首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transport of tRNAs across the inner mitochondrial membrane of the kinetoplastid protozoon Leishmania requires interactions with specific binding proteins (receptors) in a multi-subunit complex. The allosteric model of import regulation proposes cooperative and antagonistic interactions between two or more receptors with binding specificities for distinct tRNA families (types I and II, respectively). To identify the type II receptor, the gene encoding RIC8A, a subunit of the complex, was cloned. The C-terminal region of RIC8A is homologous to subunit 6b of ubiquinol cytochrome c reductase (respiratory complex III), while the N-terminal region has intrinsic affinity for type II, but not for type I, tRNAs. RIC8A is shared by the import complex and complex III, indicating its bi-functionality, but is assembled differently in the two complexes. Knockdown of RIC8A in Leishmania lowered the mitochondrial content of type II tRNAs but raised that of type I tRNAs, with downstream effects on mitochondrial translation and respiration, and cell death. In RIC8A knockdown cells, a subcomplex was formed that interacted with type I tRNA, but the negative regulation by type II tRNA was lost. Mitochondrial extracts from these cells were defective for type II, but not type I, import; import and regulation were restored by purified RIC8A. These results provide evidence for the relevance of allosteric regulation in vivo and indicate that acquisition of new tRNA-binding domains by ancient respiratory components have played a key role in the evolution of mitochondrial tRNA import.  相似文献   

2.
Translocation of tRNAs across mitochondrial membranes is a receptor-mediated active transport process requiring ATP. A large tRNA import complex from the inner membrane of Leishmania mitochondria catalyzes translocation into phospholipid vesicles. In this reconstituted system, the import substrate tRNA(Tyr)(GUA) specifically stimulated hydrolysis of ATP within the vesicles, with the subsequent generation of a membrane potential by pumping out of protons, as shown by the protonophore-sensitive uptake of the potential-sensitive dye rhodamine 123. Generation of membrane potential was dependent on ATP hydrolysis, and inhibited by oligomycin, recalling the proton-translocation mechanism of the respiratory F(1)-F(0)-ATPase. For translocation of tRNA, ATP could be replaced by low pH of the medium, but proton-dependent import was resistant to oligomycin. Moreover, ATP hydrolysis, generation of membrane potential and tRNA uptake were inhibited by carboxyatractyloside, a specific inhibitor of mitochondrial ATP-ADP translocase, implying an ATP requirement within the vesicles. These observations imply a gating mechanism in which tRNA, on binding to its receptor, triggers the energetic activation of the complex, leading to the opening of import channels.  相似文献   

3.
Mukherjee S  Basu S  Home P  Dhar G  Adhya S 《EMBO reports》2007,8(6):589-595
The mechanism of active transport of transfer RNA (tRNA) across membranes is largely unknown. Factors mediating the import of tRNA into the kinetoplast mitochondrion of the protozoon Leishmania tropica are organized into a multiprotein RNA import complex (RIC) at the inner membrane. Here, we present the complete characterization of the identities and functions of the subunits of this complex. The complex contains three mitochondrion- and eight nuclear-encoded subunits; six of the latter are necessary and sufficient for import. Antisense-mediated knockdown of essential subunits resulted in the depletion of mitochondrial tRNAs and inhibition of organellar translation. Functional complexes were reconstituted with recombinant subunits expressed in Escherichia coli. Several essential RIC subunits are identical to specific subunits of respiratory complexes. These findings provide new information on the evolution of tRNA import and the foundation for detailed structural and mechanistic studies.  相似文献   

4.
The RNA import complex (RIC) from the mitochondrion of the kinetoplastid protozoan Leishmania tropica contains two subunits that directly bind to import signals on two distinct subsets of tRNA and interact with each other allosterically. What happens to the tRNA subsequent to its loading on the complex is unknown. A third subunit—RIC9—has intrinsic affinity for both types of tRNA and is essential for import in vivo. Here we show that antibody against RIC9 inhibited the import of both types of tRNA into mitoplasts in vitro, but failed to inhibit the binding of these tRNAs to their respective receptors, indicating that RIC9 acts in a subsequent step. Using photoaffinity crosslinking-immunoprecipitation to detect translocation intermediates, it was observed that tRNA was transferred from its cognate receptor to RIC9, followed by translocation across the membrane and release as free tRNA in the inner compartment. Transfer required elevated temperatures and ATP, but ATP was substituted by acid pH. These tRNA movements were sensitive to uncouplers and inhibitors, suggesting distinct roles of the electrical and chemical components of the proton motive force generated by vectorial proton translocation accompanying ATP hydrolysis. By analysis of partially assembled complexes in L. tropica depleted of various subunits, and in vitro assembly assays, RIC9 was shown to make stable contacts with RIC8A, a tRNA receptor and RIC6, a membrane-embedded component. The results have implications for the mechanism of tRNA import.  相似文献   

5.
6.
Very little is known about how nucleic acids are translocated across membranes. The multi-subunit RNA Import Complex (RIC) from mitochondria of the kinetoplastid protozoon Leishmania tropica induces translocation of tRNAs across artificial or natural membranes, but the nature of the translocation pore remains unknown. We show that subunits RIC6 and RIC9 assemble on the membrane in presence of subunit RIC4A to form complex R3. Atomic Force Microscopy of R3 revealed particles with an asymmetric surface groove of ∼20 nm rim diameter and ∼1 nm depth. R3 induced translocation of tRNA into liposomes when the pH of the medium was lowered to ∼6 in the absence of ATP. R3-mediated tRNA translocation could also be induced at neutral pH by a K+ diffusion potential with an optimum of 60–70 mV. Point mutations in the Cys2–His2 Fe-binding motif of RIC6, which is homologous to the respiratory Complex III Fe–S protein, abrogated import induced by low pH but not by K+ diffusion potential. These results indicate that the R3 complex forms a pore that is gated by a proton-generated membrane potential and that the Fe–S binding region of RIC6 has a role in proton translocation. The tRNA import complex of L. tropica thus contains a novel macromolecular channel distinct from the mitochondrial protein import pore that is apparently involved in tRNA import in some species.  相似文献   

7.
The mitochondrial import and assembly of the F1ATPase subunits requires, respectively, the participation of the molecular chaperones hsp70SSA1 and hsp70SSC1 and other components operating on opposite sides of the mitochondrial membrane. In previous studies, both the homology and the assembly properties of the F1ATPase alpha-subunit (ATP1p) compared to the groEL homologue, hsp60, have led to the proposal that this subunit could exhibit chaperone-like activity. In this report the extent to which this subunit participates in protein transport has been determined by comparing import into mitochondria that lack the F1ATPase alpha-subunit (delta ATP1) versus mitochondria that lack the other major catalytic subunit, the F1ATPase beta-subunit (delta ATP2). Yeast mutants lacking the alpha-subunit but not the beta-subunit grow much more slowly than expected on fermentable carbon sources and exhibit delayed kinetics of protein import for several mitochondrial precursors such as the F1 beta subunit, hsp60MIF4 and subunits 4 and 5 of the cytochrome oxidase. In vitro and in vivo the F1 beta-subunit precursor accumulates as a translocation intermediate in absence of the F1 alpha-subunit. In the absence of both the ATPase subunits yeast grows at the same rate as a strain lacking only the beta-subunit, and import of mitochondrial precursors is restored to that of wild type. These data indicate that the F1 alpha-subunit likely functions as an "assembly partner" to influence protein import rather than functioning directly as a chaperone. These data are discussed in light of the relationship between the import and assembly of proteins in mitochondria.  相似文献   

8.
9.
Import of nucleus-encoded tRNAs into the mitochondria of the kinetoplastid protozoon Leishmania involves recognition of specific import signals by the membrane-bound import machinery. Multiple signals on different tRNA domains may be present, and further, importable RNAs interact positively (Type I) or negatively (Type II) with one another at the inner membrane in vitro. By co-transfection assays, it is shown here that tRNATyr (Type I) transiently stimulates the rate of entry of tRNAIle (Type II) into Leishmania mitochondria in transfected cells, and conversely, is inhibited by tRNAIle. Truncation and mutagenesis experiments led to the co-localization of the effector and import activities of tRNATyr to the D domain, and those of tRNAIle to the variable region–T domain (V-T region), indicating that both activities originate from a single RNA–receptor interaction. A third tRNA, human tRNALys, is imported into Leishmania mitochondria in vitro as well as in vivo. This tRNA has Type I and Type II motifs in the D domain and the V-T region, respectively, and shows both Type I and Type II effector activities. Such dual-type tRNAs may interact simultaneously with the Type I and Type II binding sites of the inner membrane import machinery.  相似文献   

10.
The mitochondrial genomes of a wide variety of species contain an insufficient number of functional tRNA genes, and translation of mitochondrial mRNAs is sustained by import of nucleus-encoded tRNAs. In Leishmania, transfer of tRNAs across the inner membrane can be regulated by positive and negative interactions between them. To define the factors involved in such interactions, a large multisubunit complex (molecular mass, approximately 640 kDa) from the inner mitochondrial membrane of the kinetoplastid protozoon Leishmania, consisting of approximately 130-A particles, was isolated. The complex, when incorporated into phospholipid vesicles, induced specific, ATP- and proton motive force-dependent transfer of Leishmania tRNA(Tyr) as well as of oligoribonucleotides containing the import signal YGGYAGAGC. Moreover, allosteric interactions between tRNA(Tyr) and tRNA(Ile) were observed in the RNA import complex-reconstituted system, indicating the presence of primary and secondary tRNA binding sites within the complex. By a combination of antibody inhibition, photochemical cross-linking, and immunoprecipitation, it was shown that binding of tRNA(Ile) to a 21-kDa component of the complex is dependent upon tRNA(Tyr), while binding of tRNA(Tyr) to a 45-kDa component is inhibited by tRNA(Ile). This "ping-pong" mechanism may be an effective means to maintain a balanced tRNA pool for mitochondrial translation.  相似文献   

11.
A large number of cytoplasmic tRNAs are imported into the kinetoplast-mitochondrion of Leishmania by a receptor-mediated process. To identify the sequences recognized by import receptors, mitochondria were incubated with a combinatorial RNA library. Repeated cycles of amplification of the imported sequences (SELEX) resulted in rapid selection of several import aptamers containing sequence motifs present in the anticodon arm, the D arm, the V-T region, and acceptor stem of known tRNAs, confirming or suggesting the presence of import signals in these domains. As predicted, truncated derivatives of tRNA(Ile)(UAU) containing the D arm or the V-T region were imported in vitro. Four aptamers were studied in detail. All were imported in vitro as well as in transiently transfected cells, using the same pathway as tRNA, but their individual import efficiencies were different. Two types of aptamers were discernible: the A arm and D arm homologues (type I), which were efficiently transferred across the inner mitochondrial membrane, and the V-T homologues (type II), which were not. Remarkably, subnanomolar concentrations of type I RNAs stimulated the entry of type II RNAs into the matrix, whereas type II RNAs inhibited inner membrane transfer of type I RNAs. Moreover, tRNA(Tyr)(GUA) and tRNA(Ile)(UAU) interacted with one another as type I and type II, respectively. Such cooperative and antagonistic interactions may allow the use of a limited number of receptors to recognize a large number of tRNAs of variable affinity and enable the maintenance of a properly balanced tRNA pool for mitochondrial translation.  相似文献   

12.
Anti-apoptotic Bcl2 family proteins such as Bcl-x(L) protect cells from death by sequestering apoptotic molecules, but also contribute to normal neuronal function. We find in hippocampal neurons that Bcl-x(L) enhances the efficiency of energy metabolism. Our evidence indicates that Bcl-x(L)interacts directly with the β-subunit of the F(1)F(O)?ATP synthase, decreasing an ion leak within the F(1)F(O) ATPase complex and thereby increasing net transport of H(+) by F(1)F(O) during F(1)F(O) ATPase activity. By patch clamping submitochondrial vesicles enriched in F(1)F(O) ATP synthase complexes, we find that, in the presence of ATP, pharmacological or genetic inhibition of Bcl-x(L) activity increases the membrane leak conductance. In addition, recombinant Bcl-x(L) protein directly increases the level of ATPase activity of purified synthase complexes, and inhibition of endogenous Bcl-x(L) decreases the level of F(1)F(O) enzymatic activity. Our findings indicate that increased mitochondrial efficiency contributes to the enhanced synaptic efficacy found in Bcl-x(L)-expressing?neurons.  相似文献   

13.
The RNA Import Complex (RIC) is a multi-subunit protein complex from the mitochondria of the kinetoplastid protozoon Leishmania tropica that induces transport of tRNA across natural and artificial membranes. Leishmania, Trypanosoma and related genera of the order Kinetoplastidae are early diverging, atypical eukaryotes with unique RNA metabolic pathways, including the import of nucleus-encoded tRNAs into the mitochondrion to complement the deletion of all organelle-encoded tRNA genes. Biochemical and genetic studies of RIC are contributing to greater understanding of the mechanism of import. Additionally, RIC was shown to act as an efficient delivery vehicle for tRNA and other small RNAs into mitochondria within intact mammalian cells, indicating its applicability to the management of diseases caused by mitochondrial mutations.  相似文献   

14.
In this paper we present the inhibitory effect of a variety of structurally modulated/modified polyphenolic compounds on purified F(1) or membrane bound F(1)F(o)Escherichia coli ATP synthase. Structural modulation of polyphenols with two phenolic rings inhibited ATP synthase essentially completely; one or three ringed polyphenols individually or fused together inhibited partially. We found that the position of hydroxyl and nitro groups plays critical role in the degree of binding and inhibition of ATPase activity. The extended positioning of hydroxyl groups on imino diphenolic compounds diminished the inhibition and abridged position enhanced the inhibition potency. This was contrary to the effect by simple single ringed phenolic compounds where extended positioning of hydroxyl group was found to be effective for inhibition. Also, introduction of nitro group augmented the inhibition on molar scale in comparison to the inhibition by resveratrol but addition of phosphate group did not. Similarly, aromatic diol or triol with rigid or planar ring structure and no free rotation poorly inhibited the ATPase activity. The inhibition was identical in both F(1)F(o) membrane preparations as well as in isolated purified F(1) and was reversible in all cases. Growth assays suggested that modulated compounds used in this study inhibited F(1)-ATPase as well as ATP synthesis nearly equally.  相似文献   

15.
Proteins that participate in the import of cytosolic tRNAs into mitochondria have been identified in several eukaryotic species, but the details of their interactions with tRNA and other proteins are unknown. In the kinetoplastid protozoon Leishmania tropica, multiple proteins are organized into a functional import complex. RIC8A, a tRNA-binding subunit of this complex, has a C-terminal domain that functions as subunit 6b of ubiquinol cytochrome c reductase (complex III). We show that the N-terminal domain, unique to kinetoplastid protozoa, is structurally similar to the appended S15/NS1 RNA-binding domain of aminoacyl tRNA synthetases, with a helix–turn–helix motif. Structure-guided mutagenesis coupled with in vitro assays showed that helix α1 contacts tRNA whereas helix α2 targets the protein for assembly into the import complex. Inducible expression of a helix 1-deleted variant in L. tropica resulted in formation of an inactive import complex, while the helix 2-deleted variant was unable to assemble in vivo. Moreover, a protein-interaction assay showed that the C-terminal domain makes allosteric contacts with import receptor RIC1 complexed with tRNA. These results help explain the origin of the bifunctionality of RIC8A, and the allosteric changes accompanying docking and release of tRNA during import.  相似文献   

16.
ATP合酶的结构与催化机理   总被引:18,自引:0,他引:18  
ATP合酶 (F1Fo 复合物) 是生物体内进行氧化磷酸化和光合磷酸化的关键酶.随着核磁共振、X射线晶体衍射、遗传学、化学交联等技术在ATP合酶研究中的广泛应用,ATP合酶的整体结构及其各组成亚基结构的研究都有很大的进展.其中细菌ATP合酶结构的研究更为深入.目前对质子通过Fo的转运方式提出两种模型:单通道和双半通道模型.对扭力矩的形成以及旋转催化也有了进一步的认识.Boyer提出的结合改变机理推动了ATP合酶催化机制的研究,现在主要有两点催化机制和三点催化机制.ATP合酶的催化反应受酶的构象变化和外在条件的调节.  相似文献   

17.
Mitochondria prepared from the yeast nuclear pet mutant N9-84 lack a detectable F1-ATPase activity. Genetic complementation of this mutant with a pool of yeast genomic DNA in the yeast Escherichia coli shuttle vector YEp13 restored its growth on a nonfermentable carbon source. Mitochondria prepared from the transformed host contained an 8-fold higher than normal level of the F1 alpha-subunit and restored ATPase activity to 50% that of the wild-type strain. Deletion and nucleotide sequence analysis of the complementing DNA on the plasmid revealed a coding sequence designated ATP1 for a protein of 544 amino acids which exhibits 60 and 54% direct protein sequence homology with the proton-translocating ATPase alpha-subunits from tobacco chloroplast and E. coli, respectively. In vitro expression and mitochondrial import experiments using this ATP1 sequence showed that additional amino-terminal sequences not present in the comparable plant and bacterial subunits function as transient sequences for import.  相似文献   

18.
M Eilers  W Oppliger    G Schatz 《The EMBO journal》1987,6(4):1073-1077
We have investigated the energy requirement of mitochondrial protein import with a simplified system containing only isolated yeast mitochondria, energy sources and a purified precursor protein. This precursor was a fusion protein composed of 22 residues of the cytochrome oxidase subunit IV pre-sequence fused to mouse dihydrofolate reductase. Import of this protein required not only an energized inner membrane, but also ATP. ATP could be replaced by GTP, but not by CTP, TTP or non-hydrolyzable ATP analogs. Added ATP did not increase the membrane potential of respiring mitochondria; it supported import even if the proton-translocating mitochondrial ATPase and the entry of ATP into the matrix were blocked. We conclude that ATP exerts its effect on mitochondrial protein import outside the inner membrane.  相似文献   

19.
Chinopoulos C 《FEBS letters》2011,585(9):1255-1259
In various pathologic circumstances depolarized mitochondria are thought to precipitate cell death by avidly consuming cytosolic ATP. However, for as long as the inner mitochondrial membrane remains intact the reversal potentials of the adenine nucleotide translocase (ANT) and that of F(0)-F(1) ATP synthase are strategically positioned so that they oppose import of cytosolic ATP into the matrix of respiration-impaired mitochondria. This arrangement also seems to protect against a hysteretic consumption of cytosolic ATP accumulating in the mitochondrial matrix, in view of the depolarization caused by inhibition of F(0)-F(1) ATP synthase by the endogenous protein IF1, yielding fast ANT reversal rates.  相似文献   

20.
We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号