首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mature beef cows were actively immunized pre partum (N = 5) or post partum (N = 10) against a PGF-2 alpha-ovalbumin conjugate or against ovalbumin alone (control; N = 5). All cows in the control group exhibited first oestrous cycles which were of short duration (less than or equal to 12 days). Mean specific serum binding to [3H]PGF-2 alpha in the control group was consistently less than 1%. In the pre-partum PGF-2 alpha-immunized cows, lifespan and progesterone secretion of the first corpus luteum formed post partum was maintained for greater than 39 days. Specific serum binding to [3H]PGF-2 alpha in pre-partum and post-partum PGF-2 alpha-immunized cows was elevated. Lifespan of the first corpus luteum formed in post-partum PGF-2 alpha-immunized cows was short (less than 10 days; N = 1), normal (mean = 22 days; N = 4) or maintained (greater than 31 days; N = 5). Luteal lifespan was dependent upon serum PGF-2 alpha antibody titres, with cows exhibiting higher titres frequently having prolonged luteal lifespans after first ovulation. We conclude that active immunization of beef cows against PGF-2 alpha extends the lifespan and progesterone secretion of corpora lutea anticipated to be short-lived. These results support the concept that the shorter lifespan of some corpora lutea in post-partum cows is due to a premature release of PGF-2 alpha from the uterus.  相似文献   

2.
Basal and calcium ionophore (CaI)-influenced production of prostaglandins (PGs) by corpora lutea (CL) destined to be normal or short-lived were compared. Ovulation was induced in 24 lactating beef cows with human chorionic gonadotropin (hCG, 1000 IU) administered between 35 and 40 days postpartum. Ten cows received norgestomet implants for 9 days prior to induced ovulation (Normal CL) and 14 served as untreated controls (Subnormal CL). Five cows in each treatment were unilaterally ovariectomized on Day 6 (Day 0 = day of hCG administration) and CL were collected. Blood samples were collected daily through-out the experimental period from cows not ovariectomized. Plasma progesterone (P4) in ovary-intact animals indicated that short-lived CL were induced in 8/8 cows not pretreated with norgestomet, and normal luteal lifespan was observed in 4/5 implanted cows. Dispersed luteal cells were incubated for 8 h with 0, 0.05, 0.5, or 5 microM CaI (A23187). Incubation media were analyzed for P4, PGF2 alpha, 6-keto-PGF1 alpha (PGI), and PGE2. The weight, cell number, and basal or CaI-influenced production of P4 did not differ between Normal CL and Subnormal CL. Basal production of PGF2 alpha, PGI, and PGE2 was higher in Subnormal CL than in Normal CL (p less than 0.05). In response to 0.05 microM CaI, PGF2 alpha was stimulated in Subnormal CL (p less than 0.01), while PGI (p less than 0.05) and PGE2 (p less than 0.1) were increased in Normal CL. Production of PGs was reduced by 5 microM CaI in Subnormal CL (p less than 0.01), but not in Normal CL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Anestrous postpartum (PP) Hereford cows (n =20) were used to determine the effects of repeated injections of human chorionic gonadotropin (hCG) on the progesterone (P4) secretion and functional lifespan of gonadotropin-releasing hormone (GnRH)-induced corpora lutea (CL). Suckling was reduced to once a day from Day 21 to Day 25 PP, and all cows received injections of 200 micrograms GnRH at 1500 h on Day 24 PP to induce ovulation. Treated cows (HCG, n = 10) received 200 IU hCG b.i.d. from 1900 h on Day 27 PP to 1900 h on Day 33 PP; control cows (CTRL, n=10) were not injected. Blood was collected on Days 21, 23, 25, and 27 to 33, 35, 37, and 39 PP. Serum P4 concentration was measured by radioimmunoassay and used to classify luteal lifespan and the associated estrous cycle as short (SHORT) or normal (NORM) in duration. Treatment with hCG resulted in more (p less than 0.01) cows with SHORT cycles (7 of 9 vs. 4 of 9). Serum P4 concentrations were similar (p greater than 0.20) between groups from 4 days before until 6 days after GnRH injection. Cows with NORM cycles (n = 7) had greater serum P4 concentrations (p less than 0.05) on Days 7 to 11 after GnRH than cows with SHORT cycles (n = 11). By Day 39 PP, all cows with SHORT cycles appeared to have undergone a second ovulation. Charcoal-stripped serum pools from before (PRE) and during hCG injection (INJ) were assayed for total luteinizing hormone-like bioactivity (LH-BA) using a dispersed mouse-Leydig cell bioassay.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Corpora lutea were recovered from mares either 4 to 5 days or 12 to 13 days after ovulation. Mixed populations of luteal cells were prepared by collagenase digestion and were incubated for 24 h in the presence or absence of prostaglandin (PG) F-2 alpha (250 ng/ml). PGF-2 alpha significantly (P = 0.03) reduced progesterone secretion by cells from late diestrous corpora lutea and tended (P = 0.06) to reduce secretion by early diestrous cells. PGF-2 alpha had no significant effect on leukotriene B-4 (LTB-4) production by cells from early diestrous corpora lutea, but significantly (P = 0.03) increased LTB-4 production by late diestrous luteal cells. It seems possible that LTB-4 could play a role as an intermediary in the action of PGF-2 alpha in luteolysis in the mare.  相似文献   

5.
This study was conducted to determine whether intrauterine infusion of recombinant bovine interferon-alpha I1 (rboIFN-alpha I1), which has 70% sequence identity to bovine trophoblast protein-1, will prevent regression of corpora lutea anticipated to have a short lifespan. Twenty-six beef cows in good body condition were allotted to four treatment groups at parturition in a 2 x 2 factorial design. Treatments were: group 1, saline; group 2, rboIFN-alpha I1; group 3, norgestomet-saline; and group 4, norgestomet-rboIFN-alpha I1. Norgestomet implants were inserted on days 21-24 postpartum and removed 9 days later (before injection of human chorionic gonadotrophin (hCG)). Ovulation was induced 30 to 33 days postpartum with 5000 or 10,000 iu hCG. Groups 1 (n = 7) and 3 (n = 5) were given intrauterine infusions (rectocervical approach) twice daily with saline on days 1-12 or 13-24 after hCG injection, respectively. Cows allotted to groups 2 (n = 8) and 4 (n = 6) were given intrauterine infusions (rectocervical approach) of 2 mg rboIFN-alpha I1 twice daily on days 1-12 or 13-24 after hCG injection, respectively. Treatment with both norgestomet and rboIFN-alpha I1 delayed (P less than 0.01) luteolysis. Lengths of luteal phases (days; mean +/- SEM) were 8.4 +/- 0.7 (group 1, saline), 14.1 +/- 1.0 (group 2, rboIFN-alpha I1), 18.6 +/- 1.3 (group 3, norgestomet-saline) and 20.8 +/- 1.2 (group 4, norgestomet-rboIFN-alpha I1). Concentration of progesterone in serum was similar among all groups the first 6 days following hCG-induced ovulation, but differed (P less than 0.01) thereafter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Of 19 dioestrous ewes given 50 micrograms GnRH on Day 10 of the oestrous cycle, 15 (79%) formed corpora haemorrhagica within 2 days after injection of GnRH. After excision of the Day 10 spontaneous CL, the GnRH-induced CL were short lived when compared to spontaneous CL in saline-treated ewes (3.1 +/- 0.4 vs 17.3 +/- 0.3 days, respectively). Hysterectomy of ewes bearing the GnRH-induced CL prevented regression of the short-lived CL, thus extending functional lifespan greater than or equal to 38 days. Serum concentrations of progesterone produced by the GnRH-induced CL in hysterectomized ewes were less than those observed during a comparable interval (Days 7-14) in saline-treated, non-hysterectomized ewes (2.24 +/- 0.1 vs 3.67 +/- 0.15 ng/ml, respectively; P less than or equal to 0.001). When GnRH was given before (5 h before) or during (5 h after) PGF-2 alpha-induced regression of the Day 10 spontaneous CL, the GnRH-induced CL which formed were also short-lived. In contrast, when GnRH was given following (36 h after) PGF-2 alpha-induced regression of the Day 10 spontaneous CL, the CL which formed were not different in lifespan or production of progesterone from spontaneous CL. Efforts to enhance function of the GnRH-induced subnormal CL by treating ewes with the synthetic progestagen, norgestomet, to suppress follicular development after CL formation, were unsuccessful.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The first postpartum ovulation after early weaning of calves (30 35 days of age) from cows is normally followed by a short luteal phase (6 10 days) unless the animals are pretreated with a progestogen (e.g. norgestomet). Reduced luteal lifespan in cattle is reportedly due to the premature release of a luteolysin (presumably prostaglandin F2 alpha [PGF2 alpha]). Therefore, the objective was to determine if oxytocin-induced release of PGF2 alpha (measured by the stable PGF2 alpha metabolite, 15-keto-13,14-dihydro PGF2 alpha [PGFM]) was greater for cows having a short compared to a normal luteal phase on Day 5 following the first postpartum estrus (Day 0). Thirty postpartum beef cows were randomly assigned into three groups (n = 10 per group) expected to have short (Short d 5) or normal (Norgestomet d 5 and Norgestomet d 16) luteal phases. Cows in Norgestomet d 5 and d 16 groups received Norgestomet (progestogen) implants for 9 days beginning 21 23 days postpartum. On Day 5 (Short d 5 and Norgestomet d 5) or Day 16 (Norgestomet d 16) following first postpartum estrus, each animal was injected (i.v.) with 100 IU oxytocin. In addition, cows in the Short d 5 group were subdivided into two groups following second estrus (normal luteal phase, n = 5 per group) to receive 100 IU oxytocin on Day 5 (Normal d 5) or 16 (Normal d 16), respectively. Estrous cycle length (means +/- SE) for cows in the Short d 5 group (8.7 +/- 0.4 days) was shorter (p less than 0.01) than for cows in all other groups (21.1 +/- 0.3 days).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Ewes were treated with exogenous follicle-stimulating hormone (FSH) and oestrus was synchronized using either a dual prostaglandin F-2 alpha (PGF-2 alpha) injection regimen or pessaries impregnated with medroxy progesterone acetate (MAP). Natural cycling ewes served as controls. After oestrus or AI (Day 0), corpora lutea (CL) were enucleated surgically from the left and right ovaries on Days 3 and 6, respectively. The incidence of premature luteolysis was related (P less than 0.05) to PGF-2 alpha treatment and occurred in 7 of 8 ewes compared with 0 of 4 controls and 1 of 8 MAP-exposed females. Sheep with regressing CL had lower circulating and intraluteal progesterone concentrations and fewer total and small dissociated luteal cells on Day 3 than gonadotrophin-treated counterparts with normal CL. Progesterone concentration in the serum and luteal tissue was higher (P less than 0.05) in gonadotrophin-treated ewes with normal CL than in the controls; but luteinizing hormone (LH) receptors/cell were not different on Days 3 and 6. There were no apparent differences in the temporal patterns of circulating oestradiol-17 beta, FSH and LH. High progesterone in gonadotrophin-treated ewes with normal CL coincided with an increase in total luteal mass and numbers of cells, which were primarily reflected in more small luteal cells than in control ewes. Gonadotrophin-treated ewes with regressing CL on Day 3 tended (P less than 0.10) to have fewer small luteal cells and fewer (P less than 0.05) low-affinity PGF-2 alpha binding sites than sheep with normal CL. By Day 6, luteal integrity and cell viability was absent in ewes with prematurely regressed CL. These data demonstrate that (i) the incidence of premature luteal regression is highly correlated with the use of PGF-2 alpha; (ii) this abnormal luteal tissue is functionally competent for 2-3 days after ovulation, but deteriorates rapidly thereafter and (iii) luteal-dysfunctioning ewes experience a reduction in numbers of small luteal cells without a significant change in luteal mass by Day 3 and, overall, have fewer low-affinity PGF-2 alpha binding sites.  相似文献   

9.
Destruction of ovarian follicles during diestrus prolongs the lifespan of corpora lutea in cows, but the site(s) of action is unclear. Thus, ovarian follicles were destroyed in 10 beifers (X-IRRAD) on Day 9 postestrus, while 10 additional beifers (SHAM) served as a control group. To investigate changes in luteotropic support resulting from destruction of ovarian follicles, pulses of luteinizing hormone (LH) were characterized on Days 8, 13, and 15 postestrus. To study the interaction between products from ovarian follicles and prostaglandin F2 alpha (PGF2 alpha) in luteolysis, changes in serum concentrations of progesterone were monitored after an injection of saline or PGF2 alpha on Day 14 postestrus. Frequency and amplitude of pulses of LH increased by Day 13 in X-IRRAD beifers. An increase of similar magnitude in amplitude but not frequency of pulses of LH occurred between Day 13 and Day 15 postestrus in SHAM beifers. Exogenous PGF2 alpha was significantly less efficacious in causing luteolysis in X-IRRAD animals. We suggest that increased luteotropic support may be involved in but is not the only cause for lengthening the lifespan of corpora lutea following destruction of ovarian follicles. Additionally, we suggest that regression of bovine corpora lutea involves a synergistic action between products from ovarian follicles and PGF2 alpha.  相似文献   

10.
In Exp. 1, injections of 10 ml bovine follicular fluid (bFF, i.v. or s.c.), given twice daily for 3 days after injection of a luteolytic dose of PGF-2 alpha, delayed the onset of oestrus in 3 of 6 heifers to 8 or 9 days after PGF-2 alpha, as compared with 2 or 3 days after PGF-2 alpha in control heifers. Mean plasma concentrations of FSH and LH during the injection period were not different from those in saline-injected heifers. In Exp. 2, i.v. injections of 20 ml bFF twice daily for 3 days uniformly delayed oestrus to 8 days after PGF-2 alpha (N = 4) and injections of 20 ml bFF i.v. every 6 h for 24h on the day of PGF-2 alpha injection delayed oestrus to 5.0 +/- 0.6 days after PGF-2 alpha as compared with 2.8 +/- 0.3 days for control heifers. In both treatment groups, plasma concentrations of FSH were suppressed during the injection period and increased transiently after treatment, but plasma concentrations of LH during the injection period were not different from those of control heifers. Plasma levels of oestradiol in heifers given bFF remained basal for 2 or 3 days after treatment, then increased several days before the delayed oestrus, in a manner similar to that in control heifers, and elicited normal preovulatory surges of LH and FSH. Plasma concentrations of progesterone and the length of the next oestrous cycle were normal, indicating formation of functional corpora lutea. Therefore, bFF treatments appear to delay oestrus by selectively suppressing plasma FSH, without affecting LH, and delaying the development of the preovulatory follicle. These results suggest that FSH may be critical to support the growth and development of the preovulatory follicle after luteolysis in cows.  相似文献   

11.
Normal and abnormal corpora lutea were recovered from anoestrous Romney Marsh ewes on Days 3, 4, 5 and 6 after treatment with small-dose (250 ng) multiple injections of GnRH followed by a bolus injection (125 micrograms) with (+P) and without (-P) progesterone pretreatment and a study made of their characteristics in vitro. Plasma progesterone concentrations initially rose concurrently in all animals but abnormal luteal function occurred in 70% of the -P ewes and was defined on Day 5 when plasma progesterone concentrations declined relative to those in the +P ewes. All corpora lutea recovered on Days 3 and 4 appeared macroscopically similar and there were no significant differences between the +P and -P groups in terms of luteal weight, progesterone content and binding of 125I-labelled hCG on these days. However, corpora lutea from the -P animals only exhibited a decline in progesterone production in vitro on Day 4 (P less than 0.01), and morphological differences became apparent on Days 5 and 6 when the abnormal corpora lutea from the -P animals also decreased in weight (P less than 0.01) and progesterone content (P less than 0.001). Binding of 125I-labelled hCG increased on Day 5 in the normal corpora lutea only. These results show that, although abnormal luteal function induced by GnRH treatment of anoestrous ewes could not be distinguished from normal corpora lutea before Day 5 by measurement of progesterone in peripheral plasma, a significant decline in progesterone production in vitro occurred on Day 4 in the abnormal corpora lutea. This was followed by significant decreases in weight and progesterone content and a failure to increase 125I-labelled hCG binding. Abnormal corpora lutea are therefore capable of some initial growth and progesterone production, before undergoing a rapid and premature regression from Day 4, which has similar characteristics to natural luteolysis.  相似文献   

12.
The effect of prostaglandin PGF2 alpha on the hCG stimulated and basal progesterone production by human corpora lutea was examined in vitro. hCG (40 i.u./ml) stimulated progesterone formation in corpora lutea of early (days 16-19 of a normal 28 day cycle), mid (days 20-22) and late (days 23-27) luteal phases. This stimulation was inhibited by PGF2 alpha (10 micrograms/ml) in corpora lutea of mid and late luteal phases. PGF2 alpha alone did not show a consistent effect on basal progesterone production. The inhibition of hCG stimulated progesterone production by PGF2 alpha at times corresponding to luteolysis indicates a role for that prostaglandin in the process of luteolysis in the human corpus luteum.  相似文献   

13.
Follicles collected from cows destined to enter relatively normal or short luteal phases if induced to ovulate were compared for numbers of receptors for luteinizing hormone (LH) in granulosal and thecal cells and for follicle-stimulating hormone (FSH) in granulosal cells. Eleven suckled beef cows received ear implants of 6 mg norgestomet for 9 days (expected normal luteal phase) and 11 served as controls (expected short luteal phase). At 48 h after implants were removed (average 34 days postpartum), the ovary containing the largest follicle was identified by transrectal ultrasound and removed. The largest follicle was dissected free of surrounding ovarian stroma and frozen in liquid nitrogen. Thecal and granulosal cells were isolated, and numbers of receptors for LH and FSH in granulosal cells and for LH in thecal cells were quantified. Concentrations of estradiol were measured in follicular fluid. Both granulosal and thecal cells from norgestomet-treated cows had greater numbers of receptors for LH than did those from control cows (p less than 0.01). Numbers of receptors for FSH in granulosal cells did not differ between treated and control cows. Follicles from norgestomet-treated cows were heavier (p less than 0.01) than follicles from control cows, mostly due to greater amounts of follicular fluid (p less than 0.01). Concentrations of estradiol were higher in follicular fluid from the treated cows (p less than 0.05). It is suggested that increases in numbers of follicular receptors for LH and secretion of estradiol are integral components of a sequence of events by which norgestomet prepares follicles to become fully functional corpora lutea.  相似文献   

14.
This study characterizes the expression of monocyte chemoattractant protein-1 (MCP-1) and the relative distribution of immune cell populations in the bovine corpus luteum throughout the estrous cycle. Immunodetectable MCP-1 was evident in corpora lutea of cows at Days 6, 12, and 18 postovulation (Day 0 = ovulation, n = 4 cows/stage). Day 6 corpora lutea contained minimal MCP-1 that was confined primarily to blood vessels. In contrast, relatively intense staining for MCP-1 was observed in corpora lutea from Days 12 and 18 postovulation. MCP-1 was again most evident in the cells of the vasculature, but it was also observed surrounding individual luteal cells, particularly by Day 18. An increase in immunohistochemical expression of MCP-1 on Days 12 and 18 postovulation corresponded with increases in MCP-1 mRNA and protein in corpora lutea as determined by Northern blot analysis and ELISA. Monocytes and macrophages were the most abundant immune cells detected in the bovine corpus luteum, followed by CD8+ and CD4+ T lymphocytes. In all instances, Day 6 corpora lutea contained fewer immune cells than corpora lutea from Days 12 and 18. In conclusion, increased expression of MCP-1 was accompanied by the accumulation of immune cells in the corpora lutea of cows during the latter half of the estrous cycle (Days 12-18 postovulation). These results support the hypothesis that MCP-1 promotes immune cell recruitment into the corpus luteum to facilitate luteal regression. These results also raise a provocative issue, however, concerning the recruitment of immune cells several days in advance of the onset of luteal regression.  相似文献   

15.
Thirty-four lactating Holstein cows were randomly assigned to four groups for treatment with human chorionic gonadotrophin (hCG, 1000 iu) at insemination day 0 (n = 8) or 7 (n = 9) or 14 days (n = 9) after insemination or with no hCG treatment (control, n = 8). Ultrasound imaging of the ovaries and plasma progesterone measurements were carried out to determine follicular dynamics and corpus luteum growth and function. Rates of formation of accessory corpora lutea were higher among cows treated on days 0 (three cows), 7 (seven cows) or 14 (four cows) than in the controls (one cow). Total corpus luteum diameter was greater (P less than 0.01) among hCG-treated cows than in controls 7-42 days after insemination. Concentrations of progesterone in plasma were significantly (P less than 0.05) higher in cows treated with hCG on days 7 or 14 than in those treated on day 0 or in controls, at days 18, 35 or 42 after insemination. Seven of the cows treated on day 7 became pregnant, whereas four, four and three cows treated on days 0 or 14 and control cows became pregnant, respectively. The results suggest that hCG treatment at 7 days after insemination could be used to produce accessory corpora lutea, raise plasma progesterone concentration and hence reduce the incidence of early embryonic mortality in cattle.  相似文献   

16.
Corpora lutea were marked with suture in 24 crossbred gilts on day 7 to 9 of the estrous cycle (first day of estrus equals 0). All gilts were injected with 5 mg of estradiol benzoate (EB) daily from day 10 to 15 to extend the lifespan of corpora tutea, then the gilts were randomly assigned to two groups. On day 20, the 12 gilts of Group 1 were injected with 10 mg PGF-2ALPHA, and the 12 gilts of Group 2 were injected with saline. Ovaries were recovered 10 to 13 days after PGF-2ALPHA or saline injection. Ten gilts in Group 1 displayed estrus 5 plus or minus 0.7 days after PGF-2ALPHA injection, but only two gilts in Group 2 displayed estrus during the experimental period. In gilts that displayed estrus, all marked CL had regressed. Marked CL were still present in all 12 gilts that failed to exhibit estrus during the experimental period. These results show that in the pig, PGF-2ALPHA caused regression of CL that were maintained beyond the normal luteal phase of the estrous cycel by EB treatment.  相似文献   

17.
The binding of prostaglandin (PG) F-2 alpha to corpora lutea (CL) from pregnant and non-pregnant Pony mares was examined. Studies of the rates of association and dissociation indicated that [3H]PGF was bound specifically and reversibly to a luteal cell membrane preparation (MP) that was isolated by high speed (100,000 g) ultracentrifugation. Various PGs and PG metabolites displaced [3H]PGF from the receptors in the following decreasing order: PGF-2 alpha greater than 13, 14-dihydro-PGF-2 alpha = 13,14-dihydro-15-keto PGF-2 alpha greater than PGD-2 greater than PGF-1 alpha = PGE-2 greater than PGE-2 beta greater than PGE-1. These data implicate the 9 alpha-OH and 5,6 cis double bond as major contributors to PGF receptor recognition. The membrane preparation appeared to contain at least two receptor populations, a high affinity, low capacity and a low affinity, high capacity receptor. The binding of PGF (pg/mg MP protein +/- s.e.m. (n)) to CL of the non-pregnant mare increased from 4.09 +/- 11.6 (4), on Day 4 after ovulation, to reach maximal levels by Day 12, 15.01 +/- 2.5 (4), and declined thereafter. In pregnancy the binding of PGF continued to increase until Day 18, reaching 27.47 +/- 1.7 (3), before it declined on Day 20. The reduction in binding by Day 16 in the non-pregnant mare may reflect the process of luteolysis, while high PGF binding capacity of CL between Days 16 and 18 of pregnancy indicated that luteal maintenance during pregnancy is not associated with a reduction of PGF binding capabilities.  相似文献   

18.
The experimental objective was to evaluate how a spontaneously formed corpus luteum (CL) differed in its response to prostaglandin (PG) F-2 alpha, given during the first 5 days after ovulation, from a CL induced during dioestrus with hCG. Sixteen Holstein heifers were used during each of 2 consecutive oestrous cycles. During the first cycle (sham cycle), heifers were given no PGF-2 alpha (control) or PGF-2 alpha (25 mg, i.m.) on Day 2, 4 or 6 (oestrus = Day 0). During the second cycle (hCG-treated cycle), heifers were given hCG (5000 i.u., i.m.) on Day 10, followed by no PGF-2 alpha (control) or PGF-2 alpha on Day 12, 14 or 16, corresponding to 2, 4 or 6 days after the ovulatory dose of hCG. A new ovulation was induced in 13 of 16 heifers given hCG on Day 10. Luteolysis did not occur immediately in heifers given PGF-2 alpha on Day 2 or 4 during the sham cycle, but concentration of progesterone in serum during the remainder of the cycle was lower in heifers given PGF-2 alpha on Day 4 than in sham controls or heifers given PGF-2 alpha on Day 2 (P less than 0.05). Luteolysis occurred immediately in heifers given PGF-2 alpha on Day 6 of the sham cycle or on Day 12, 14 or 16 of the hCG-treated cycle, with concentration of progesterone in serum decreasing to less than 1 ng/ml within 2 days.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The ability of sheep luteal cells from the first corpus luteum formed after parturition (Group F) to secrete progesterone in the presence or absence of LH was compared with that of luteal cells obtained from normal cyclic ewes (Group C). Luteal concentrations of receptors for LH and prostaglandins (PG) F-2 alpha (PGF-2 alpha) and the cellular composition of corpora lutea from Groups F and C were also compared. Luteal cells from Group F secreted less progesterone in either the presence or absence of LH (P less than 0.01). There was no difference in the number of receptors for LH or PGF-2 alpha per luteal cell between Groups F and C (P greater than 0.1), nor was there a difference in the number of large or small steroidogenic luteal cells (P greater than 0.1). It was concluded that, if short-lived corpora lutea are insensitive to gonadotrophins, this response is not mediated by decreased numbers of receptors for LH. In addition, if the first corpus luteum formed post partum in ewes is more sensitive to the luteolytic effects of PGF-2 alpha, this effect is not mediated by an increased number of receptors for PGF-2 alpha or an increased proportion of PGF-2 alpha-sensitive large luteal cells.  相似文献   

20.
Plasma membrane receptors for prostaglandins (PG) F2 alpha and E2 were quantified in ovine corpora lutea obtained from nonpregnant and pregnant ewes on Days 10, 13, and 15 post-estrus, and from additional ewes on Days 25 and 40 of pregnancy. Regardless of reproductive status or day post-estrus, concentrations of luteal receptors for PGF2 alpha were 7- to 10-fold greater than those for PGE2. In pregnant ewes the concentration of receptors for PGF2 alpha was highest on Day 10 (35.4 +/- 2.8 fmol/mg) and lowest on Day 25 (22.3 +/- 2.5 fmol/mg). A difference in the concentration of luteal receptors for PGF2 alpha between pregnant and nonpregnant ewes was apparent only on Day 15 post-estrus, at which time the concentration of receptors for PGF2 alpha was higher in pregnant ewes than in nonpregnant ewes (27.1 +/- 2.7 vs. 17.7 +/- 2.7 fmol/mg). Concentrations of receptors for PGE2 in pregnant ewes were similar (p > 0.05; 2.8 +/- 0.3 to 3.7 +/- 0.2 fmol/mg) between Days 13 and 40 but were higher (p < 0.05) than in corpora lutea obtained from nonpregnant ewes on Days 10 (5.0 +/- 0.4 vs. 4.1 +/- 0.2 fmol/mg) and 15 (3.7 +/- 0.2 vs. 2.0 +/- 0.4 fmol/mg) post-estrus. Although concentrations of receptors for both PGF2 alpha and PGE2 were lowest in corpora lutea obtained from nonpregnant ewes on Day 15, this was not due to luteal regression since the weights and concentrations of progesterone in corpora lutea on Day 15 were not lower than those for corpora lutea obtained on Days 10 and 13.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号