首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
For small-scale farmers who maintain genetically diverse crop populations, aspects of the storage of their seeds and harvest may be just as important for successful farming as those related to productivity. The community of Yaxcaba, Yucatan, Mexico was studied to understand how the conditions under which Maya farmers store their maize harvests influence their seed selection practices and the diversity of maize varieties grown. Most farmers select their maize seed based primarily on ear characteristics and secondarily on grain characters. Farmers incorporate storability concerns by selecting for an archetypal healthy ear and by conducting selection in several steps between harvest and planting of the subsequent crop generation. Most farmers store their maize harvest in the husk, initially in the field and then in rustic granaries constructed of logs and palm thatch, in which farmers conserve separately their different seed lots. All local landrace populations show morphological adaptation (principally husk characteristics) for local storage conditions, indicating that storability has been an important selection pressure on traditional maize. Storability also appears to be a key factor working against the straightforward adoption of improved maize seed in Yaxcaba. Local farmers value many qualities of improved maize varieties, but their principal complaint is that improved maize cannot be conserved reliably under local storage conditions. Nearly all farmers who utilize improved seed stock in Yaxcaba grow locally adapted or ‘creolized’ versions of improved varieties, displaying characteristics of local maize landraces that facilitate their storage.  相似文献   

2.
Dynamic Management of Maize Landraces in Central Mexico   总被引:1,自引:0,他引:1  
Conservationists of crop genetic resources have feared that in situ conservation was not viable for agriculture precisely because of changes resulting from introduction of new varieties of existing crops, new crops, and new farm practices. In addition, conservation within farming systems necessarily implies a constantly changing crop population resulting from the processes of crop evolution. Even though in situ conservation of crop genetic resources is now generally understood to be dynamic, there are few examples of how evolution takes place in farmers fields. This study describes several changes in maize landraces in four communities along an altitude transect in Central Mexico (1200 to 2400 masl). While true modern varieties have not been widely adopted in the study region, farmer management results in numerous changes in maize landrace populations. Five types of dynamic management were observed: (1) purposeful hybridization between traditional and modern maize types, (2) possible creation of a new maize landrace by directional selection of the progeny of hybridization between two traditional landraces, (3) displacement of a local landrace by the introduction of a modern variety and a non-local landrace, (4) maintenance of stable populations of a locally dominant landrace, and (5) market-driven selection for a minor variety. We concur that in situ conservation of crops must be conceived as an open process where the objective is not to maintain historic varieties or static genetic conditions. Rather, in situ conservation of crops is totally in the hands of the farmer, although interventions may be designed to influence farmers’ management of agrobiodiversity.  相似文献   

3.
Landraces are heterogeneous plant varieties that are reproduced by farmers as populations that are subject to both artificial and natural selection. Landraces are distinguished by farmers due to their specific traits, and different farmers often grow different populations of the same landrace. We used simple sequence repeats (SSRs) to analyse 12 barley landrace populations from Sardinia from two collections spanning 10 years. We analysed the population structure, and compared the population diversity of the landraces that were collected at field level (population). We used a representative pool of barley varieties for diversity comparisons and to analyse the effects of gene flow from modern varieties. We found that the Sardinian landraces are a distinct gene pool from those of both two-row and six-row barley varieties. There is also a low, but significant, mean level and population-dependent level of introgression from the modern varieties into the Sardinian landraces. Moreover, we show that the Sardinian landraces have the same level of gene diversity as the representative sample of modern commercial varieties grown in Italy in the last decades, even within population level. Thus, these populations represent crucial sources of germplasm that will be useful for crop improvement and for population genomics studies and association mapping, to identify genes, loci and genome regions responsible for adaptive variations. Our data also suggest that landraces are a source of valuable germplasm for sustainable agriculture in the context of future climate change, and that in-situ conservation strategies based on farmer use can preserve the genetic identity of landraces while allowing adaptation to local environments.  相似文献   

4.

Purple or black rice (Oryza sativa L.) is a culturally important germplasm in Asia with a long history of cultivation in northern Thailand. Purple rice is identified by the color of the rice pericarp, which varies from purple to black with the accumulation of phenolic acids, flavonoids, and anthocyanins. In the present study, we assessed molecular variation within and between wetland purple rice landraces germplasm from northern and northeastern Thailand using 12 microsatellite loci. All purple rice varieties surveyed showed high levels of homozygosity within varieties and strong genetic differentiation among varieties, indicating the fixation of genetic differences among them. This pattern is consistent with purple rice farming practices in northern Thailand, where a small portion of harvested seed is selected and replanted based on farmers’ preferences. The reduced genetic diversity and high homozygosity observed for purple rice is also consistent with patterns expected for this inbreeding crop. Genetic differentiation among the varieties showed some degree of structuring based on their geographical origin. Taken together, these data highlight that the genetic diversity and structure of wetland purple rice landraces is shaped by farmer utilization and cultivation through local cultural practices, and that conservation should focus on ex situ conservation across its cultivation range, along with on-farm, in situ conservation based on farmers’ seed-saving practices. In situ conservation may prove especially valuable for preserving the genetic identity of local varieties and promote adaptation to local environments.

  相似文献   

5.
Bean germplasm collections in northern Malawi revealed the existence of diverse landraces, which have probably been maintained by the local farmers as heterogeneous mixtures since the precolonial introduction of Phaseolus vulgaris into eastern Africa. The various seed types comprising these mixtures are known by an array of local names, reflecting farmer perceptions of seed color and pattern, eating quality, plant structure, origin, and other characteristics. A principal components analysis of morphological, phenological, and agronomic metrical traits for 375 lines randomly selected from 15 landraces revealed a clinal pattern, with the northern and southern areas forming the extremes. Genetic distances, based on the first six PCs, indicated greater between-area variability than within-area variability. Bean landrace diversity in Malawi is likely the result of a complex interplay among forces that generate variability such as outcrossing and human and environmental selection.  相似文献   

6.
Conservation of crop genetic resources is now considered an important component of sustainable agricultural development. If conservation of genetic resources for agriculture is to be successful, a more complete understanding of the dynamics affecting traditional (landrace) crop populations is needed. We conducted a study of maize-based agriculture in the Central Highlands of Mexico in communities at 2400, 1700, 1400, and 1200 masl to assess the status of traditional varieties in an area characterized by thorough integration into the national economy. Our research contradicts the view that modern varieties persist because of marginal conditions, deficient infrastructure, weaker markets, or traditional attitudes. One or two landraces dominated highland maize populations and farmers appeared to be more conservative in terms of their emphasis on traditional maize varieties than at lower elevations. The dominance of traditional varieties in the highlands is well known but poorly explained, and the coexistence of traditional and modern varieties in the mid-elevations was unexpected. Our highland study area has good roads, is near Mexico City, and is less than 50 km away from four major crop research institutes that have done maize breeding since 1950’s. We suggest that in situ conservation of maize genetic resources in the highlands is sustained because the landraces there have good agronomic performance and are highly valued by farmers for their end-use qualities. At the mid-elevations, competition between local and modern maize was sharpest, and farmers have found that both landraces and improved varieties suit their needs, hence enhancing genetic diversity. Interventions and incentives would appropriately be carried out here to assure in situ conservation of locally adapted landraces of maize.  相似文献   

7.
Landrace rice in Thailand consists of managed populations grown under traditional and long‐standing agricultural practices. These populations evolve both in response to environmental conditions within the local agro‐ecosystem and in response to human activities. Single landraces are grown across varying environments and recently have experienced temporal changes in local environments due to climate change. Here we assess the interplay between natural selection in a changing climate and human‐mediated selection on the population genetic structure of Muey Nawng, a local landrace of Thai rice. Genetic diversity and population structure of landrace rice were assessed by a STRUCTURE analysis of 20 microsatellite loci. The first exon–intron junction of the waxy gene was sequenced to determine genotypes for glutinous or non‐glutinous grain starch. Muey Nawng rice is genetically variable and is structured based on starch grain types and the level of resistance to gall midge pest. A strong positive correlation was found between genetic diversity and the percentage of gall midge infestation. Variation in the waxy locus is correlated with starch quality; selection for non‐glutinous rice appears to involve additional genes. The dynamics of genetic diversity within Muey Nawng rice depends on three factors: (a) a genetic bottleneck caused by strong selection associated with gall midge infestation, (b) selection by local farmers for starch quality and (c) variation introduced by farmer practices for cultivation and seed exchange. These results, when taken in total, document the ability of landrace rice to quickly evolve in response to both natural and human‐mediated selection.  相似文献   

8.
As maize was domesticated in Mexico around 9,000 years ago, local farmers have selected and maintained seed stocks with particular traits and adapted to local conditions. In the present day, many of these landraces are still cultivated; however, increased urbanization and migration from rural areas implies a risk that this invaluable maize germplasm may be lost. In order to implement an efficient mechanism of conservation in situ, the diversity of these landrace populations must be estimated. Development of a method to select the minimum number of samples that would include the maximum number of alleles and identify germplasm harboring rare combinations of particular alleles will also safeguard the efficient ex‐situ conservation of this germplasm. To reach this goal, a strategy based on SSR analysis and a novel algorithm to define a minimum collection and rare genotypes using landrace populations from Puebla State, Mexico, was developed as a “proof of concept” for methodology that could be extended to all maize landrace populations in Mexico and eventually to other native crops. The SSR‐based strategy using bulked DNA samples allows rapid processing of large numbers of samples and can be set up in most laboratories equipped for basic molecular biology. Therefore, continuous monitoring of landrace populations locally could easily be carried out. This methodology can now be applied to support incentives for small farmers for the in situ conservation of these traditional cultivars.  相似文献   

9.
Understanding the geographical, environmental and social patterns of genetic diversity on different spatial scales is key to the sustainable in situ management of genetic resources. However, few surveys have been conducted on crop genetic diversity using exhaustive in situ germplasm collections on a country scale and such data are missing for sorghum in sub-Saharan Africa, its centre of origin. We report here a genetic analysis of 484 sorghum varieties collected in 79 villages evenly distributed across Niger, using 28 microsatellite markers. We found a high level of SSR diversity in Niger. Diversity varied between eastern and western Niger, and allelic richness was lower in the eastern part of the country. Genetic differentiation between botanical races was the first structuring factor (Fst = 0.19), but the geographical distribution and the ethnic group to which farmers belonged were also significantly associated with genetic diversity partitioning. Gene pools are poorly differentiated among climatic zones. The geographical situation of Niger, where typical western African (guinea), central African (caudatum) and eastern Sahelian African (durra) sorghum races converge, explained the high observed genetic diversity and was responsible for the interactions among the ethnic, geographical and botanical structure revealed in our study. After correcting for the structure of botanical races, spatial correlation of genetic diversity was still detected within 100 km, which may hint at limited seed exchanges between farmers. Sorghum domestication history, in relation to the spatial organisation of human societies, is therefore key information for sorghum in situ conservation programs in sub-Saharan Africa. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
A large collection, such as the sorghum [Sorghum bicolor (L.) Moench] landrace collection held at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), represents a challenge for the maintenance of both the accessions of and the information documented for the germplasm collection. The accessibility and knowledge of the landrace collection are the essential factors for an efficient utilization of the genetic resources by both breeders and farmers. Different sampling strategies, either random or non-random, were proposed to obtain subsets of reduced size (core collection). Three subsets were established; a random sampling within a stratified collection (logarithmic strategy: L); a sample based upon morpho-agronomic diversity (principal component score strategy: PCS); and a sample based upon an empirical knowledge of sorghum (taxonomic strategy: T). Comparisons of these three samples for morpho-agronomic characterization and passport information were assessed to determine their impact on phenotypic diversity. For their overall diversity, the three subsets did not differ, as shown with the two-dimensional representation of the morpho-agronomic diversity and the Shannon-Weaver diversity indices. When comparisons for morpho-agronomic and passport data were considered, the PCS subset looked similar to the entire landrace collection. The L subset showed differences for characters associated with the photoperiod reaction that was considered in the stratification of the collection. The T subset was the most distinct from the entire landrace collection as it over-represented the landraces selected by farmers for specific uses and covered the widest range of geographical adaptation and morpho-agronomic characteristics. Received: 5 October 1999 / Accepted: 3 November 1999  相似文献   

11.

Key message

A high level of genetic diversity was found in the A. E. Watkins bread wheat landrace collection. Genotypic information was used to determine the population structure and to develop germplasm resources.

Abstract

In the 1930s A. E. Watkins acquired landrace cultivars of bread wheat (Triticum aestivum L.) from official channels of the board of Trade in London, many of which originated from local markets in 32 countries. The geographic distribution of the 826 landrace cultivars of the current collection, here called the Watkins collection, covers many Asian and European countries and some from Africa. The cultivars were genotyped with 41 microsatellite markers in order to investigate the genetic diversity and population structure of the collection. A high level of genetic diversity was found, higher than in a collection of modern European winter bread wheat varieties from 1945 to 2000. Furthermore, although weak, the population structure of the Watkins collection reveals nine ancestral geographical groupings. An exchange of genetic material between ancestral groups before commercial wheat-breeding started would be a possible explanation for this. The increased knowledge regarding the diversity of the Watkins collection was used to develop resources for wheat research and breeding, one of them a core set, which captures the majority of the genetic diversity detected. The understanding of genetic diversity and population structure together with the availability of breeding resources should help to accelerate the detection of new alleles in the Watkins collection.  相似文献   

12.
Landraces are domesticated local plant varieties that did not experience a deliberate and intensive selection during a formal breeding programme. In Europe, maize landraces are still cultivated, particularly in marginal areas where traditional farming is often practiced. Here, we have studied the evolution of flint maize landraces from central Italy over 50 years of on-farm cultivation, when dent hybrid varieties were introduced and their use was widespread. We have compared an 'old' collection, obtained during the 1950s, before the introduction of hybrids, and a recent collection of maize landraces. For comparison, a sample of maize landraces from north Italy, and of improved germplasm, including hybrids and inbred lines were also used. A total of 296 genotypes were analysed using 21 microsatellites. Our results show that the maize landraces collected in the last 5–10 years have evolved directly from the flint landrace gene pool cultivated in central Italy before the introduction of modern hybrids. The population structure, diversity and linkage disequilibrium analyses indicate a significant amount of introgression from hybrid varieties into the recent landrace populations. No evidence of genetic erosion of the maize landraces was seen, suggesting that in situ conservation of landraces is an efficient strategy for preserving genetic diversity. Finally, the level of introgression detected was very variable among recent landraces, with most of them showing a low level of introgression; this suggests that coexistence between different types of agriculture is possible, with the adoption of correct practices that are aimed at avoiding introgression from undesired genetic sources.  相似文献   

13.
The seed sector situation in Northwest Somalia is critical. The availability of food has decreased and many people are at risk of hunger. Food security can be restored by enhancing the local genetic resources and creating an efficient seed sector. Sorghum is important as a food and fodder crop in this region. It is close to Ethiopia, which is considered as the probable origin and domestication of Sorghum. Twelve morphological and productive characteristics were chosen to assess the phenotypic variability of 16 accessions of sorghum from Northwest Somalia. Univariate (analysis of variance and G test) and multivariate (discriminant and cluster analysis) methods were used to assess the morphological variation within the accession and to group the 16 accessions into clusters based upon quantitative and qualitative characters. Elmi Jama Cas, Masego Cas, Masego Cad and Carabi clearly represent distinct landraces with specific features suitable for different purpose, such as grain and/or forage production. Each landrace tested is able to grow under harsh environmental conditions, thus ensuring a low, but stable production for small poor resources farmers. Knowledge and conservation of local landraces will provide a broad base of genetic variability from which improved sorghum varieties can be developed, thus aiding in the stabilisation of a secure and sustainable food supply for farmers of Northwest Somalia.  相似文献   

14.
We studied the regional genetic diversity and seed exchange dynamics of pearl millet landraces in south-western Niger. The genetic study was based on AFLP markers. We found significant genetic differentiation between landraces in different geographical areas of south-western Niger. However, the degree of differentiation was low insofar as only 1.9% of the total molecular diversity was due to regional differentiation, suggesting a relatively high gene flow. Anthropologic studies on farming practices have suggested that seed exchanges between farmers on a large geographical scale probably make a considerable contribution to this result. In order to test this hypothesis, the effects of seed exchange on the genetic diversity of landraces was analyzed on seed samples from two distant villages in contrasting areas of south-western Niger. Seeds imported by farmers into the southern village of Sina Koara did not differ significantly from locally grown landraces. By contrast, in the northern village of Alzou, several samples were genetically different from locally grown landraces and closer to southern accessions. These data suggest that the seed flow is preferentially from south to north, i.e. from an area with more favorable rainfall conditions. The potential consequences for the genetic diversity and adaptation of northern pearl millet landraces are discussed.  相似文献   

15.
BACKGROUND AND AIMS: Landrace populations represent an important intra-crop reservoir of biodiversity and source of novel gene alleles for use in breeding programmes. Here the aim was to measure the diversity of a wheat landrace, 'Barbela', from the north of Portugal. METHODS: DNA was extracted from 59 accessions of Barbela collected across its geographical range. Diversity was measured by microsatellite length polymorphisms using 27 primer pairs amplifying 34 polymorphic microsatellite loci. KEY RESULTS: High levels of polymorphism were found, with an average polymorphism information content of 0.52; an average of 4.77 alleles (range 2-11) were present at each locus, and half of these loci showed an additional allele in the reference variety 'Chinese Spring'. CONCLUSIONS: 'Barbela' is maintained from seeds collected by farmers, but it maintains high allelic variation, and no groupings of accessions were detected when analysed by geographical region, farm or climate, indicating that the wheat landrace is a homogeneous entity. The diversity within the farmer-maintained landrace demonstrates the importance of characterization and maintenance of landrace collections before valuable genetic combinations are lost as uniform commercial crops are introduced.  相似文献   

16.
Plant biodiversity must be safeguarded because it constitutes a resource of genes that may be used, for instance, in breeding programs. Lentil (Lens culinaris Medik.) is one of the most ancient crops of the Mediterranean region. Extensive differentiation of L. culinaris over millennia has resulted in a myriad of different landraces. However, in more recent times many landraces have disappeared consequent to environmental and socioeconomic changes. To promote the survival of endangered lentil landraces, we have investigated the genetic relationship between two ancient landrace cultivated in Capracotta and Conca Casale (Molise, south-central Italy) and widely spread commercial varieties using an integrated approach consisting of studies at morphological, DNA and protein level. Seeds of these two landraces were collected from local farmers and conserved in the Molise germoplasm bank. The two local landraces were well differentiated from each other, and the Conca Casale landrace was separated from the commercial varieties at morphological, protein and DNA level. The Capracotta landrace, was well separated from the commercial varieties, except Castelluccio di Norcia, at DNA level showing a more complex and heterogeneous segregation at morphological and biochemical level. The correlation between morphological, DNA and protein data, illustrates that proteomics is a powerful tool with which to complement the analysis of biodiversity in ecotypes of a single plant species and to identify physiological and/or environmental markers.  相似文献   

17.
Many in situ conservation programs have been developed to preserve plant landrace diversity and to promote its sustainable utilization, but little is known about the effectiveness of the developed programs in conserving plant genetic diversity. We investigated the effectiveness of an unregulated (i.e., unplanned or open) conservation system maintained by Thai farmers in conserving Thai elite cassava (Manihot esculenta Crantz) varieties. Specifically, we compared genetic diversity of 266 cassava clones that were collected from 80 farms in eight provinces with 16 cassava landraces and varieties released since the 1970s through genotyping with 35 informative simple sequence repeat (SSR) markers. The SSR analysis revealed a large regional heterogeneity in cassava diversity, with a strong genetic differentiation of the assayed clones among the 80 farms (19.8 %) and across the eight provinces (11.8 %). Significant associations were also found between SSR variation and farm agro-ecological factors or some farming practices. However, there was no significant genetic differentiation (0.9 %) between the 266 farm clones and 16 reference varieties. These findings suggest that the Thai elite cassava genetic diversity was fortuitously conserved by the farmers through farming with different sets of varieties. Implications of these findings are discussed with respect to on-farm conservation of plant genetic resources.  相似文献   

18.
《Trends in plant science》2023,28(5):544-551
Future crops need to be sustainable in the face of climate change. Modern barley varieties have been bred for high productivity and quality; however, they have suffered considerable genetic erosion, losing crucial genetic diversity. This renders modern cultivars vulnerable to climate change and stressful environments. We highlight the potential to tailor crops to a specific environment by utilising diversity inherent in an adapted landrace population. Tapping into natural biodiversity, while incorporating information about local environmental and climatic conditions, allows targeting of key traits and genotypes, enabling crop production in marginal soils. We outline future directions for the utilisation of genetic resources maintained in landrace collections to support sustainable agriculture through germplasm development via the use of genomics technologies and big data.  相似文献   

19.
We examined the patterns of random amplified polymorphic DNA (RAPD) variation among seven Prunus mahaleb (Rosaceae) populations extending over approximately 100 km2 to examine local differentiation in relation to spatial isolation due to both geographical distance and differences in elevation. No less than 51. 4% of the RAPD loci were polymorphic, but very few were fixed and among-population variation accounted for 16.46% of variation in RAPD patterns. Mean gene diversity was 0.1441, with mean Nei's genetic diversity for individual populations ranging between 0.089 and 0.149. Mean GST value across loci was 0.1935 (range, 0.0162-0.4685), giving an average estimate for Nm of 1.191. These results suggest extensive gene flow among populations, but higher GST and lower Nm values relative to other outcrossing, woody species with endozoochorous dispersal, also suggest a process of isolation by distance. The combined effect of both geographical and elevation distances and nonoverlapping flowering and fruiting phenophases on the GST matrix was partially significant, revealing only marginal isolation of the P. mahaleb populations. The matrix correlation between estimated Nm values among populations and the geographical + elevation distance matrices (r = -0.4623, P = 0.07), suggests a marginal trend for more isolated populations to exchange less immigrants. Long-distance seed dispersal by efficient medium-sized frugivorous birds and mammals is most likely associated to the high levels of within-population genetic diversity. However, vicariance factors and demographic bottlenecks (high postdispersal seed and seedling mortality) explain comparatively high levels of local differentiation.  相似文献   

20.
为了探索水稻(Oryza sativa L.)地方品种的遗传多样性及其有效保育方法,对采自云南省17个村寨的82个水稻地方品种和3个国际常用的典型籼稻和粳稻品种进行了微卫星(SSR)分子标记的分析.利用19对SSR引物在85个水稻品种中共扩增出了83个基因型,其分子量变异在100~500 bp之间.基于各品种SSR基因型遗传相似系数聚类分析而获得的UPGMA树状图表明各水稻品种之间存在较大的遗传多样性,其相似系数变异在0.15~0.90之间.但这些地方品种的遗传多样性并非呈均等的地理分布.这85个水稻品种在相似系数为0.52之处分为二组,其中一组包括几乎所有的籼稻品种,而另一组包括全部的粳稻品种,表明SSR标记能很好揭示水稻籼-粳分化.同时,有些来自不同采集地的同名品种表现出一定的遗传差异,说明同名异物的现象存在.云南水稻地方品种具有丰富的遗传多样性,对其有效保育十分重要和迫切,但只有根据遗传多样性的水平和分布特点,采用正确的保育对策和取样方法才能确保对云南水稻地方品种的有效保育.结果进一步表明,选用适当的微卫星引物,可以为准确鉴定籼稻和粳稻品种及研究其进化规律提供有效的分子标记方法,并有利于有目标的水稻遗传资源保育和育种创新.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号