首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aptamers offer advantages over other oligonucleotide-based approaches that artificially interfere with target gene function due to their ability to bind protein products of these genes with high affinity and specificity. However, RNA aptamers are limited in their ability to target intracellular proteins since even nuclease-resistant aptamers do not efficiently enter the intracellular compartments. Moreover, attempts at expressing RNA aptamers within mammalian cells through vector-based approaches have been hampered by the presence of additional flanking sequences in expressed RNA aptamers, which may alter their functional conformation. In this report, we successfully expressed a ‘pure’ RNA aptamer specific for NF-κB p50 protein (A-p50) utilizing an adenoviral vector employing the H1 RNA polymerase III promoter. Binding of the expressed aptamer to its target and subsequent inhibition of NF-κB mediated intracellular events were demonstrated in human lung adenocarcinoma cells (A549), murine mammary carcinoma cells (4T1) as well as a human tumor xenograft model. This success highlights the promise of RNA aptamers to effectively target intracellular proteins for in vitro discovery and in vivo applications.  相似文献   

2.
Viral hemorrhagic septicemia virus (VHSV) is a serious disease impacting wild and cultured fish worldwide. Hence, an effective therapeutic method against VHSV infection needs to be developed. Aptamer technology is a new and promising method for diagnostics and therapeutics. It revolves around the use of an aptamer molecule, an artificial ligand (nucleic acid or protein), which has the capacity to recognize target molecules with high affinity and specificity. Here, we aimed at selecting RNA aptamers that can specifically bind to and inhibit the growth of a strain of fish VHSV both in vitro and in vivo. Three VHSV-specific RNA aptamers (F1, F2, and C6) were selected from a pool of artificially and randomly produced oligonucleotides using systematic evolution of ligands by exponential enrichment. The three RNA aptamers showed obvious binding to VHSV in an electrophoretic mobility shift assay but not to other tested viruses. The RNA aptamers were tested for their ability to inhibit VHSV in vitro using hirame natural embryo (HINAE) cells. Cytopathic effect and plaque assays showed that all aptamers inhibited the growth of VHSV in HINAE cells. In vivo tests using RNA aptamers produced by Rhodovulum sulfidophilum showed that extracellular RNA aptamers inhibited VHSV infection in Japanese flounder. These results suggest that the RNA aptamers are a useful tool for protection against VHSV infection in Japanese flounder.  相似文献   

3.
Hepatitis C virus (HCV) core protein is essential for virus assembly. HCV core protein was expressed and purified. Aptamers against core protein were raised through the selective evolution of ligands by the exponential enrichment approach. Detection of HCV infection by core aptamers and the antiviral activities of aptamers were characterized. The mechanism of their anti-HCV activity was determined. The data showed that selected aptamers against core specifically recognize the recombinant core protein but also can detect serum samples from hepatitis C patients. Aptamers have no effect on HCV RNA replication in the infectious cell culture system. However, the aptamers inhibit the production of infectious virus particles. Beta interferon (IFN-β) and interferon-stimulated genes (ISGs) are not induced in virally infected hepatocytes by aptamers. Domains I and II of core protein are involved in the inhibition of infectious virus production by the aptamers. V31A within core is the major resistance mutation identified. Further study shows that the aptamers disrupt the localization of core with lipid droplets and NS5A and perturb the association of core protein with viral RNA. The data suggest that aptamers against HCV core protein inhibit infectious virus production by disrupting the localization of core with lipid droplets and NS5A and preventing the association of core protein with viral RNA. The aptamers for core protein may be used to understand the mechanisms of virus assembly. Core-specific aptamers may hold promise for development as early diagnostic reagents and potential therapeutic agents for chronic hepatitis C.  相似文献   

4.
An in vitro selection/amplification (SELEX) was used to generate RNA aptamers that specifically bind Thermus thermophilus release factor 1 (RF1). From 31 isolated clones, two groups of aptamers with invariable sequences 5'-ACCU-3' and 5'-GAAAGC-3' were isolated. Chemical and enzymatic probing of the structure indicate that in both groups the invariable sequences are located in single-stranded regions of hairpin structures. Complex formations between RF1 and aptamers of both groups were identified by electrophoretic shift assay and chemical footprinting. Deletion of the invariable sequences did not effect the secondary structure of the aptamers but abolished their binding to RF1. RNA motifs matching the invariable sequences of the aptamers are present as consensus sequences in the peptidyl transferase center of 23S rRNAs. T. thermophilus RF1 recognizes UAG stop codons in an Escherichia coli in vitro translation system. Aptamers from both groups inhibited this RF1 activity.  相似文献   

5.
Adenine-dependent hairpin ribozymes were isolated by in vitro selection from a degenerated hairpin ribozyme population. Two new adenine-dependent ribozymes catalyze their own reversible cleavage in the presence of free adenine. Both aptamers have Mg(2+) requirements for adenine-assisted cleavage similar to the wild-type hairpin ribozyme. Cleavage kinetics studies in the presence of various other small molecules were compared. The data suggest that adenine does not induce RNA self-cleavage in the same manner for both aptamers. In addition, investigations of pH effects on catalytic rates show that both adenine-dependent aptamers are more active in basic conditions, suggesting that they use new acid/base catalytic strategies in which adenine could be involved directly. The discovery of hairpin ribozymes dependent on adenine for their reversible self-cleavage presents considerable biochemical and evolutionary interests because we show that RNA is able to use exogenous reactive molecules to enhance its own catalytic activity. Such a mechanism may have been a means by which the ribozymes of the RNA world enlarged their chemical repertoire.  相似文献   

6.
7.
Aptamers are small nucleic acid ligands that bind to their targets with specificity and high affinity. They are generated by a combinatorial technology, known as SELEX. This in vitro approach uses iterative cycles of enrichment and amplification to select binders from nucleic acid libraries of high complexity. Here we combine SELEX with the yeast three-hybrid system in order to select for RNA aptamers with in vivo binding activity. As a target molecule, we chose the RNA recognition motif-containing RNA-binding protein Rrm4 from the corn pathogen Ustilago maydis. Rrm4 is an ELAV-like protein containing three N-terminal RNA recognition motifs (RRMs). It has been implicated in microtubule-dependent RNA transport during pathogenic development. After 11 SELEX cycles, four aptamer classes were identified. These sequences were further screened for their in vivo binding activity applying the yeast three-hybrid system. Of the initial aptamer classes only members of two classes were capable of binding in vivo. Testing representatives of both classes against Rrm4 variants mutated in one of the three RRM domains revealed that these aptamers interacted with the third RRM. Thus, the yeast three-hybrid system is a useful extension to the SELEX protocol for the identification and characterization of aptamers with in vivo binding activity.  相似文献   

8.
RNA aptamers represent an emerging class of pharmaceuticals with great potential for targeted cancer diagnostics and therapy. Several RNA aptamers that bind cancer cell-surface antigens with high affinity and specificity have been described. However, their clinical potential has yet to be realized. A significant obstacle to the clinical adoption of RNA aptamers is the high cost of manufacturing long RNA sequences through chemical synthesis. Therapeutic aptamers are often truncated postselection by using a trial-and-error process, which is time consuming and inefficient. Here, we used a "rational truncation" approach guided by RNA structural prediction and protein/RNA docking algorithms that enabled us to substantially truncateA9, an RNA aptamer to prostate-specific membrane antigen (PSMA),with great potential for targeted therapeutics. This truncated PSMA aptamer (A9L; 41mer) retains binding activity, functionality, and is amenable to large-scale chemical synthesis for future clinical applications. In addition, the modeled RNA tertiary structure and protein/RNA docking predictions revealed key nucleotides within the aptamer critical for binding to PSMA and inhibiting its enzymatic activity. Finally, this work highlights the utility of existing RNA structural prediction and protein docking techniques that may be generally applicable to developing RNA aptamers optimized for therapeutic use.  相似文献   

9.
10.
11.
《Biophysical journal》2022,121(3):421-429
Fluorescent RNA aptamers have the potential to enable routine quantitation and localization of RNA molecules and serve as models for understanding biologically active aptamers. In recent years, several fluorescent aptamers have been selected and modified to improve their properties, revealing that small changes to the RNA or the ligands can modify significantly their fluorescent properties. Although structural biology approaches have revealed the bound, ground state of several fluorescent aptamers, characterization of low-abundance, excited states in these systems is crucial to understanding their folding pathways. Here we use pressure as an alternative variable to probe the suboptimal states of the Mango III aptamer with both fluorescence and NMR spectroscopy approaches. At moderate KCl concentrations, increasing pressure disrupted the G-quadruplex structure of the Mango III RNA and led to an intermediate with lower fluorescence. These observations indicate the existence of suboptimal RNA structural states that still bind the TO1-biotin fluorophore and moderately enhance fluorescence. At higher KCl concentration as well, the intermediate fluorescence state was populated at high pressure, but the G-quadruplex remained stable at high pressure, supporting the notion of parallel folding and/or binding pathways. These results demonstrate the usefulness of pressure for characterizing RNA folding intermediates.  相似文献   

12.
In order to find small RNA molecules that are specific and high-affinity ligands of nonstructural 5B (NS5B) polymerase, we screened by SELEX (systematic evolution of ligands by exponential amplification) a structurally constrained RNA library with an NS5BDeltaC55 enzyme carrying a C-terminal biotinylation sequence. Among the selected clones, two aptamers appeared to be high-affinity ligands of NS5B, with apparent dissociation constants in the low nanomolar range. They share a sequence that can assume a stem-loop structure. By mutation analysis, this structure has been shown to correspond to the RNA motif responsible for the tight interaction with NS5B. The aptamers appeared to be highly specific for the hepatitis C virus (HCV) polymerase since interaction with the GB virus B (GBV-B) NS5B protein cannot be observed. This is consistent with the observation that the activity of the HCV NS5B polymerase is efficiently inhibited by the selected aptamers, while neither GBV-B nor poliovirus 3D polymerases are affected. The mechanism of inhibition of the NS5B activity turned out to be noncompetitive with respect to template RNA, suggesting that aptamers and template RNA do not bind to the same site. As a matter of fact, mutations introduced in a basic exposed surface of the thumb domain severely impaired both the binding of and activity inhibition by the RNA aptamers.  相似文献   

13.
核酸适体(nucleic acid aptamer)是从人工合成的随机单链核酸库中筛选出的特异性与靶物质高度亲和的核酸分子,包括DNA适体和RNA适体. 体外获得核酸适体的方法称为指数富集配体系统进化技术,即SELEX(systematic evolution of ligands by exponential enrichment). 在SELEX技术获得的核酸适体中,RNA适体因其结构的多样性而具有靶分子广、亲和力高、特异性强等特点. 同时,相比传统抗体,RNA适体分子量小、易改造修饰、制备方便且无免疫原性. 因此,RNA适体在基础研究、临床诊断、药物研制等方面展现了广阔的应用前景. 本文综述了RNA适体的产生、特点、作用方式、优势与局限性,并详细介绍了其在医药研究领域的应用.  相似文献   

14.
Sephadex-binding RNA ligands (aptamers) were obtained through in vitro selection. They could be classified into two groups based on their consensus sequences and the aptamers from both groups showed strong binding to Sephadex G-100. One of the highest affinity aptamers, D8, was chosen for further characterization. Aptamer D8 bound to dextran B512, the soluble base material of Sephadex, but not to isomaltose, isomaltotriose and isomaltotetraose, suggesting that its optimal binding site might consist of more than four glucose residues linked via alpha-1,6 linkages. The aptamer was very specific to the Sephadex matrix and did not bind appreciably to other supporting matrices, such as Sepharose, Sephacryl, cellulose or pustulan. Using Sephadex G-100, the aptamer could be purified from a complex mixture of cellular RNA, giving an enrichment of at least 60 000-fold, compared with a non-specific control RNA. These RNA aptamers can be used as affinity tags for RNAs or RNA subunits of ribonucleoproteins to allow rapid purification from complex mixtures of RNA using only Sephadex.  相似文献   

15.
Regulating eukaryotic gene expression with aptamers   总被引:2,自引:0,他引:2  
  相似文献   

16.
The hepatitis C virus (HCV) has a positive single-stranded RNA genome, and translation starts within the internal ribosome entry site (IRES) in a cap-independent manner. The IRES is well conserved among HCV subtypes and has a unique structure consisting of four domains. We used an in vitro selection procedure to isolate RNA aptamers capable of binding to the IRES domains III–IV. The aptamers that were obtained shared the consensus sequence ACCCA, which is complementary to the apical loop of domain IIId that is known to be a critical region of IRES-dependent translation. This convergence suggests that domain IIId is preferentially selected in an RNA–RNA interaction. Mutation analysis showed that the aptamer binding was sequence and structure dependent. One of the aptamers inhibited translation both in vitro and in vivo. Our results indicate that domain IIId is a suitable target site for HCV blockage and that rationally designed RNA aptamers have great potential as anti-HCV drugs.  相似文献   

17.
Ohuchi SP  Ohtsu T  Nakamura Y 《Biochimie》2006,88(7):897-904
In most cases, anti-protein aptamers are selected by systematic evolution of ligands by exponential enrichment (SELEX) using purified recombinant protein targets. Cell surface proteins, however, are not easy targets for SELEX due to the difficulties associated with their purification. Here, we developed a novel SELEX procedure (referred to as TECS-SELEX) in which cell-surface displayed recombinant protein is directly used as the selection target. Using this method, we isolated RNA aptamers against transforming growth factor-beta type III receptor expressed on Chinese hamster ovary (CHO) cells. One of the RNA aptamers has a dissociation constant in the 1 nM range and competed with transforming growth factor-beta to bind to the cell surface receptor in vitro.  相似文献   

18.
Aptamers are small, single-stranded oligonucleotides (DNA or RNA) that bind to their target with high specificity and affinity. Although aptamers are analogous to antibodies for a wide range of target recognition and variety of applications, they have significant advantages over antibodies. Since aptamers have recently emerged as a class of biomolecules with an application in a wide array of fields, we need to summarize the latest developments herein. In this review we will discuss about the latest developments in using aptamers in diagnostics, drug delivery and imaging. We begin with diagnostics, discussing the application of aptamers for the detection of infective agents itself, antigens/toxins (bacteria), biomarkers (cancer), or a combination. The ease of conjugation and labelling of aptamers makes them a potential tool for diagnostics. Also, due to the reduced off-target effects of aptamers, their use as a potential drug delivery tool is emerging rapidly. Hence, we discuss their use in targeted delivery in conjugation with siRNAs, nanoparticles, liposomes, drugs and antibodies. Finally, we discuss about the conjugation strategies applicable for RNA and DNA aptamers for imaging. Their stability and self-assembly after heating makes them superior over protein-based binding molecules in terms of labelling and conjugation strategies.  相似文献   

19.
Nucleic acid aptamers are in vitro-selected small, single-stranded DNA or RNA oligonucleotides that can specifically recognize their target on the basis of their unique 3-dimensional structures. Recent advances in the development of escort aptamers to deliver and enhance the efficacy of other therapeutic agents have drawn enthusiasm in exploiting cell-type-specific aptamers as drug delivery vehicles. This review mainly focuses on the recent developments of aptamer-mediated targeted delivery systems. We also place particular emphasis on aptamers evolved against cell membrane receptors and possibilities for translation to clinical applications.  相似文献   

20.
The full understanding of dynamics of cellular processes hinges on the development of efficient and non-invasive labels for intracellular RNA species. Light-up aptamers binding fluorogenic ligands show promise as specific labels for RNA species containing those aptamers. Herein, we took advantage of existing, non-light-up aptamers against small molecules and demonstrated a new class of light-up probes in vitro. We synthesized two conjugates of thiazole orange dye to small molecules (GMP and AMP) and characterized in vitro their interactions with corresponding RNA aptamers. The conjugates preserved specific binding to aptamers while showing several 100-fold increase in fluorescence of the dye (the ‘light-up’ property). In the presence of free small molecules, conjugates can be displaced from aptamers serving also as fluorescent sensors. Our in vitro results provide the proof-of-concept that the small-molecule conjugates with light-up properties can serve as a general approach to label RNA sequences containing aptamers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号