首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly purified cell walls of Chromatium vinosum were isolated by differential centrifugation, with or without Triton X-100 extraction. The isolated material had a protein composition similar to that of cell walls obtained by sucrose density gradient centrifugation. Twenty-two proteins were reproducibly detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A 42-kilodalton protein was shown to account for 65% of the total cell wall protein. The majority of cell wall proteins were solubilized in sodium dodecyl sulfate at room temperature; however, they existed as high-molecular-weight complexes unless heated to 45 degrees C or above. The cell wall contained one heat-modifiable protein which migrated with an apparent molecular weight of 37,400 when solubilized at 70 degrees C or below, but which migrated with an apparent molecular weight of 52,500 if solubilized at 100 degrees C. The electrophoretic mobility of three proteins was modified by 2-mercaptoethanol. The majority of C. vinosum cell wall proteins had isoelectric points between pH 4.5 and 5.5, and the 42-kilodalton protein focused at pH 4.9. No proteins were detected which were analogous to the lipoprotein or peptidoglycan-associated proteins of the Enterobacteriaceae. Nearest-neighbor analysis with a reducible, cross-linking reagent indicated that three proteins, including the 42-kilodalton protein, associated with themselves. Most of the cell wall proteins were partially accessible to proteases in both intact cells and isolated cell walls. Protease treatment of the whole cell or isolated cell wall digested approximately an 11,000-molecular-weight portion of the 42-kilodalton protein.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
  1. 1. The cell wall of Chlorella ellipsoidea was fractionated intotwo components, alkali-soluble hemicellulose and alkali-insoluble"rigid wall". The former was composed of several neutral sugars,i.e. rhamnose, xylose, arabinose, mannose and galactose, andthe latter had glucosamine as a main constituent sugar.
  2. 2.Quantitative changes in both hemicellulose and "rigid wall"contents during the cell cycle were followed using synchronouslygrown cells. The two cell wall components showed markedly differentchanges. Hemicellulose increased in proportion to the enlargementof the cell surface area in the growing phase, while the "rigidwall" remained almost constant in this phase. The "rigid wall"increased only in the reproduction phase—the time of autosporeformation.
(Received September 26, 1977; )  相似文献   

11.
Glycoproteins from the cell wall of Phaseolus coccineus.   总被引:6,自引:4,他引:2  
1. The use of a modified sodium chlorite/acetic acid delignification procedure for the solubilization of a hydroxyproline-rich glycoprotein fraction from the depectinated cell walls of Phaseolus coccineus is described. 2. The crude glycoprotein was associated with some pectic material; hydroxyproline and serine were the most abundant amino acids, and arabinose, galactose and galacturonic acid the predominant monosaccharides. 3. The bulk of the hydroxyproline is O-glycosidically substituted with tetra- and tri-arabinofuranosides. From methylation analysis the linkages in these arabinosides could be inferred. 4. Ion-exchange chromatography of the crude glycoprotein gave one major and two minor hydroxyproline-rich fractions, with similar amino acid but different monosaccharide composition. 5. In the major fraction, serine appears to be O-glycosidically substituted with a single galactopyranoside residue that can be removed by the action of alpha-galactosidase but not beta-galactosidase. Removal of arabinofuranoside residues by partial acid hydrolysis greatly enhanced the action of alpha-galactosidase. 6. Methylation followed by carboxy reduction with LiAl2H4 has shown the presence of (1 leads to 4)-linked galacturonic acid in the crude glycoprotein fraction but not in the major fraction from the ion-exchange column. Hence the bulk of the pectic material is not associated with the major glycoprotein component. It is suggested that the glycoprotein is held in the wall by phenolic cross-links. 7. Similarities with the glycopeptide moiety of potato lectin provides further evidence for a class of hydroxyproline-rich glycoproteins with common features.  相似文献   

12.
13.
14.
15.
16.
Cell wall synthesis can continue with less than the total complement of cell wall synthetic enzymes present in normal growing cells. A method was developed to investigate whether there exists an excess of cell wall-synthesizing enzymes (penicillin-binding proteins [PBPs]) which all remain functional or whether a mixed population of functional and nonfunctional enzymes characterize normal cells. Surprisingly, cells in which less than 10% of the PBPs were functional could grow at a normal rate, as evidenced by increases in viable counts, culture turbidity, and rates of peptidoglycan, protein, and RNA synthesis. This subset of functional enzymes was biosynthetically new. Penicillin-induced lysis occurred contingent on the acylation of this same small fraction of PBPs, the copy number and affinities of which were below the level of detection by current fluorographic assay techniques. We propose that PBPs have a short functional half-life and that cell wall synthesis and bacterial lysis reflect the activity of newly synthesized PBPs.  相似文献   

17.
Sugar analysis of isolated cell walls from three formae speciales of Fusarium oxysporum showed that they contained not only glucose and (N-acetyl)-glucosamine, but also mannose, galactose, and uronic acids, presumably originating from cell wall glycoproteins. Cell wall glycoproteins accounted for 50-60% of the total mass of the wall. X-ray diffraction studies showed the presence of alpha-1, 3-glucan in the alkali-soluble cell wall fraction and of beta-1, 3-glucan and chitin in the alkali-insoluble fraction. Electron microscopy and lectin binding studies indicated that glycoproteins form an external layer covering an inner layer composed of chitin and glucan.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号