of these glycoproteins varied among differentspecies. In addition to the isoforms of the NS alleles, maturestigmas contained other groups of proteins that reacted weaklywith the antiserum against the NS-glycoprotein. (Received July 30, 1991; Accepted February 21, 1992)  相似文献   

2.
Experiments were carried out to investigate the long-term influenceof humidity on the short-term responses of stomata and CO2 assimilationto vapor pressure difference in Oryza sativa (rice, C3 species)and Panicum maximum (green panic, C4 species). Plants were grownfor four weeks in growth chambers set at 35% and 85% relativehumidity at 25C air temperature, 38+2 Pa CO2 partial pressureand 1,700µmol m-2s-1 photon flux density. Soil was saturatedwith water in both humidity treatments. Low humidity pretreatmentscaused low leaf conductance and low rates of transpiration andCO2 assimilation in O. sativa, but small changes in stomatalresponses to humidity and in CO2 assimilation were found inP. maximum. From the short-term gas exchange experiments, itwas noted that the responsiveness of leaf conductance to vaporpressure difference were affected by humidity pretreatmentsin O. sativa, whereas unaffected in P. maximum. In O. sativameasurements of CO2 assimilation as a function of internal CO2partial pressure (A-Ci curve) indicated that low humidity pretreatmentsreduced the CO2 assimilation at high internal CO2 partial pressure,but the initial slope of the A-Ci curve was unaffected. Furthermore,plant characteristics such as total dry weight and leaf areaof plants subjected to low umidity were lower than plants subjectedto high humidity. The reductions in O. sativa, however, werelarger than in P. maximum. Stomatal frequency from low humiditygrown plant was higher than that from high humidity grown plantsin both species although there is no significant difference.The data indicated that if the short term inhibition of netCO2 assimilation at a high vapor pressure difference was imposedduring vegetative growth, the photosynthetic biochemistry andthe resultant plant growth were largely depressed in O. sativa,a C3 species. (Received May 26, 1992; Accepted November 2, 1992)  相似文献   

3.
Healthy pea plants contain a substance, tentatively called "endogenoussuppressor", which specifically suppresses the accumulationof pisatin in pea plants that is induced by treatment with CuCl2or an elicitor from Mycosphaerella pinodes. This suppressorelicits the accumulation of phytoalexins in other legumes, suchas kidney bean, soybean and cowpea. The endogenous suppressorfunctions to delay the accumulation of pisatin, the activationof phenylalanine ammonialyase (PAL) and the accumulation ofmRNAs for PAL and chalcone synthase induced by the elicitorfrom M. pinodes. The substance specifically induces susceptibilityto nonpathogens, such as Mycosphaerella ligulicola and M. melonis,in pea out of four species of legume tested, but the effectis not cultivar-specific. Thus, the endogenous suppressor inhealthy pea plants suppresses a series of self-defense reactionsand induces susceptibility in pea plants in a species-specificmanner, being similar to the exogenous fungal suppressor fromthe pea pathogen, M.pinodes. (Received February 19, 1992; Accepted May 11, 1992)  相似文献   

4.
The photoactive reaction center (RC) complex from the greensulfur bacterium Chlorobium limicola f. thiosulfatophilum, strainLarsen, was isolated after solubilization and ammonium sulfatefractionation followed by ion-exchange chromatography. The spectrumof the complex was almost identical with that of the similarRC complex isolated by Feiler et al. [(1992) Biochemistry 31:2608–2614] except for the presence of cytochrome c551instead of c553 in the latter study. A molecular ratio of BChla to P840 of the isolated RC complex was assayed to be 25–35.SDSPAGE analysis revealed that the isolated complex containedthree major polypeptides with apparent molecular masses of 68,41 and 21 kDa, respectively. The 21-kDa polypeptide was identifiedto be a heme-binding protein by staining the gel for peroxidaseactivity. The cytochrome c551 was oxidized by flash light ina biphasic manner with half times of 90 and 390 µs, respectively,that coincided with the reduction half times of P840+. Threedistinct iron-sulfur centers assigned to FA, FB and Fx, respectively,from their g-values were detected by EPR spectroscopy at cryogenictemperature. These results suggest that the present preparationcontains a minimal functional unit of the RC of this bacterium,and that this complex appears to lie on a evolutionary linebetween RC's of purple bacteria and photosystem I. (Received August 18, 1992; Accepted October 28, 1992)  相似文献   

5.
We have previously shown that inorganic orthophosphate (Pi)uptake by Catharanthus roseus cells proceeds by a proton/Picotransport mechanism [Sakano (1990) Plant Physiol. 93: 479]that acidifies the cytoplasm [Sakano et al. (1992) Plant Physiol.99: 672]. In the present study, we analyzed changes in the contentof endogenous organic acids, carbon dioxide evolution, and oxygenconsumption upon Pi application. The results are consistentwith the operation of the biochemical pH-stat mechanism [Davies(1986) Physiol. Plant. 67: 702] during and after Pi uptake. (Received November 13, 1997; Accepted March 30, 1998)  相似文献   

6.
The expolinear equation for crop growth (Goudriaan and MonteithAnnalsof Botany66: 695–701, 1990) was fitted to measurementsof above ground dry weight made on two cultivars of each ofthree species, faba bean (Vicia fabaL.), peas (Pisum sativumL.)and lentils (Lens culinarsMedic.), each grown at three densitiesat the University of Reading, UK in 1992 and 1993. The expolinearequation fitted the data well but required frequent samplingto obtain good estimates of the parameters. The equation hasthree parameters,Rmthe maximum relative growth rate,Cma maximumcrop growth rate, andtbthe time at which the crop effectivelyreaches a linear phase of growth.Rmdid not differ between densities,cultivars or species but differed between years.Cmincreasedwith increased density and was lower for lentils than for fababeans or peas.tbdecreased with increased density for faba beanbut not for the other species. Incorporating an extinction coefficientfor solar radiation and the maximum fraction of radiation interceptedenabled reasonably accurate time courses of leaf area indexto be derived, as suggested by Goudriaan (1994. In: MontiethJL, Scott RK, Unsworth MH, eds.Resource capture by crops. Nottingham:Nottingham University Press, 99–110).Copyright 1998 Annalsof Botany Company Expolinear equation, grain legumes, crop growth rate, crop density, relative growth rate, growth modelling, faba bean,Vicia fabaL., peas,Pisum sativumL., lentils,Lens culinarsMedic.  相似文献   

7.
Sediment CO2, entering via the roots, contributes a significantportion of the total carbon uptake for isoetids (small, evergreen,submersed, vascular plants). Laboratory studies of inorganiccarbon uptake via the roots and shoots by five isoetids wereused to model the use of root-zone CO2. Simple first-order linearmodels accounted for at least 75 per cent of the variation inthe data for Gratiola aurea, Isoetes macrospora, Littorellauniflora and Lobelia dortmanna. For Eriocaulon septangulare,which relies almost exclusively on root-zone CO2, models couldaccount for only about 62 per cent of the variation in root-zoneCO2 use. For each species, we present the best fitting regressionof root-zone CO2 use as a function of root- and shoot-zone CO2concentrations. For the species studied, carbon uptake was not saturated atfield concentrations of root and shoot-zone CO2. Maximum ratesof carbon uptake were lower for species that naturally occurredat greater depths, compared with species more common in shallowwater. At equal external CO2 concentrations carbon entry perunit root surface area was several times more rapid than entryper unit shoot surface area for L. dortmanna. The entry ratesper unit root and shoot surface area were about equal for G.aurea and E. septangulare. Shoots were equally or more permeablethan the roots of L. uniflora and I. macrospora, a fact thatmay be related to the functioning of crassulacean acid metabolismin these plants. Carbon, CO2, photosynthesis, isoetid, Eriocaulon septangulare, Gratiola aurea, Isoetes macrospora, Littorella uniflora, Lobelia dortmanna  相似文献   

8.
Using open-top chambers, four prominent species (Lolium perenne,Cynosurus cristatus, Holcus lanatusandAgrostis capillaris) ofIrish neutral grasslands were grown at ambient and elevated(700 µmol mol-1) atmospheric CO2for a period of 8 months.The effects of interspecific competition on plant responsesto CO2enrichment were investigated by growing the species ina four-species mixture. The results indicate that the speciesdiffer in their ability to respond to elevated CO2. CO2-enrichmenthad the largest effect on the biomass production ofH. lanatus,but substantial stimulations in biomass production were alsofound for the other three species. The CO2-stimulation of biomassproduction forH. lanatuswas accompanied by increased tillering.In addition, reductions in specific leaf area were found forall species. Exposure to elevated CO2increased the communitybiomass of the four-species mixture. This increase can be mainlyattributed to a significant increase in the biomass ofH. lanatusatelevated CO2. No statistically-significant changes in speciescomposition of community biomass were found. However,H. lanatusdidincrease its share of community biomass at each of the harvests,with the other three species, mainlyL. perenne, suffering lossesin their shares at elevated CO2. The results show that: (1)the species varied in their response to elevated CO2; and (2)species composition in natural plant communities is likely tochange at elevated CO2, but these changes may occur rather slowly.Much longer periods of exposure to elevated atmospheric CO2maybe required to permit detection of significant changes in speciescomposition.Copyright 1998 Annals of Botany Company Carbon dioxide (CO2) enrichment, competition, Lolium perenne,Cynosurus cristatus, Holcus lanatus, Agrostis capillaris, biomass, specific leaf area, tillering.  相似文献   

9.
The capacity for C4 photosynthesis in Panicum milioides, a specieshaving reduced levels of photorespiration, was investigatedby examining the activity of certain key enzymes of the C4 pathwayand by pulse-chase experiments with 14CO2. The ATP$P1 dependentactivity of pyruvate,P1 dikinase in the species was extremelylow (0.14–0.18 µmol mg chlorophyll–1 min–1).Low activity of the enzyme was also found in Panicum decipiensand Panicum hians (related species with reduced photorespiration)and in Panicum laxum (a C3 species). The antibody to pyruvate,P1dikinase caused about 70% inhibition of the ATP$P1 dependentactivity of the enzyme in P. milioides. The activity of NAD-malicenzyme and NADP-malic enzyme in P. milioides was equally low(approximately 0.1–0.2 µmol mg chlorophyll–1min–1) and similar to the activity in P. decipiens, P.hians and P. laxum. Photosynthetic pulse-chase experiments underatmospheric conditions showed a typical C3-like pattern of carbonassimilation including the labelling of glycine and serine asexpected during photorespiration. During the pulse with 14CO2only about 1% of the labelled products appeared in malate and2–3% in aspartate. During a chase in atmospheric levelsof CO2 for up to 6 min there was a slight increase in labellingin the C4 acids. The amount of label in carbon 4 of aspartatedid not change during the chase, indicating little or no turnoverof the C4 acid via decarboxylation. The results indicate thatunder atmospheric conditions P. milioides assimilates carbondirectly through the C3 pathway. Photorespiration as indicatedby the CO2 compensation point may be repressed in the speciesby a more efficient recycling of photorespired CO2. (Received June 8, 1982; Accepted July 22, 1982)  相似文献   

10.
The kinetic properties of phosphoenolpyruvate (PEP) carboxylasehave been studied among several Flaveria species: the C3 speciesF. cronquistii, the C3–C4 species F. pubescens and F.linearis, and the C4 species F. trinervia. At either pH 7 or8, the maximum activities (in µmol.mg Chl–1.h–1)for F. pubescens and linearis (187–513) were intermediateto those of the C3 species (12–19) and the C4 species(2,182–2,627). The response curves of velocity versusPEP concentration were hyperbolic for the C3 and C3–C4species at either pH 7 or 8 while they were sigmoidal for theC4 species at pH 7 and hyperbolic at pH 8. The Km values forPEP determined from reciprocal plots were lowest in the C3 species,and of intermediate value in the C3–C4 species comparedto the K' values of the C4 species determined from Hill plotsat either pH 7 or 8. Glucose-6-phosphate (G6P) decreased theKm values for PEP at both pH 7 and 8 in the C3 and C3–C4species. In the C4 species, G6P decreased the K' values at pH8 but increased the K' values at pH 7. In all cases, G6P hadits effect by influencing the activity at limiting PEP concentrationswith little or no effect on the maximum activity. At pH 8 andlimiting concentrations of PEP the degree of stimulation ofthe activity by G6P was greatest in the C4 species, intermediatein F. linearis, a C3–C4 species, and lowest in the C3species. In several respects, the PEP carboxylases of the C3–C4Flaveria species have properties intermediate to those of theC3 and C4 species. (Received April 30, 1983; Accepted August 22, 1983)  相似文献   

11.
Stomatal Responses to Sulphur Dioxide and Vapour Pressure Deficit   总被引:5,自引:0,他引:5  
Stomatal conductances (gs) of plants of Vicia faba, Raphanussativus, Phaseolus vulgaris, Heilanthus annuus, and Nicotianatabacum were measured in chambers containing either clean airor air containing between 18 and 1000 parts 10–9 SO2 atwater vapour pressure deficits (vpd) ranging from 1·0to 1·8 kPa. When vpd was low (<1·3 kPa at 22 °C) and stomatawere open, exposure to SO2 induced rapid and irreversible increasesin gs in V. faba. This response persisted throughout the exposure(3 d). The increase in gs, 20–30% compared with cleanair, was independent of SO2 concentration up to 350 parts 10–9Stomatal conductances of polluted plants at night were greaterthan controls. When stomata were closed before exposure to SO2,there was no effect on gs. When vpd was varied, gs of unpolluted plants of P. vulgarisshowed no response, but that of R. sativus increased slightlywith increasing vpd. In both species exposure to SO2 causedan increase in gs at all vpd values. gs of unpolluted plantsof V. faba, H. annuus, and N. tabacum decreased with increasingvpd. At low vpd values exposure to SO2 in these species causedan increase in gs, but, above a certain value of vpd, dependingon species, gs decreased with exposure to SO2. It is postulated that SO2, once in the substomatal cavity, entersthe stomatal complex via adjacent epidermal cells and at lowconcentrations leads to a reduction in turgor in these cellsand consequently to stomatal opening. In vpd-sensitive species,increased transpiration from guard cells or epidermal cellsadjacent to the stomata induced by SO2 may lead to stomatalclosure at large vpd levels. Stomatal sensitivity to vpd insuch cases may be enhanced because adjacent epidermal cell turgoris lowered by SO2. At high SO2 concentrations direct disruptionof guard cell structure may lead to a loss of turgor and stomatalclosure.  相似文献   

12.
The relative requirement of N and P (the optimum N:P ratio)by Dunaliella tertiolecta, Phaeodactylum tricornutum, Prymnesiumparvum and Thalassiosira pseudonana was studied under variouslight intensities and spectra. The ratio was determined as theratio of the minimum cell N and P concentrations (q0N and q0pwhen either nutrient was limiting. The ratio varied widely amongspecies; under light-saturation for growth (116 µEin m–2s–1 it ranged from 11.8 in D. tertiolecta to 36.6 in P.tricornutum. The ratio appeared to be higher at a sub-saturatingintensity (24 µEin m–2 s–1 in all except P.tricornutum, mainly because of higher qoN with little changein qoP. In T. pseudonana QoP also increased, resulting in aninsignificant change in the ratio. The ratio varied little withinthe range of saturation intensity. Light quality affected qoNand qoP as well as the ratio, and the pattern of change variedfrom species to species. The optimum ratio of individual specieswas linearly correlated to their qoN except in P. tricornutum.qoN for all species showed a linear correlation with cell proteinconcentrations irrespective of light conditions. The changeof optimum N:P ratios in the three species thus appears to berelated to changes in cell protein contents. The ratio of carbohydratesto protein remained constant regardless of light intensity orquality and was higher in P-limited cultures. We conclude thatchanges in light regime can strongly influence algal nutrientrequirements and species interrelationships by altering theoptimum cellular N:P ratio.  相似文献   

13.
Responses of the leaves of five species of azalea to environmentalstresses, such as freezing, dehydration, high temperature andsalt spray, were measured in terms of water proton NMR relaxationtimes (T1), supercooling ability, and water content. Three subtropicalspecies (R. scabrum cv. Shounoshin, R. eriocarpum and R. tashiroivar. lasiophyllum) and two northern species (R. indicum cv.Kumano-satsuki and R. yedoense f. poukhanense), which originatedin different ecological habitats, showed characteristic behaviorsin terms of T1 relaxation times. In general, a species witha large change in T1 is more stress-sensitive than a speciesshowing the opposite tendency. The relative sensitivity to variousstresses of each species appears to be related to the severityof conditions in its natural habitat. It seems possible thatthose species of azalea with higher sensitivity to a particularsingle stress may also exhibit higher sensitivity to severalor even most stresses, and vice versa. (Received August 27, 1992; Accepted February 26, 1993)  相似文献   

14.
Enzymes of the C4, C3 pathway and photorespiration have beenanalyzed for P. hians and P. milioides, which have chlorenchymatousbundle sheath cells in the leaves. On whole leaf extracts thelevels of PEP carboxylase are relatively low compared to C4species, RuDP carboxylase is typical of C3 species, and enzymesof photorespiratory metabolism appear somewhat intermediatebetween C3 and C4. Substantial levels of PEP carboxylase, RuDPcarboxylase, and photorespiratory enzymes were found in bothmesophyll and bundle sheath cells. Low levels of C4-acid decarboxylatingenzymes may limit the capacity for C4 photosynthesis in P. hiansand P. milioides. The results on enzyme activity and distributionbetween mesophyll and bundle sheath cells are consistent withCO2 fixation via C3 pathway in these two species. 1 This research was supported by the College of Agriculturaland Life Sciences, University of Wisconsin, Madison; and bythe University of Wisconsin Research Committee with funds fromthe Wisconsin Alumni Research Foundation; and by the NationalScience Foundation Grant BMS 74-09611. (Received September 16, 1975; )  相似文献   

15.
When grown in pots and well-watered, the relative growth ratesof the above ground parts of two species of Moricandia (M. arvensis,an intermediate C3–C4 species, and M. moricandioides,a C3 species) were inferior to those of two cultivated Brassicaspecies (B. campestris and B. napus). The Moricandia specieshad thicker leaves (greater d.wt per unit leaf area) with morechlorophyll than the Brassica species and had slightly greaterrates of photosynthesis per unit leaf area at an irradiance(400–700 nm) of 2000 µmol quanta m–2 s –1.Leaves of M. arvensis, known to have a CO2 compensation pointbetween that of C3 and C4 species, had a lower ratio of theintercellular to atmospheric partial pressure of CO2 (C1/Ca)and a greater instantaneous water use efficiency (WUE) thanthose of M. moricandioides and the Brassica species. Carbon isotope discrimination (  相似文献   

16.
Growth and production of the temperate C4 species Cyperus longusL. was measured throughout a growing season in an establishedplot in Eastern Ireland. The maximum standing live biomass reachedwas 2·5 kg m–2. Estimates of unit leaf rate (ULR)and leaf area index (LAI) were made. The product of these quantitiesgave the crop growth rate (CGR) each week. C. longus was foundto maintain high values of LAI throughout the summer, with amaximum value of about 13 in early August. CGR reached a peakin early July. The optimum LAI was 11·6. Temperaturesat five levels in the plant canopy, and the amount of solarradiation intercepted by the canopy were measured continuouslyduring the summer. The mean daily rate of leaf extension waspositively correlated with the mean daily air temperature abovethe canopy but the temperature coefficient of the process waslow compared with other temperate species. The percentage ofsolar radiation intercepted by the canopy increased rapidlyin early summer, and canopy closure had occurred by mid-June.Rates of net photosynthesis were measured on young and old leafmaterial in situ at the time of peak LAI. In young leaves themaximum rates of net photosynthesis were higher than those publishedfor a range of temperate C3 species, but similar to those foundin another temperate C4 species, Spartina townsendii. Key words: C4 photosynthesis, leaf growth, productivity  相似文献   

17.
MARTIN  F. W. 《Annals of botany》1982,50(2):277-283
Seventeen accessions of a West African okra species were observedin Puerto Rico, and were hybridized with the common okra species,Abelmoschus esculentus. The accessions are larger plants thancommon okra, but with shorter internodes. They also differ innumerous morphological and physiological characteristics. Mostare more daylength sensitive than common okra. The F1 hybridsof the two species are quite sterile, although in some casesa few germinable F2 seeds are produced. Back-crosses, on theother hand, are more fertile than the F1 hybrids, and fertilityis almost complete in the BC2. Some evidence was found of cytoplasmicinteraction with chromosomes in production of sterile BC hybrids,a possibly useful tool for future use. Meanwhile, the transferof genes from the new species to common okra appears very feasible. Abelmoschus species, okra, species hybrid, hybrid-sterility  相似文献   

18.
Methionine sulfoximine caused ammonia accumulation and photosyntheticrate inhibition in leaf discs from two C4 species, Zea maysL. cv. F. M. Cross (Hybrid) and Sorghum bicolor L. Moench cv.NC-70X, as well as one C3 plant species, Datura stramonium L.cv. stramonium. Similar results were obtained earlier with theC3 species Spinacia oleracea L. The effect occurred in the absenceof inorganic nitrogen reduction and was light dependent. Ammoniaaccumulation rates were similar in all four species examined.The results support a role for glutamine synthetase in leafammonia recycling in both C4 and C3 leaves. 1 Current address: Cetus Madison Corporation, 2208 Parview Road,Middleton, WI 53562, U.S.A. (Received November 2, 1981; Accepted April 28, 1982)  相似文献   

19.
Comparison of the Arabidopsis thaliana vacuolar proton-pumpinginorganic pyrophosphatase with three F0F1-ATPase c-subunitsrevealed a strong similarity between a stretch containing aminoacids 227–245 of the H+-PPase and a transmembrane a-helixof the c-subunits which contains the glutamate which binds N,N'-dicyclohexylcarbodiimide. (Received November 16, 1992; Accepted December 22, 1992)  相似文献   

20.
When air-grown cells of Chlorococcum littorale was enrichedwith CO2, growth was enhanced after a lag period of one to twodays at 20% CO2, and 3 to 6 days at 40% CO2. Changes in therate of photosynthesis measured as oxygen evolution and CO2fixation, were similar to those observed for growth. Duringthe initial inhibition of photosynthesis in 40% CO2, the activityof PSII was suppressed. In contrast, PSI activity was greatlyenhanced. Air-grown cells of C. littorale possessed comparatively highcarbonic anhydrase (CA) activity which was localized insidethe cells and on the cell surface. Under high CO2 concentrationsextracellular CA activity was greatly suppressed and intracellularactivity almost completely abolished. Phosphoenol pyruvate carboxylaseactivity was also suppressed in high CO2-grown cells. Ribulose-l,5-bisphosphatecarboxylase activity was higher in high-CO2 grown cells thanin air-grown cells. The above results indicated that the lagphase induced by 40% CO2 was due to suppression of PSII activity. 1Part of this work was reported in the International PhotosynthesisCongress, Nagoya, 1992.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号