首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gdhA gene, encoding the hexameric glutamate dehydrogenase (GDH) from the hyperthermophilic archaeon Pyrococcus furiosus, was expressed in Escherichia coli by using the pET11-d system. The recombinant GDH was soluble and constituted 15% of the E. coli cell extract. The N-terminal amino acid sequence of the recombinant protein was identical to the sequence of the P. furiosus enzyme, except for the presence of an initial methionine which was absent from the enzyme purified from P. furiosus. By molecular exclusion chromatography we showed that the recombinant GDH was composed of equal amounts of monomeric and hexameric forms. Heat treatment of the recombinant protein triggered in vitro assembly of inactive monomers into hexamers, resulting in increased GDH activity. The specific activity of the recombinant enzyme, purified by heat treatment and affinity chromatography, was equivalent to that of the native enzyme from P. furiosus. The recombinant GDH displayed a slightly lower level of thermostability, with a half-life of 8 h at 100 degrees C, compared with 10.5 h for the enzyme purified from P. furiosus.  相似文献   

2.
3.
4.
Four homologues of alanine aminotransferase have been isolated from shoots of wheat seedlings and purified by saline precipitation, gel filtration, preparative electrophoresis and anion exchange chromatography on Protein-Pak Q 8HR column attached to HPLC. Alanine aminotransferase 1 (AlaAT1) and 2 (AlaAT2) were purified 303- and 452-fold, respectively, whereas l-glutamate: glyoxylate aminotransferase 1 (GGAT1) and 2 (GGAT2) were purified 485- and 440-fold, respectively. Consistent inhibition of AlaAT (EC 2.6.1.2) and GGAT (EC 2.6.1.4) activities by p-hydroxymercuribenzoate points on participation of cysteine residues in the enzyme activity. The molecular weight of AlaAT1 and AlaAT2 was estimated to be 65 kDa and both of them are monomers in native state. Nonsignificant differences between Km using alanine as substrate and catalytic efficiency (kcat/Km) for l-alanine in reaction with 2-oxoglutarate indicate comparable kinetic constants for AlaAT1 and AlaAT2. Similar kinetic constants for l-alanine in reaction with 2-oxoglutarate and for l-glutamate in reaction with pyruvate for all four homologues suggest equally efficient reaction in both forward and reverse directions. GGAT1 and GGAT2 were able to catalyze transamination between l-glutamate and glyoxylate, l-alanine and glyoxylate and reverse reactions between glycine and 2-oxoglutarate or pyruvate. Both GGATs also consisted of a single subunit with molecular weight of about 50 kDa. The estimated Km for GGAT1 (3.22 M) and GGAT2 (1.27 M) using l-glutamate as substrate was lower in transamination with glyoxylate than with pyruvate (9.52 and 9.09 mM, respectively). Moreover, distinctively higher values of catalytic efficiency for l-glutamate in reaction with glyoxylate than for l-glutamate in reaction with pyruvate confirm involvement of these homologues into photorespiratory metabolism.  相似文献   

5.
6.
Acetyl-coenzyme A (acetyl-CoA) synthetase (ADP forming) represents a novel enzyme in archaea of acetate formation and energy conservation (acetyl-CoA + ADP + P(i) --> acetate + ATP + CoA). Two isoforms of the enzyme have been purified from the hyperthermophile Pyrococcus furiosus. Isoform I is a heterotetramer (alpha(2)beta(2)) with an apparent molecular mass of 145 kDa, composed of two subunits, alpha and beta, with apparent molecular masses of 47 and 25 kDa, respectively. By using N-terminal amino acid sequences of both subunits, the encoding genes, designated acdAI and acdBI, were identified in the genome of P. furiosus. The genes were separately overexpressed in Escherichia coli, and the recombinant subunits were reconstituted in vitro to the active heterotetrameric enzyme. The purified recombinant enzyme showed molecular and catalytical properties very similar to those shown by acetyl-CoA synthetase (ADP forming) purified from P. furiosus.  相似文献   

7.
Alanine dehydrogenase [L-alanine:NAD+ oxidoreductase (deaminating), EC 1.4.1.4.] catalyses the reversible oxidative deamination of L-alanine to pyruvate and, in the anaerobic bacterium Bilophila wadsworthia RZATAU, it is involved in the degradation of taurine (2-aminoethanesulfonate). The enzyme regenerates the amino-group acceptor pyruvate, which is consumed during the transamination of taurine and liberates ammonia, which is one of the degradation end products. Alanine dehydrogenase seems to be induced during growth with taurine. The enzyme was purified about 24-fold to apparent homogeneity in a three-step purification. SDS-PAGE revealed a single protein band with a molecular mass of 42 kDa. The apparent molecular mass of the native enzyme was 273 kDa, as determined by gel filtration chromatography, suggesting a homo-hexameric structure. The N-terminal amino acid sequence was determined. The pH optimum was pH 9.0 for reductive amination of pyruvate and pH 9.0-11.5 for oxidative deamination of alanine. The apparent Km values for alanine, NAD+, pyruvate, ammonia and NADH were 1.6, 0.15, 1.1, 31 and 0.04 mM, respectively. The alanine dehydrogenase gene was sequenced. The deduced amino acid sequence corresponded to a size of 39.9 kDa and was very similar to that of the alanine dehydrogenase from Bacillus subtilis.  相似文献   

8.
The hyperthermophilic archaebacterium Pyrococcus furiosus contains high levels of NAD(P)-dependent glutamate dehydrogenase activity. The enzyme could be involved in the first step of nitrogen metabolism, catalyzing the conversion of 2-oxoglutarate and ammonia to glutamate. The enzyme, purified to homogeneity, is a hexamer of 290 kDa (subunit mass 48 kDa). Isoelectric-focusing analysis of the purified enzyme showed a pI of 4.5. The enzyme shows strict specificity for 2-oxoglutarate and L-glutamate but utilizes both NADH and NADPH as cofactors. The purified enzyme reveals an outstanding thermal stability (the half-life for thermal inactivation at 100 degrees C was 12 h), totally independent of enzyme concentration. P. furiosus glutamate dehydrogenase represents 20% of the total protein; this elevated concentration raises questions about the roles of this enzyme in the metabolism of P. furiosus.  相似文献   

9.
Three alanine aminotransferases, two minor (AlaAT-1, AlaAT-3) and one major (AlaAT-2), were detected by native gel electrophoresis of leaf extracts from Panicum miliaceum L. AlaAT-2 was purified to homogeneity and a specific polyclonal antibody was raised against it which did not react with the other two forms of the enzyme. The enzyme, with an apparent molecular size of 102 kDa, appeared to be a dimer of a single 50-kDa polypeptide. The enzyme has a relatively broad pH optima with similar curves for the forward and reverse directions, ranging between 6.5 and 7.5. The Km values of this enzyme were 6.67, 0.15, 5.00, and 0.33 mM for alanine, 2-oxoglutarate, glutamate, and pyruvate, respectively. The activity of AlaAT-2 was found to increase markedly during leaf greening in parallel with the increase of immunochemically titrated protein, and it is suggested to function in the C4 photosynthetic cycle.  相似文献   

10.
Candida maltosa JCM1504 can grow well onl-alanine as a sole carbon and nitrogen source. We found that the activities of alanine aminotransferase (AlaAT) and NAD-dependent glutamate dehydrogenase were remarkably induced when glucose-grown cells were transferred to medium containingl-alanine. This suggested thatC. maltosa has an induciblel-alanine degradation system including the above two enzymes. To assess whether AlaAT is essential for the first step ofl-alanine degradation, we isolated mutant N-07, which was unable to usel-alanine as a nitrogen source, from the wild strain. Mutant N-07 was very similar to the wild strain in terms of growth on pyruvate and on various amino acids other thanl-alanine, suggesting that N-07 lacked onlyl-alanine-assimilating ability. The AlaAT activity in the cell extract of N-07 was very low and was not induced byl-alanine, whereas the NAD-dependent glutamate dehydrogenase activity was the same as that of the wild strain and was inducible. Western blots with antibody raised against purified AlaAT fromC. maltosa indicated that no AlaAT protein was expressed in the mutant N-07. The low level of AlaAT activity described above was possibly due to the pyruvate-forming activity of other enzymes under the assay conditions. From these results, we concluded that AlaAT is an indispensable key enzyme forl-alanine assimilation inC. maltosa.  相似文献   

11.
12.
13.
A gene encoding a new thermostable D-stereospecific alanine amidase from the thermophile Brevibacillus borstelensis BCS-1 was cloned and sequenced. The molecular mass of the purified enzyme was estimated to be 199 kDa after gel filtration chromatography and about 30 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that the enzyme could be composed of a hexamer with identical subunits. The purified enzyme exhibited strong amidase activity towards D-amino acid-containing aromatic, aliphatic, and branched amino acid amides yet exhibited no enzyme activity towards L-amino acid amides, D-amino acid-containing peptides, and NH(2)-terminally protected amino acid amides. The optimum temperature and pH for the enzyme activity were 85 degrees C and 9.0, respectively. The enzyme remained stable within a broad pH range from 7.0 to 10.0. The enzyme was inhibited by dithiothreitol, 2-mercaptoethanol, and EDTA yet was strongly activated by Co(2+) and Mn(2+). The k(cat)/K(m) for D-alaninamide was measured as 544.4 +/- 5.5 mM(-1) min(-1) at 50 degrees C with 1 mM Co(2+).  相似文献   

14.
A novel alanine dehydrogenase (AlaDH) showing no significant amino acid sequence homology with previously known bacterial AlaDHs was purified to homogeneity from the soluble fraction of the hyperthermophilic archaeon Archaeoglobus fulgidus. AlaDH catalyzed the reversible, NAD+-dependent deamination of L-alanine to pyruvate and NH4+. NADP(H) did not serve as a coenzyme. The enzyme is a homodimer of 35 kDa per subunit. The Km values for L-alanine, NAD+, pyruvate, NADH, and NH4+ were estimated at 0.71, 0.60, 0.16, 0.02, and 17.3 mM, respectively. The A. fulgidus enzyme exhibited its highest activity at about 82 degrees C (203 U/mg for reductive amination of pyruvate) yet still retained 30% of its maximum activity at 25 degrees C. The thermostability of A. fulgidus AlaDH was increased by more than 10-fold by 1.5 M KCl to a half-life of 55 h at 90 degrees C. At 25 degrees C in the presence of this salt solution, the enzyme was approximately 100% stable for more than 3 months. Closely related A. fulgidus AlaDH homologues were found in other archaea. On the basis of its amino acid sequence, A. fulgidus AlaDH is a member of the ornithine cyclodeaminase-mu-crystallin family of enzymes. Similar to the mu-crystallins, A. fulgidus AlaDH did not exhibit any ornithine cyclodeaminase activity. The recombinant human mu-crystallin was assayed for AlaDH activity, but no activity was detected. The novel A. fulgidus gene encoding AlaDH, AF1665, is designated ala.  相似文献   

15.
Alanine aminotransferase (AlaAT, EC 2.6.1.2) from leaves of 14-day-old maize seedlings was purified over 1600-fold to electrophoretical homogeneity. Specific activity of the purified enzyme measured with L-alanine and 2-oxoglutarate as substrates was 2125 nkat·(mg protein)−1 at 30 °C. The molecular weights of the native and sodium dodecyl sulfate — denatured AlaAT protein were 95 kDa and 50 kDa respectively, indicating that the native enzyme is probably a homodimer. AlaAT almost exclusively catalyzed amino group transfer from L-alanine to 2-oxoglutarate and the reverse reaction. The inhibitory experiments showed that pirydoxal phosphate is directly involved in the enzymatic catalysis and the enzyme molecule contains essential SH groups. The use of phenylglyoxal demonstrated the presence of arginine residue as anionic binding site in the active centre of AlaAT. This work was supported by the State Committee for Scientific Research, a grant No. 5PO6A00510  相似文献   

16.
17.
Bilophila wadsworthia RZATAU is a Gram-negative bacterium which converts the sulfonate taurine (2-aminoethanesulfonate) to ammonia, acetate and sulfide in an anaerobic respiration. Taurine:pyruvate aminotransferase (Tpa) catalyses the initial metabolic reaction yielding alanine and sulfoacetaldehyde. We purified Tpa 72-fold to apparent homogeneity with an overall yield of 89%. The purified enzyme did not require addition of pyridoxal 5'-phosphate, but highly active enzyme was only obtained by addition of pyridoxal 5'-phosphate to all buffers during purification. SDS/PAGE revealed a single protein band with a molecular mass of 51 kDa. The apparent molecular mass of the native enzyme was 197 kDa as determined by gel filtration, which indicates a homotetrameric structure. The kinetic constants for taurine were: Km = 7.1 mM, Vmax = 1.20 nmol.s-1, and for pyruvate: Km = 0.82 mM, Vmax = 0.17 nmol.s-1. The purified enzyme was able to transaminate hypotaurine (2-aminosulfinate), taurine, beta-alanine and with low activity cysteine and 3-aminopropanesulfonate. In addition to pyruvate, 2-ketobutyrate and oxaloacetate were utilized as amino group acceptors. We have sequenced the encoding gene (tpa). It encoded a 50-kDa peptide, which revealed 33% identity to diaminopelargonate aminotransferase from Bacillus subtilis.  相似文献   

18.
Good AG  Muench DG 《Plant physiology》1992,99(4):1520-1525
Alanine aminotransferase (AlaAT, EC 2.6.1.2) is an enzyme that is induced under anaerobic conditions in cereal roots. In barley (Hordeum vulgare L.) roots, there are a number of isoforms of AlaAT. We have identified the anaerobically induced isoform and have purified it to homogeneity. The isolation procedure involved a two-step ammonium sulfate precipitation, gel filtration, ion-exchange chromatography, and chromatofocusing. The enzyme was purified approximately 350-fold to a specific activity of 2231 units/milligram protein. The apparent molecular masses of the native and sodium dodecyl sulfate-denatured AlaAT proteins are 97 and 50 kilodaltons, respectively, indicating that the native enzyme is probably a homodimer. AlaAT has a number of interesting characteristics when compared with other plant aminotransferases. AlaAT does not require the presence of pyridoxyl-5-phosphate to retain its activity, and it appears to be very specific in the reactions that it will catalyze.  相似文献   

19.
Mitochondrial alanine aminotransferase L-alanine:2-oxoglutarate aminotransferase, EC 2.6.1.2) has been isolated in homogeneous form from both porcine liver and kidney cortex, but in low yield. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate or 8 M urea gave a single band. An isoelectric point of 8.5 +/- 0.5 and a molecular weight of 75--80 000 were obtained. The enzyme is specific for L-alanine and is inhibited by D-alanine, aminooxyacetate and cyclosterine. The Km for pyruvate and glutamate is 0.4 mM and 32 mM, respectively. These values are similar to those determined for the cytoplasmic enzyme; however, at high concentrations, both compounds strongly inhibit the mitochondrial enzyme, an inhibition not observed with cytosolic alanine aminotransferase. These characteristics and the fact that the mitochondrial alanine aminotransferase was inactivated by procedures effective in the preparation of the cytosolic enzyme, clearly differentiate the two proteins and further support different roles for the two alanine aminotransferases in vivo.  相似文献   

20.
Bifidobacterium bifidum is a useful probiotic agent exhibiting health-promoting properties, and its peptidoglycans have the potential for applications in the fields of food science and medicine. We investigated the bifidobacterial alanine racemase, which is essential in the synthesis of -alanine as an essential component of the peptidoglycans. Alanine racemase was purified to homogeneity from a crude extract of B. bifidum NBRC 14252. It consisted of two identical subunits with a molecular mass of 50 kDa. The enzyme required pyridoxal 5′-phosphate (PLP) as a coenzyme. The activity was lost in the presence of a thiol-modifying agent. The enzyme almost exclusively catalyzed the alanine racemization; other amino acids tested, except for serine, were inactive as substrates. The kinetic parameters of the enzyme suggested that the B. bifidum alanine racemase possesses comparatively low affinities for both the coenzyme (9.1 μM for PLP) and substrates (44.3 mM for -alanine; 74.3 mM for -alanine). The alr gene encoding the alanine racemase was cloned and sequenced. The alr gene complemented the -alanine auxotrophy of Escherichia coli MB2795, and an abundant amount of the enzyme was produced in cells of the E. coli MB2795 clone. The enzymologic and kinetic properties of the purified recombinant enzyme were almost the same as those of the alanine racemase from B. bifidum NBRC 14252.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号