首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
Few studies in wild animals have assessed changes in mineral profile in long bones and their implications for mechanical properties. We examined the effect of two diets differing in mineral content on the composition and mechanical properties of femora from two groups each with 13 free-ranging red deer hinds. Contents of Ca, P, Mg, K, Na, S, Cu, Fe, Mn, Se, Zn, B and Sr, Young’s modulus of elasticity (E), bending strength and work of fracture were assessed in the proximal part of the diaphysis (PD) and the mid-diaphysis (MD). Whole body measures were also recorded on the hinds. Compared to animals on control diets, those on supplemented diets increased live weight by 6.5 kg and their kidney fat index (KFI), but not carcass weight, body or organ size, femur size or cortical thickness. Supplemental feeding increased Mn content of bone by 23%, Cu by 9% and Zn by 6%. These differences showed a mean fourfold greater content of these minerals in supplemental diet, whereas femora did not reflect a 5.4 times greater content of major minerals (Na and P) in the diet. Lower content of B and Sr in supplemented diet also reduced femur B by 14% and Sr by 5%. There was a subtle effect of diet only on E and none on other mechanical properties. Thus, greater availability of microminerals but not major minerals in the diet is reflected in bone composition even before marked body effects, bone macro-structure or its mechanical properties are affected.  相似文献   

2.
We studied the effects of grape seed proanthocyanidins extract (GSPE) given as a ratio of 3 mg in 100 g in a standard diet, on the tibial bone diaphysis in low-calcium fed rats. Measurements of bone density, mineral content, geometry, and bone strength using peripheral quantitative computed tomography (pQCT). Further, the whole tibia bones were tested for mechanical resistance using a material-testing machine, and mineral elements were also determined. Forty male Wistar rats, 5 weeks old, were divided into control (Co), low-calcium diet (LC), low-calcium diet . standard diet (LCS), and low-calcium diet . standard diet with supplementary GSPE (LCSG) groups. We found no significant differences in body weight among the 4 groups, whereas all of the bone parameters in LC were significantly lower than those in Co (p<0.01, except in periosteal perimeter (Peri) p<0.05). The cortical bone mineral content (CtBMC), cortical bone density (CtvBMD) and Peri in LCSG were significantly higher than those in LCS (p<0.01; p<0.01; p<0.05, respectively). All bone parameters in LCSG were significantly higher than those in LC (p<0.01, except in Peri, and stress strain index to reference axis x (xSSI) p<0.05)). In addition, Ca, P, and Zn contents in LCSG were significantly higher than those in LCS (p<0.01; p<0.01; p<0.05, respectively). Our results suggest that GSPE included in a diet mixture with calcium has a beneficial effect on bone formation and bone strength for the treatment of bone debility caused by a low level of calcium.  相似文献   

3.
To guide development of novel nutritional strategies aimed at reducing the incidence of stress fractures, we observed the effects of manipulating dietary zinc (Zn) content on bone integrity in Sprague–Dawley rats fed either a severely Zn-deficient (ZnD; 1 ppm), a moderately Zn-deficient (MZnD; 5 ppm) or a Zn-adequate (ZnAD; 30 ppm) diet for 6 weeks. At the completion of the diet period, body composition, bone mineral content (BMC), bone area (BA) and bone mineral density (BMD) were determined in vivo by using dual-energy X-ray absorptiometry. Following euthanasia, long bones were collected for determination of Zn content and biomechanical strength testing. Despite significant positive correlations between dietary Zn and both body weight (BW) and bone Zn content for the entire cohort (r=.77 and r=.83, respectively), rats fed MZnD or ZnAD diets did not differ in feed intakes, body composition, BMC, BA, BMD or BW. Tibial bones, but not femur bones, appear to be more responsive to dietary Zn manipulation, as all bone biomechanical strength indices in the ZnAD-fed rats were significantly greater than in rats fed the ZnD diets. Rats fed either MZnD or ZnAD diets had stronger tibiae (129% increase in maximum load and stress at maximum load, P<.01) compared with those fed ZnD diets. The load at breakage for the tibial bones of rats fed MZnD diets was not different from the ZnD rats, but lower (P<.05) than that of the ZnAD rats. These results suggest that since feed intakes, body composition, BMC, BA, BMD and BW were not significantly different between the MZnD- and ZnAD-fed animals, the reduced bone integrity observed in the MZnD-fed rats resulted from dietary Zn inadequacy, and not as a result of the reduced growth that is typically associated with Zn deficiency.  相似文献   

4.
Phytic acid, a major phosphorous storage compound found in foodstuffs, is known to form insoluble complexes with nutritionally essential minerals, including zinc (Zn). Phytases are enzymes that catalyze the removal of these minerals from phytic acid, improving their bioavailability. The objective of the present study was to determine the ability of dietary phytase to affect body weight, body composition, and bone strength in growing rats fed a high phytic acid, low Zn diet. Rats (n = 20) were fed either a control (AIN-93) or phytase supplemented (Natuphos, BASF, 1,500 phytase units (FTU)/kg) diet for a period of 8 weeks. Phytase supplementation resulted in increased (P<.05) bone and plasma Zn, but no change in plasma inorganic phosphorous or bone levels of Ca, Fe, or Mg. The addition of phytase to the diets resulted in a 22.4% increase (P<.05) in body weight at the end of the study as compared with rats fed a control diet. Dual x-ray absorptiometry (DXA) revealed that phytase supplementation resulted in increase lean body mass (LBM, P<.001) and increased bone mineral content (BMC, P<.001) as compared with feeding the control diet. Bone studies indicated that femurs and tibias from phytase supplemented rats had greater mass (P<.05) and were stronger (P<.05) than rats fed the control diet. This data suggest that the addition of phytase to low Zn diets results in improved Zn status, which may be responsible for beneficial effects on growth, body composition, and bone strength.  相似文献   

5.
The ability of birds to modify dietary phosphorus utilisation when fed with low-phosphorus and calcium (Ca) diets was studied using different sequences of dietary phosphorus and Ca restriction (depletion) and recovery (repletion) during the grower and the finisher phases. A total of 3600 Ross 708 broilers were randomly divided into 10 replicate pens per treatment (60 per pen, six pens per block). Chicks were fed a common starter diet from days 0 to 10, then a grower control diet (C: 0.90% Ca, 0.39% non-phytate phosphorus, nPP), mid-level diet (M: 0.71% Ca, 0.35% nPP) or low Ca and nPP diet (L: 0.60% Ca, 0.30% nPP) from days 11 to 21, followed by a finisher diet C, M or L containing, respectively, 0.85%, 0.57% or 0.48% Ca and 0.35%, 0.29% or 0.24% nPP from days 22 to 37. Six treatment sequences were tested: CC, MM, LL, ML, LC and LM. Bone mineral content by dual-energy X-ray, tibia ash, toe ash weight and tibia breaking strength were measured on days 21 and 37. No significant effect was observed on growth performance throughout the experiment. Diet L reduced bone mineral content, breaking strength, tibia and toe ash by 9%, 13%, 11% and 10%, respectively, on day 21 (compared with diet C, for linear effect, P<0.05). On day 37, bone mineral content, breaking strength, tibia and toe ash remained lower compared with control values (CC v. MM v. LL, P<0.05 for linear and quadratic effects). Mineral depletion duration (ML v. LL) did not affect bone mineral status. Replenishing with the C diet during the finisher phase (LC) restored bone mineral content, tibia ash and toe ash weight better than the M diet did, but not to control levels (CC v. LC v. LM, for linear effect, P<0.05). These results confirm that dietary Ca and nPP may be reduced in the grower phase without affecting final growth performance or breaking strength as long as the finisher diet contains sufficient Ca and nPP. The practical applications of this strategy require further study in order to optimise the depletion and repletion steps.  相似文献   

6.
We investigated the effects of grape seed proanthocyanidins extract (GSPE) on bone formation by examining total and cortical bone mass, density, architecture, and strength non-invasively using mandibular condyles of Ca-restricted rats. Forty Wistar male rats, each 5 weeks old, were divided into control (C), low-Ca diet (LCaD), low-Ca diet-standard diet (LcaD x SD), and low-Ca diet x Estandard diet with supplementary GSPE (LcaD x SD+GSPE) groups. In LCaD x SD group, after the bone debility was induced by low-Ca diet, a standard diet therapy was given. In LCaD x SD+GSPE group, after the bone debility was induced by low-Ca diet, a standard diet therapy with supplementary GSPE was given. Each mandibular condyle was examined using peripheral quantitative computed tomography (pQCT). There were no significant inter-group differences in body weight seen throughout the experimental period. In LcaD x SD+GSPE, cortical bone cross-sectional area and mineral content were not significantly different from C, while bone mineral content was significantly higher in LcaD x SD+GSPE than in LcaD x SD. Cortical bone density of LcaD x SD+GSPE was not significantly different from that of C, however, that value in LCaD and LcaD x SD was significantly lower than that. The cross-sectional (bending) moment of inertia values in LcaD x SD+GSPE were the highest among all groups, though they did not differ significantly from those in C. Further, the cross-sectional (bending) Stress/Strain Index (SSI) values in LcaD x SD+GSPE were statistically similar to those in C, however, not significant higher than in LcaD x SD. These results suggest that GSPE treatment would increase both bone mass and bone strength on the rat mandibular condyles.  相似文献   

7.
The effects of chronic metabolic acidosis (CMA) on zinc (Zn) bone content and urinary excretion were examined in the presence of normal or reduced renal function together with some aspects of calcium (Ca) metabolism. Four groups of rats were compared. All were fed a 30% protein and 9 mg Zn/100 g diet. Two were uremic (U): The first developed acidosis (UA), which was suppressed in the other (UNA) by NaHCO3 supplement. Two other groups had normal renal function: One was normal (CNA), and the other had NH4Cl in the drinking water and acidosis (CA). Femur total Zn and Ca content was markedly reduced by CMA and was not affected by uremia. Zn urinary excretion was increased by CMA and unaltered by uremia. Ca urinary excretion was markedly reduced in uremic rats, but was enhanced in both acidotic conditions. Urinary Ca and Zn showed a strong correlation in uremic and in control rats. Plasma parathormone and 1,25(OH)2D3 were unchanged by CMA. These data are in agreement with a direct primary effect of CMA on bone in releasing buffers. CMA induces bone resorption and a parallel decrease of mineral bone components, such as Ca and Zn, with little or no role of PTH, 1,25(OH)2D3 and of uremia itself.  相似文献   

8.
Previous studies have revealed that magnesium (Mg) plays a significant role in bone health; however, few studies have investigated the effects of Mg supplementation in diets with different calcium (Ca) levels on the bone status and bone metabolism in a growing stage. In this present study, we tested the effects of Mg supplementation on bone status in growing female rats, relative to Ca intake levels. A total of 40 Sprague–Dawley female rats aged 6 weeks were divided into the following four groups and fed for 12 weeks as indicated: (1) LCaAMg: low Ca (Ca, 0.1 % of total diet) and adequate Mg (Mg, 0.05 % of total diet), (2) LCaHMg: low Ca and high Mg ( Mg, 0.1 % of total diet), (3) ACaAMg: adequate Ca (Ca, 0.5 % of total diet) and adequate Mg, and (4) ACaHMg: adequate Ca and high Mg. Our results showed that Mg supplementation with the adequate Ca diet significantly increased the bone mineral contents, bone size (bone area and bone thickness), and bone mineral density of femur or tibia by improving bone metabolism without changing Ca absorption. Mg supplementation significantly increased the serum osteocalcin in the adequate-Ca-diet group (p?<?0.05), while the Mg supplementation significantly decreased the serum level of C-telopeptide cross-links of type I collagen in the adequate-Ca-diet group (p?<?0.001). This study suggests that Mg supplementation with adequate Ca intake in the growing stage may increase the bone mineral density and bone size by improving bone metabolism.  相似文献   

9.
An experiment was conducted to study the effect of microbial phytase (Natuphos® 500) supplementation in chicks fed different levels of available phosphorus (AP) and citric acid (CA) on performance, mineral retention (Ca, P, Mg, and Zn), bone and plasma minerals (Ca, P, Mg, and Zn), plasma total protein (TP), and serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) activities. Data were analyzed as a 2×4×2 factorial arrangement with two levels of AP (3.5 and 2.5 g/kg), four levels of phytase (0, 200, 400 and 600 U/kg), and two levels of citric acid (0 and 20 g/kg). The low-AP diets reduced performance. Phytase supplementation increased weight gain (up to 7% quadratically) and feed consumption (up to 5%). This response was statistically maximized by 200 U/kg phytase. Feed to gain ratio was not affected by phytase addition. Growth response to phytase was negatively affected by citric acid. Decreasing AP content in the diet increased Ca, P, and Mg retention, and reduced Zn retention. Phytase supplementation linearly increased Ca, P, and Zn retention by 9, 10 and 16%, respectively. Citric acid addition also increased Ca, P, and Zn retention by 3, 3 and 4%, respectively. Likewise, the decrease in AP content in the diet caused a reduction of tibia ash and tibia Zn, and an increase in tibia Ca and P contents. Phytase supplementation increased tibia ash (up to 4%), tibia Ca (up to 2%), P (up to 1%) and Zn (up to 4%) contents, tibia weight (up to 9%), and relative tibia (up to 19%) and liver (up to 13%) weights. Citric acid increased tibia ash (2%), and tibia Ca (2%) and P (2%) contents. Finally, by decreasing AP levels in the diet, plasma Ca and Zn concentrations as well as AST, ALP, and LDH activities were increased. However, plasma P and TP content were reduced. Phytase supplementation increased linearly plasma Ca (up to 4%), P (up to 12%), Mg (up to 10%), Zn (up to 22%) and TP (up to 7%) content, and serum AST (up to 22%), ALT (up to 40%), and LDH (up to 17%) activities, and reduced linearly serum ALP (up to 34%) activity. Citric acid addition increased plasma Ca, Mg, and Zn content by 10, 4, and 5%, respectively, and reduced ALP activity by 13%. In conclusion, these results indicated that the addition of phytase to maize and soyabean meal low-AP diets improved the performance and increased Ca, P, and Zn utilization in chicks. However, the inclusion of citric acid depressed the performance and caused an increase in mineral utilization. Growth response to phytase was negatively affected by citric acid.  相似文献   

10.
Phytic acid forms insoluble complexes with nutritionally essential minerals, including zinc (Zn). Animal studies show that addition of microbial phytase (P) to low-Zn diets improves Zn status and bone strength. The present study determined the effects of phytase supplementation on bone mineral density (BMD), body composition and voluntary running activity of male rats fed a high phytic acid, low-Zn diet. In a factorial design, rats were assigned to ZnLO (5 mg/kg diet), ZnLO+P (ZnLO diet with 1500 U phytase/kg) or ZnAD (30 mg/kg diet) groups and were divided into voluntary exercise (EX) or sedentary (SED) groups, for 9 weeks. SED rats were significantly heavier from the second week, and no catch-up growth occurred in EX rats. Feed intakes were not different between groups throughout the study. ZnLO animals had decreased food efficiency ratios compared to both phytase-supplemented (ZnLO+P) and Zn-adequate (ZnAD) animals (P<.01 compared to ZnLO). The ZnLO+P and ZnAD rats ran 56–75 km more total distance than ZnLO rats (P<.05), with the ZnLO+P rats running more kilometers per week than the ZnLO rats by Week 6. In vivo DEXA analyses indicate that rats fed phytase-supplemented diets had higher lean body mass (LBM) than those fed ZnLO diets; and that rats fed the Zn-adequate diets had the highest LBM. Body fat (%) was significantly lower in EX rats and was both Zn- and phytase insensitive. Rats fed phytase-supplemented diets had higher bone mineral content (BMC), bone area (BA) and BMD than rats fed ZnLO diets; and in rats fed ZnAD diets these indices were the highest. The dietary effects on BMC, BA and BMD were independent of activity level.We conclude that consuming supplemental dietary phytase or dietary Zn additively enhances Zn status to increase BMD, LBM and voluntary physical activity in rats fed a low-Zn diet. While the findings confirm that bone health is vulnerable to disruption by moderate Zn deficiency in rats, this new data suggests that if dietary Zn is limiting, supplemental phytase may have beneficial effects on LBM and performance activity.  相似文献   

11.
OBJECTIVE: The objective of this study was to consider the effects of boron (B) and calcium (Ca) supplementation on mechanical properties of bone tissues and mineral content of the selected bones in rats. METHODS: Adult male Sprague Dawley rats underwent three different treatments with boron and calcium in their drinking water, while taking diet ad libitum for 4 weeks. Rats in the three treatment groups received 2 mg B/d, 300 mg Ca/d, and a combination of 2 mg B+ 300 mg Ca/d, respectively. After the experimental period body weights were recorded and bone mechanical properties were determined on the tibiae, femurs, and fifth lumbar vertebral bones and the mineral contents of these bones was calculated as the ash percentage. RESULTS: Better measurement of bone mechanical properties were observed for boron supplementation. The stiffness of the lumbar vertebral bones tended to increase in all groups and was significant for Ca supplementation. The significant maximal load obtained for boron in all bones indicates higher strength and less strength for apparently a high level of calcium, while this negative defect in the case of lumbar vertebral bones was corrected in the presence of boron. Highest mean energy to maximal load was shown with boron supplementation, demonstrating significant values with Ca group, and lower energy for the lumbar vertebral bones in Ca group in comparison with the controls. Less deformation at the yield points was shown in Ca group. There were no significant differences in ash weights among the four groups. CONCLUSIONS: Additional and longer studies are warranted to further determine the effects of supplemental boron with different calcium levels and possibly other minerals involved in bone mechanical properties in rats.  相似文献   

12.
Estrogen deficiency impairs intestinal Ca absorption and induces bone loss, but its effects on the vitamin D-endocrine system are unclear. In the present study, calciotropic hormones levels, renal vitamin D metabolism, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]-dependent intestinal calcium absorption, and bone properties in 3-mo-old sham-operated (sham) or ovariectomized (OVX) rats fed either a normal-Ca (NCD; 0.6% Ca, 0.65% P) or a low-Ca (LCD; 0.1% Ca, 0.65% P) diet for 2 wk were determined. LCD increased serum 1,25(OH)2D3 levels in both sham and OVX rats. Serum parathyroid hormone [PTH(1-84)] levels were highest in OVX rats fed LCD. Renal 25-hydroxyvitamin D1alpha-hydroxylase (1-OHase) protein expression was induced in both sham and OVX rats during LCD, while renal 1-OHase mRNA expression was highest in OVX rats fed LCD. Renal vitamin D receptor (VDR) and mRNA expressions in rats were induced by ovariectomy in rats fed NCD but suppressed by ovariectomy in rats fed LCD. The induction of intestinal calcium transporter-1 and calbindin-D9k mRNA expressions by LCD were not altered by ovariectomy. As expected, bone Ca content, cancellous bone mineral density, and bone strength index in proximal metaphysis of rat tibia were reduced by both ovariectomy and LCD (P<0.05) as analyzed by two-way ANOVA. Taken together, the data demonstrate that ovariectomy alters the responses of circulating PTH levels, renal 1-OHase mRNA expression, and renal VDR expression to LCD. These results suggest that estrogen is necessary for the full adaptive response to LCD mediated by both PTH and 1,25(OH)2D3.  相似文献   

13.
The relationship between magnesium (Mg) and zinc (Zn) in soft tissues and bone of rats was studied after administration of unbalanced mineral diets. Minerals and metals in soft tissues and bone were determined using inductively coupled plasma emission spectrometry (ICP). There were significant positive correlations between serum Zn and Mg levels, between serum Zn and Zn content of soft tissues and bone, and between serum Mg levels and Zn content of bone and soft tissues in rats fed unbalanced mineral diets. A significant positive correlation was also found between Zn and Mg content in the lumbar spine and femoral bone of rats. It appears that altered bone mineralization induced by unbalanced mineral diets leads to mobilization of Mg and Zn from rat bones in similar ways.  相似文献   

14.
This experiment was designed to compare the effect of ingestion of a wheat flours on mineral status and bone characteristics in rats. White flour was tested either without further mineral supplementation or with Mg, Fe, Zn and Cu supplementation. The flour diets were compared to a control purified diet. Four groups of 10 male Wistar rats each were fed one of the experimental diets for 6 wk and mineral status and tissue retention as well as bone characteristics were determined. As expected, mineral intake, except for calcium, was significantly lesser in rats fed the white flour diet than in the other groups. The rats fed the white flour diet had the lowest food intake, weight gain, fecal excretion and intestinal fermentation. The most important result was that Mg and Fe status were drastically lower in rats fed the white flour diet than in those fed whole flour or control diets. The status of these both elements were significantly improved by the mineral supplementation of white flour. There were no major significant differences between mineral-supplemented white flour and whole flour groups in mineral status. Furthermore, bone mineral densities (total, metaphyseal and diphyseal) were significantly lower in rats fed white flour diet compared to the other diet groups, while no significant difference was observed between the mineral-supplemented white flour, whole flour or control diet groups. In conclusion, the present work shows clearly the importance of mineral-supplementation of white wheat flour to sustain an adequate intake of minerals. Our results indicate also that the whole wheat flour did not negatively alter mineral bioavailability, in comparison to mineral supplemented white flour. Clinical studies are still needed to confirm these rat results in human.  相似文献   

15.
This study was designed to investigate whether mineral concentrations in the spleen, serum, and liver were modified by challenge infection with a gastrointestinal nematode, by infection dose, or by protein deficiency despite adequate dietary intakes of minerals. BALB/c mice fed protein-sufficient (PS, 24%) or protein-deficient (PD, 3%) diets were infected with 100 L3 of Heligmosomoides bakeri, drug-treated, and then re-infected with either 0, 100, or 200 L3. Protein deficiency and infection, but not dose, independently modified tissue mineral distributions. H. bakeri infection lowered serum iron concentrations in both diet groups. Despite this, PD mice had elevated iron and calcium concentrations and Ca/Zn ratio in the spleen as well as Fe/Zn ratio in liver, but they had reduced calcium, zinc, copper, and sulfur concentrations, and Cu/Zn ratio in the liver. Infection reduced calcium and iron concentrations and the Ca/Zn ratio in the spleen. We suggest that tissue mineral distribution is a consequence of Th2 immune and inflammatory responses induced by infection in PS mice and the switch to predominant Th1 inflammation in PD, nematode-infected mice.  相似文献   

16.
This study evaluated the effects of diets with fiber (cellulose and/or pectin) supplemented with chromium(III) on homeostasis of selected minerals in femurs, thigh muscles, livers, and kidneys of rats. For 6 weeks, male rats were fed experimental diets: a fiber-free diet (FF), a diet containing 5 % cellulose (CEL), 5 % pectin (PEC), or 2.5 % cellulose and 2.5 % pectin (CEL?+?PEC). These diets had 2.53 or 0.164 mg Cr/kg diet. The tissue levels of Ca, Mg, Zn, Fe, and Cr were determined by using atomic absorption spectrometry. Supplementing diets with Cr resulted in significantly higher Cr levels in the femurs of rats fed the CEL diet and significantly higher Cr and Fe levels in the rats fed the CEL?+?PEC diet compared to the rats fed FF diet. Muscle Ca content was significantly lower in the rats fed the CEL?+?PEC?+?Cr diet compared to the rats fed FF?+?Cr diet. The rats consuming the PEC?+?Cr diet had the highest liver Cr content. The highest kidney Zn content was observed in the rats fed diets containing Cr and one type of fiber. These results indicate that diets containing chromium at elevated dose and fiber have a significant effect on the mineral balance in rat tissues.  相似文献   

17.
One hundred and sixty pigs were used to evaluate dietary copper (Cu) and zinc (Zn) supplementation on performance, fecal mineral levels, body mineral status and carcass and meat quality. Diets differed in mineral form (MF) (Cu and Zn in the form of proteinate amino acid chelate (organic) or sulfate (inorganic)) and inclusion level (IL) (27 mg/kg of total Cu and 65 mg/kg of total Zn ('low') or 156 mg/kg of total Cu and 170 mg/kg of total Zn ('high')) according to a 2 × 2 factorial arrangement of treatments. Pigs were used from 25 to 107 kg body weight (BW) and fed their respective diets ad libitum. Blood and fecal samples were collected on days 14 and 77 of the experiment. Blood was analyzed for concentration of Cu and Zn, hemoglobin (Hb), Cu content of red blood cells (RBC Cu) and alkaline phosphatase (ALP) and feces for Cu and Zn concentration. Hot carcass weight (HCW) and backfat depth were measured at slaughter and indices of meat quality were assessed on a section of longissimus thoracis. Liver, kidney and bone samples were collected immediately after slaughter and liver and kidney were tested for Cu and Zn content, while bone was only tested for Zn. Over the entire experimental period (25 to 107 kg BW) no significant treatment differences in average daily gain (ADG) or average daily feed intake (ADFI) occurred; however, feed conversion ratio (FCR) was improved by the inclusion of proteinate amino acid chelate (P = 0.012). Copper and Zn concentrations in feces were in direct proportion to the IL in the diet. Blood mineral levels were within normal physiological ranges in all treatments and tissue Cu and Zn concentrations increased with dietary IL (P < 0.05). Results indicate that Cu and Zn fecal concentrations were reduced by approximately 6-fold for Cu and by 2.5-fold for Zn by feeding 27 mg/kg Cu and 65 mg/kg Zn, in either the proteinate amino acid chelate or the sulfate form, compared with a diet containing 156 mg/kg Cu and 170 mg/kg Zn. This decrease in total dietary Cu and Zn did not reduce performance or mineral status of pigs.  相似文献   

18.
Phytic acid (PA) and fructooligosaccharides (FOS) such as inulin are two food components that are able to modify mineral absorption negatively or positively. The influence of PA and FOS on the cecal and apparent mineral absorption as well as on the mineral status (plasma, hepatic, and bone) were investigated in four groups of rats fed one of the experimental diets: a fiber-free (FF) diet, a FF diet containing 7 g/kg PA (FF + PA), a diet containing 100 g/kg inulin (FOS), or a FOS diet containing 7 g/kg PA (FOS + PA). The cecal enlargement together with the acidification of cecal pH in rats adapted to FOS diets led to an improved Ca and Mg cecal absorption. Mineral apparent absorption was significantly enhanced by FOS ingestion (Ca, +20%; Mg, +50%; Fe, +23%; Cu, +45%), whereas PA decreased this factor only for trace elements (Fe, -48%; Zn, -62%; Cu, -31%). These inhibitory effects of a FF + PA diet have repercussions on blood (Mg, -15%; Fe, -12%; transferrin saturation -31%), liver (Mg, -18%; Fe, -42%; Zn, -25%), and bone (Zn, -25%) variables. However, the introduction of FOS into a PA diet counteracted these observed deleterious effects by stimulating bacterial hydrolysis of PA (+60% in rats adapted to FOS + PA compared to those fed the FF + PA diet) and by improving cecal absorption of minerals.  相似文献   

19.
Two experiments, a performance experiment and a mineral balance study, were conducted on grower-finisher pigs (42 to 101 kg live weight) to investigate the effects of Peniophora lycii phytase enzyme and 25-hydroxyvitamin D3 (25-OHD3) on growth performance, carcass characteristics, nutrient retention and excretion, and bone and blood parameters. The two experiments were designed as a 2 × 2 factorial (two levels of phytase and two levels of 25-OHD3). The four diets were T1, low-phosphorous diet; T2, T1 + phytase; T3, T1 + 25-OHD3 and T4, T1 + phytase + 25-OHD3 diet. In all, 25 μg of 25-OHD3 was used to replace 1000 IU of vitamin D3 in diets T3 and T4. Diets were pelleted (70°C) and formulated to contain similar concentrations of energy (13.8 MJ DE/kg), lysine (9.5 g/kg) and digestible phosphorus (P; 1.8 g/kg). Neither the inclusion of phytase nor 25-OHD3 in the diet had any effect on pig performance. There was an interaction between phytase and 25-OHD3 on calcium (Ca) and P retention (P < 0.01) and on the apparent digestibility of ash (P < 0.01), P (P < 0.001) and Ca (P < 0.001). Pigs offered phytase diets only, had a higher retention of Ca and P and digestibility of ash (P < 0.01), P (P < 0.001) and Ca (P < 0.01) compared with pigs offered unsupplemented diets. However, when the combination of phytase and 25-OHD3 were offered, no effects were detected compared with 25-OHD3 diets only. Pigs fed phytase diets had higher bone ash (P < 0.01), bone P (P < 0.01) and bone Ca (P < 0.05) concentrations compared with pigs offered non-phytase diets. In conclusion, pigs offered phytase diets had a significantly increased bone ash, Ca and P than pigs offered unsupplemented phytase diets. However, there was no advantage to offering a combination of phytase and 25-OHD3 on either bone strength or mineral status compared to offering these feed additives separately.  相似文献   

20.
The main factors affecting the mechanical (and other) properties of bone, including antler, are the proportions of ash (especially Ca and P) and collagen content. However, some trace minerals may also play more important roles than would be expected, given their low levels in bone and antler. One such trace mineral is Cu. Here, we studied the effects of Cu supplementation on the mechanical and structural characteristics, and mineral content of antlers from yearling and adult (4 years of age) red deer fed a balanced diet. Deer (n=35) of different ages (21 yearlings and 14 adults) were studied. A total of 18 stags (11 yearlings and 7 adults) were injected with Cu (0.83 mg Cu/kg BW) every 42 days, whereas the remaining 17 (10 yearlings and 7 adults) were injected with physiological saline solution (control group). The Cu content of serum was analysed at the beginning of the trial and 84 days after the first injection to assess whether the injected Cu was mobilized in blood. Also, the mechanical and structural properties of antlers and the mineral content in their cortical walls were examined at three (yearlings) or four (adults) points along the antler beam. The effect of Cu supplementation was different in yearlings and adults. In yearlings, supplementation increased the Cu content of serum by 28%, but did not affect antler properties. However, in adults, Cu supplementation increased the Cu content of serum by 38% and tended to increase the cortical thickness of antlers (P=0.06). Therefore, we conclude that, even in animals receiving balanced diets, supplementation with Cu could increase antler cortical thickness in adult deer, although not in yearlings. This may improve the trophy value of antlers, as well as having potential implications for bones in elderly humans, should Cu supplementation have similar effects on bones as those observed in antlers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号