首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 664 毫秒
1.
Proteases are one of the highest value commercial enzymes as they have broad applications in food, pharmaceutical, detergent, and dairy industries and serve as vital tools in determination of structure of proteins and polypeptides. Multiple application of these enzymes stimulated interest to discover them with novel properties and considerable advancement of basic research into these enzymes. A broad understanding of the active site of the enzyme and of the mechanism of its inactivation is essential for delineating its structure-function relationship. Primary structure analysis of alkaline protease showed 42% of its content to be alpha helix making it stable for three dimensional structure modeling. Homology model of alkaline protease has been constructed using the X-ray structure (3F7O) as a template and swiss model as the workspace. The model was validated by ProSA, SAVES, PROCHECK, PROSAII and RMSD. The results showed the final refined model is reliable. It has 53% amino acid sequence identity with the template, 0.24 Å as RMSD and has -7.53 as Z-score, the Ramachandran plot analysis showed that conformations for 83.4 % of amino acid residues are within the most favored regions and only 0.4% in the disallowed regions.  相似文献   

2.
The microplasmodia of Physarum polycephalum express three types of β-glucosidases: secretory enzyme, a soluble cytoplasmic enzyme and a membrane-bound enzyme. We are interested in the physiological role of three enzymes. We report the sequence of cDNA for membrane β-glucosidase 1, which consists of 3825 nucleotides that includes an open reading frame encoding 1248 amino acids. The molecular weight of membrane β-glucosidase 1 was calculated to be 131,843 based on the predicted amino acid composition. Glycosyl hydrolase family 3 N-terminal and C-terminal domains were found within the N-terminal half of the membrane β-glucosidase 1 sequence and were highly homologous with the primary structures of fungal β-glucosidases. Notably, the C-terminal half of membrane β-glucosidase 1 contains two calx-β motifs, which are known to be Ca2+ binding domains in the Drosophila Na+/Ca2+ exchanger; an RGD sequence, which is known to be a cell attachment sequence; and a transmembrane region. In this way, Physarum membrane β-glucosidase 1 differs from all previously identified family 3 β-glucosidases. In addition to cDNA for membrane β-glucosidase 1, two other distinctly different mRNAs were also isolated. Two sequences were largely identical to cDNA for membrane β-glucosidase 1, but included a long insert sequence having a stop codon, leading to truncation of their products, which could account for other β-glucosidase forms occurred in Physarum poycephalum.

Thus, the membrane β-glucosidase is a new type family 3 enzyme fused with the Calx-β domain. We propose that Calx-β domain may modulate the β-glucosidase activity in response to changes in the Ca2+ concentration.  相似文献   


3.

Background

Microbial enzymes produced in the gastrointestinal tract are primarily responsible for the release and biochemical transformation of absorbable bioactive monophenols. In the present work we described the crystal structure of LJ0536, a serine cinnamoyl esterase produced by the probiotic bacterium Lactobacillus johnsonii N6.2.

Methodology/Principal Findings

We crystallized LJ0536 in the apo form and in three substrate-bound complexes. The structure showed a canonical α/β fold characteristic of esterases, and the enzyme is dimeric. Two classical serine esterase motifs (GlyXSerXGly) can be recognized from the amino acid sequence, and the structure revealed that the catalytic triad of the enzyme is formed by Ser106, His225, and Asp197, while the other motif is non-functional. In all substrate-bound complexes, the aromatic acyl group of the ester compound was bound in the deepest part of the catalytic pocket. The binding pocket also contained an unoccupied area that could accommodate larger ligands. The structure revealed a prominent inserted α/β subdomain of 54 amino acids, from which multiple contacts to the aromatic acyl groups of the substrates are made. Inserts of this size are seen in other esterases, but the secondary structure topology of this subdomain of LJ0536 is unique to this enzyme and its closest homolog (Est1E) in the Protein Databank.

Conclusions

The binding mechanism characterized (involving the inserted α/β subdomain) clearly differentiates LJ0536 from enzymes with similar activity of a fungal origin. The structural features herein described together with the activity profile of LJ0536 suggest that this enzyme should be clustered in a new group of bacterial cinnamoyl esterases.  相似文献   

4.
17β-hydroxysteroid dehydrogenases (17β-HSD) catalyze the conversion of estrogens and androgens at the C17 position. The 17β-HSD type I, II, III and IV share less than 25% amino acid similarity. The human and porcine 17β-HSD IV reveal a three-domain structure unknown among other dehydrogenases. The N-terminal domains resemble the short chain alcohol dehydrogenase family while the central parts are related to the C-terminal parts of enzymes involved in peroxisomal β-oxidation of fatty acids and the C-terminal domains are similar to sterol carrier protein 2. We describe the cloning of the mouse 17β-HSD IV cDNA and the expression of its mRNA. A probe derived from the human 17β-HSD IV was used to isolate a 2.5 kb mouse cDNA encoding for a protein of 735 amino acids showing 85 and 81% similarity with human and porcine 17β-HSD IV, respectively. The calculated molecular mass of the mouse enzyme amounts to 79,524 Da. The mRNA for 17β-HSD IV is a single species of about 3 kb, present in a multitude of tissues and expressed at high levels in liver and kidney, and at low levels in brain and spleen. The cloning and molecular characterization of murine, human and porcine 17β-HSD IV adds to the complexity of steroid synthesis and metabolism. The multitude of enzymes acting at C17 might be necessary for a precise control of hormone levels.  相似文献   

5.
γ-Glutamylamine cyclotransferase (GGACT) is an enzyme that converts γ-glutamylamines to free amines and 5-oxoproline. GGACT shows high activity toward γ-glutamyl-ϵ-lysine, derived from the breakdown of fibrin and other proteins cross-linked by transglutaminases. The enzyme adopts the newly identified cyclotransferase fold, observed in γ-glutamylcyclotransferase (GGCT), an enzyme with activity toward γ-glutamyl-α-amino acids (Oakley, A. J., Yamada, T., Liu, D., Coggan, M., Clark, A. G., and Board, P. G. (2008) J. Biol. Chem. 283, 22031–22042). Despite the absence of significant sequence identity, several residues are conserved in the active sites of GGCT and GGACT, including a putative catalytic acid/base residue (GGACT Glu82). The structure of GGACT in complex with the reaction product 5-oxoproline provides evidence for a common catalytic mechanism in both enzymes. The proposed mechanism, combined with the three-dimensional structures, also explains the different substrate specificities of these enzymes. Despite significant sequence divergence, there are at least three subfamilies in prokaryotes and eukaryotes that have conserved the GGCT fold and GGCT enzymatic activity.  相似文献   

6.
3β-Hydroxysteroid dehydrogenase/steroid Δ5 → 4-isomerase (3β-HSD/isomerase) was expressed by baculovirus in Spodoptera fungiperda (Sf9) insect cells from cDNA sequences encoding human wild-type I (placental) and the human type I mutants - H261R, Y253F and Y253,254F. Western blots of SDS-polyacrylamide gels showed that the baculovirus-infected Sf9 cells expressed the immunoreactive wild-type, H261R, Y253F or Y253,254F protein that co-migrated with purified placental 3β-HSD/isomerase (monomeric Mr=42,000 Da). The wild-type, H261R and Y253F enzymes were each purified as a single, homogeneous protein from a suspension of the Sf9 cells (5.01). In kinetic studies with purified enzyme, the H261R mutant enzyme had no 3β-HSD activity, whereas the Km and Vmax values of the isomerase substrate were similar to the values obtained with the wild-type and native enzymes. The Vmax (88 nmol/min/mg) for the conversion of 5-androstene-3,17-dione to androstenedione by the Y253F isomerase activity was 7.0-fold less than the mean Vmax (620 nmol/min/mg) measured for the isomerase activity of the wild-type and native placental enzymes. In microsomal preparations, isomerase activity was completely abolished in the Y253,254F mutant enzyme, but Y253,254F had 45% of the 3β-HSD activity of the wild-type enzyme. In contrast, the purified Y253F, wild-type and native enzymes had similar Vmax values for substrate oxidation by the 3β-HSD activity. The 3β-HSD activities of the Y253F, Y253,254F and wild-type enzymes reduced NAD+ with similar kinetic values. Although NADH activated the isomerase activities of the H261R and wild-type enzymes with similar kinetics, the activation of the isomerase activity of H261R by NAD+ was dramatically decreased. Based on these kinetic measurements, His261 appears to be a critical amino acid residue for the 3β-HSD activity, and Tyr253 or Tyr254 participates in the isomerase activity of human type I (placental) enzyme.  相似文献   

7.
Human DNA Pol κ is a polymerase enzyme, specialized for near error-free bypass of certain bulky chemical lesions to DNA that are derived from environmental carcinogens present in tobacco smoke, automobile exhaust and cooked food. By employing ab initio QM/MM–MD (Quantum Mechanics/Molecular Mechanics–Molecular Dynamics) simulations with umbrella sampling, we have determined the entire free energy profile of the nucleotidyl transfer reaction catalyzed by Pol κ and provided detailed mechanistic insights. Our results show that a variant of the Water Mediated and Substrate Assisted (WMSA) mechanism that we previously deduced for Dpo4 and T7 DNA polymerases is preferred for Pol κ as well, suggesting its broad applicability. The hydrogen on the 3′-OH primer terminus is transferred through crystal and solvent waters to the γ-phosphate of the dNTP, followed by the associative nucleotidyl transfer reaction; this is facilitated by a proton transfer from the γ-phosphate to the α,β-bridging oxygen as pyrophosphate leaves, to neutralize the evolving negative charge. MD simulations show that the near error-free incorporation of dCTP opposite the major benzo[a]pyrene—derived dG lesion is compatible with the WMSA mechanism, allowing for an essentially undisturbed pentacovalent phosphorane transition state, and explaining the bypass of this lesion with little mutation by Pol κ.  相似文献   

8.
Cytochrome P450(11β) is deeply involved in the final steps of biosynthesis of mineralocorticoids. This paper deals with following issues about this enzyme. (1) The structure and function of the enzymes of various animal species are discussed. By making alignment of amino acid sequences of the enzymes, we identified peptide domains essential for the enzyme actions such as a putative steroid binding domain and a heme binding region. Estimates of molecular similarity among the P450(11β) family enzymes suggested that the enzymes having both 11β-hydroxylation activity and aldosterone (ALDO) synthetic activity of certain animals such as frog, cattle and pig are more similar to the ALDO synthases of the other animals, such as rat, mouse and human, than the 11β-hydroxylases of these animals. (2) The molecular nature of the P450(11β) family enzymes of genetically hypertensive rats as well as adrenal regeneration hypertension (ARH) rats is examined. (i) Mutation was found in the P450(11β) gene of Dahl's salt-resistant normotensive rat. Steroidogenic activity expressed by the mutated gene accounted well for abnormal plasma levels of steroid hormones in this rat. (ii) 11β-, 18- and 19-Hydroxylation activities of adrenal mitochondria prepared from spontaneously hypertensive rat (SHR), Wistar-Kyoto rat (WKY), and stroke-prone (SP)-SHR were not significantly different from each other. Levels of mRNA of ALDO synthase in adrenal glands of 50-week-old SHR was significantly lower than those of 10-week-old SHR, WKY and SHR-SP. (iii) No significant difference in 19-hydroxylation activity was found between adrenal mitochondria prepared from ARH rat and those from control rat. The level of message of ALDO synthase was lower in adrenal glands of ARH rat.  相似文献   

9.
β-1,4-Galactans are abundant polysaccharides in plant cell walls, which are generally found as side chains of rhamnogalacturonan I. Rhamnogalacturonan I is a major component of pectin with a backbone of alternating rhamnose and galacturonic acid residues and side chains that include α-1,5-arabinans, β-1,4-galactans, and arabinogalactans. Many enzymes are required to synthesize pectin, but few have been identified. Pectin is most abundant in primary walls of expanding cells, but β-1,4-galactan is relatively abundant in secondary walls, especially in tension wood that forms in response to mechanical stress. We investigated enzymes in glycosyltransferase family GT92, which has three members in Arabidopsis thaliana, which we designated GALACTAN SYNTHASE1, (GALS1), GALS2 and GALS3. Loss-of-function mutants in the corresponding genes had a decreased β-1,4-galactan content, and overexpression of GALS1 resulted in plants with 50% higher β-1,4-galactan content. The plants did not have an obvious growth phenotype. Heterologously expressed and affinity-purified GALS1 could transfer Gal residues from UDP-Gal onto β-1,4-galactopentaose. GALS1 specifically formed β-1,4-galactosyl linkages and could add successive β-1,4-galactosyl residues to the acceptor. These observations confirm the identity of the GT92 enzyme as β-1,4-galactan synthase. The identification of this enzyme could provide an important tool for engineering plants with improved bioenergy properties.  相似文献   

10.

Background

Among extremophiles, halophiles are defined as microorganisms adapted to live and thrive in diverse extreme saline environments. These extremophilic microorganisms constitute the source of a number of hydrolases with great biotechnological applications. The interest to use extremozymes from halophiles in industrial applications is their resistance to organic solvents and extreme temperatures. Marinobacter lipolyticus SM19 is a moderately halophilic bacterium, isolated previously from a saline habitat in South Spain, showing lipolytic activity.

Methods and Findings

A lipolytic enzyme from the halophilic bacterium Marinobacter lipolyticus SM19 was isolated. This enzyme, designated LipBL, was expressed in Escherichia coli. LipBL is a protein of 404 amino acids with a molecular mass of 45.3 kDa and high identity to class C β-lactamases. LipBL was purified and biochemically characterized. The temperature for its maximal activity was 80°C and the pH optimum determined at 25°C was 7.0, showing optimal activity without sodium chloride, while maintaining 20% activity in a wide range of NaCl concentrations. This enzyme exhibited high activity against short-medium length acyl chain substrates, although it also hydrolyzes olive oil and fish oil. The fish oil hydrolysis using LipBL results in an enrichment of free eicosapentaenoic acid (EPA), but not docosahexaenoic acid (DHA), relative to its levels present in fish oil. For improving the stability and to be used in industrial processes LipBL was immobilized in different supports. The immobilized derivatives CNBr-activated Sepharose were highly selective towards the release of EPA versus DHA. The enzyme is also active towards different chiral and prochiral esters. Exposure of LipBL to buffer-solvent mixtures showed that the enzyme had remarkable activity and stability in all organic solvents tested.

Conclusions

In this study we isolated, purified, biochemically characterized and immobilized a lipolytic enzyme from a halophilic bacterium M. lipolyticus, which constitutes an enzyme with excellent properties to be used in the food industry, in the enrichment in omega-3 PUFAs.  相似文献   

11.
Phosphate-independent glutaminase can be quantitatively solubilized from a microsomal preparation of rat kidney by treatment with papain. Subsequent gel filtration and chromatography on quaternary aminoethyl (QAE)-Sephadex and hydroxylapatite yield a 200-fold purified preparation of this glutaminase. The purified enzyme also hydrolyzes gamma-glutamylhydroxamate and exhibits substrate inhibition at high concentrations of either glutamine or gamma-glutamyhydroxamate, which is partially relieved by increasing concentrations of maleate. Rat kidney phosphate-independent glutaminase reaction is catalyzed by the same enzyme which catalyzes the gamma-glutamyltranspeptidase reaction. The ratio of glutaminase to transpeptidase activities remained constant throughout a 200-fold purification of this enzyme. The observation that the phosphate0independent glutaminase and gamma-glutamyltranspeptidase activities exhibit coincident mobilities during electrophoresis, both before and after extensive treatment with neuraminidase, strongly suggests that both reactions are catalyzed by the same enzyme. This conclusion is strengthened by the observation that maleate and various amino acids have reciprocal effects on the two activities. Maleate increases glutaminase activity and blocks transpeptidation, whereas amino acids activate the transpeptidase but inhibit glutaminase activity. In contrast, the addition of both maleate and alanine resulted in a strong inhibition of both activities. Both activities exhibit a similar distribution in the various regions of the kidney. Recovery of maximal activities in the outer stripe region of the medulla is consistent with previous quantitative microanalysis which indicated that this glutaminase activity is localized primarily in the proximal straight tubule cells. The glutaminase and transpeptidase activities have different pH optima. Examination of the product specificity suggests that decreasing pH also promotes glutaminase activity and that below pH 6.0, this enzyme functions strictly as a glutaminase. Because of the localization of this activity on the brush border membrane, these resuts are consistent with the possibility that the physiological conditions induced by metabolic acidosis could convert this enzyme from a broad specificity transpeptidase to a glutaminase. Therefore, this enzyme could contribute to the increased renal synthesis of ammonia from glutamine which is observed during metabolic acidosis.  相似文献   

12.
Glutaminase or L-glutamine aminohydrolase (EC 3.5.1.2) is an enzyme that catalyzes the formation of glutamic acid and ammonium ion from glutamine. This enzyme functions in cellular metabolism of every organism by supplying nitrogen required for the biosynthesis of a variety of metabolic intermediates, while glutamic acid plays a role in both sensory and nutritional properties of food. So far there have been only a few reports on cloning, expression and characterization of purified glutaminases. Microbial glutaminases are enzymes with emerging potential in both the food and the pharmaceutical industries. In this research a recombinant glutaminase from Bacillus licheniformis (GlsA) was expressed in Escherichia coli, under the control of a ptac promoter. The recombinant enzyme was tagged with decahistidine tag at its C-terminus and could be conveniently purified by one-step immobilized metal affinity chromatography (IMAC) to apparent homogeneity. The enzyme could be induced for efficient expression with IPTG, yielding approximately 26,000 units from 1-l shake flask cultures. The enzyme was stable at 30°C and pH 7.5 for up to 6h, and could be used efficiently to increase glutamic acid content when protein hydrolysates from soy and anchovy were used as substrates. The study demonstrates an efficient expression system for the production and purification of bacterial glutaminase. In addition, its potential application for bioconversion of glutamine to flavor-enhancing glutamic acid has been demonstrated.  相似文献   

13.
Partially purified Trichoderma reesei RUT-C30 acetyl esterase preparation was found to catalyze acyl transfer reactions in organic solvents, mixtures of organic solvents with water and even in water. Using different acyl donors, the best results for acetyl transfer in water were obtained using vinyl acetate. As acetyl acceptors, a variety of hydroxyl bearing compounds in aqueous solutions were used. Degree of conversion and the number of newly formed acetates varied according to the acceptor used. Conversions over 50% were observed for the majority of several common monosaccharides, their methyl and deoxy derivatives and oligosaccharides. In several cases, the transesterification reaction exhibited strict regioselectivity, leading to only one acetyl derivative. Preparative potential of the transesterification in water was demonstrated by acetylation of methyl β- -glucopyranoside, 4-nitrophenyl β- -glucopyranoside and kojic acid, yielding 56.4% of methyl 3-O-acetyl β- -glucopyranoside, 70.2% of 4-nitrophenyl 3-O-acetyl β- -glucopyranoside and 30.9% of 7-O-acetyl-kojic acid as the only reaction products.

This enzymatically catalyzed transacetylation in water, which is applied to transformation of saccharides for the first time, opens a new area in chemoenzymatic synthesis. Its major advantages are simplicity, highly regioselective esterification of polar compounds, high yields, low enzyme consumption and elimination of the need to use toxic organic solvents.  相似文献   


14.
Lipoate-protein ligase A (LplA) catalyzes the attachment of lipoic acid to lipoate-dependent enzymes by a two-step reaction: first the lipoate adenylation reaction and, second, the lipoate transfer reaction. We previously determined the crystal structure of Escherichia coli LplA in its unliganded form and a binary complex with lipoic acid (Fujiwara, K., Toma, S., Okamura-Ikeda, K., Motokawa, Y., Nakagawa, A., and Taniguchi, H. (2005) J Biol. Chem. 280, 33645–33651). Here, we report two new LplA structures, LplA·lipoyl-5′-AMP and LplA·octyl-5′-AMP·apoH-protein complexes, which represent the post-lipoate adenylation intermediate state and the pre-lipoate transfer intermediate state, respectively. These structures demonstrate three large scale conformational changes upon completion of the lipoate adenylation reaction: movements of the adenylate-binding and lipoate-binding loops to maintain the lipoyl-5′-AMP reaction intermediate and rotation of the C-terminal domain by about 180°. These changes are prerequisites for LplA to accommodate apoprotein for the second reaction. The Lys133 residue plays essential roles in both lipoate adenylation and lipoate transfer reactions. Based on structural and kinetic data, we propose a reaction mechanism driven by conformational changes.  相似文献   

15.
The 2,3-dihydroxybiphenyl 1,2-dioxygenase from Sphingomonas xenophaga strain BN6 (BphC1) oxidizes 3-chlorocatechol by a rather unique distal ring cleavage mechanism. In an effort to improve the efficiency of this reaction, bphC1 was randomly mutated by error-prone PCR. Mutants which showed increased activities for 3-chlorocatechol were obtained, and the mutant forms of the enzyme were shown to contain two or three amino acid substitutions. Variant enzymes containing single substitutions were constructed, and the amino acid substitutions responsible for altered enzyme properties were identified. One variant enzyme, which contained an exchanged amino acid in the C-terminal part, revealed a higher level of stability during conversion of 3-chlorocatechol than the wild-type enzyme. Two other variant enzymes contained amino acid substitutions in a region of the enzyme that is considered to be involved in substrate binding. These two variant enzymes exhibited a significantly altered substrate specificity and an about fivefold-higher reaction rate for 3-chlorocatechol conversion than the wild-type enzyme. Furthermore, these variant enzymes showed the novel capability to oxidize 3-methylcatechol and 2,3-dihydroxybiphenyl by a distal cleavage mechanism.  相似文献   

16.
The stability of almond β-glucosidase in five different organic media was evaluated. After 1 hour of incubation at 30°C, the enzyme retained 95, 91, 81, 74 and 56% relative activity in aqueous solutions [30% (v/v)] of dioxane, DMSO, DMF, acetone and acetonitrile, respectively. Transglucosylation involving p-nitrophenyl β-D-glucopyranoside as donor and β-1-N-acetamido-D-glucopyranose, which is a glycosylasparagine mimic, as acceptor was explored under different reaction conditions using almond βglucosidase and cloned Pichia etchellsii β-glucosidase II. The yield of disaccharides obtained in both reactions turned out to be 3%. Both enzymes catalyzed the formation of (1→3)- as well as (1→6)- regioisomeric disaccharides, the former being the major product in cloned β-glucosidase II reaction while the latter predominated in the almond enzyme catalyzed reaction. Use of β-1-N-acetamido-D-mannopyranose and β-1-N-acetamido-2-acetamido-2-deoxy-D-glucopyranose as acceptors in almond β-glucosidase catalyzed reactions, however, did not afford any disaccharide products revealing the high acceptor specificity of this enzyme.  相似文献   

17.
Gatti DL 《PloS one》2012,7(1):e30079

Background

The first line of defense by bacteria against β-lactam antibiotics is the expression of β-lactamases, which cleave the amide bond of the β-lactam ring. In the reaction of biapenem inactivation by B2 metallo β-lactamases (MβLs), after the β-lactam ring is opened, the carboxyl group generated by the hydrolytic process and the hydroxyethyl group (common to all carbapenems) rotate around the C5–C6 bond, assuming a new position that allows a proton transfer from the hydroxyethyl group to C2, and a nucleophilic attack on C3 by the oxygen atom of the same side-chain. This process leads to the formation of a bicyclic compound, as originally observed in the X-ray structure of the metallo β-lactamase CphA in complex with product.

Methodology/Principal Findings

QM/MM and metadynamics simulations of the post-hydrolysis steps in solution and in the enzyme reveal that while the rotation of the hydroxyethyl group can occur in solution or in the enzyme active site, formation of the bicyclic compound occurs primarily in solution, after which the final product binds back to the enzyme. The calculations also suggest that the rotation and cyclization steps can occur at a rate comparable to that observed experimentally for the enzymatic inactivation of biapenem only if the hydrolysis reaction leaves the N4 nitrogen of the β-lactam ring unprotonated.

Conclusions/Significance

The calculations support the existence of a common mechanism (in which ionized N4 is the leaving group) for carbapenems hydrolysis in all MβLs, and suggest a possible revision of mechanisms for B2 MβLs in which the cleavage of the β-lactam ring is associated with or immediately followed by protonation of N4. The study also indicates that the bicyclic derivative of biapenem has significant affinity for B2 MβLs, and that it may be possible to obtain clinically effective inhibitors of these enzymes by modification of this lead compound.  相似文献   

18.
Human fibroblasts with a genetic deficiency of a single lysosomal enzyme and fibroblasts from a patient with ‘I-cell’ disease with a multiple deficiency of lysosomal hydrolases were used as recipient cells in studies on recognition and uptake of β-N-acetylhexosaminidase (hexosaminidase), β-glucuronidase and β-galactosidase. Normal human fibroblasts, and fibroblasts, hepatocytes and hepatoma cells from the rat were used as donor cells. The release of hexosaminidase was found to be similar among these different cell types, but the extracellular activities of β-glucuronidase and β-galactosidase were much higher in the rat cell cultures than in cultures of normal human fibroblasts. The enzymes released by rat fibroblasts were ingested by deficient human fibroblasts; enzyme from normal human fibroblasts was shown to be taken up by rat fibroblasts by means of electrophoresis. This indicates that reciprocal transfer of lysosomal hydrolases occurs between human and rat fibroblasts. Rat hepatocytes released hydrolases that were poorly taken up by human recipient fibroblasts and uptake of human fibroblast enzyme was not detected in the hepatocytes. Rat hepatoma cells, on the other hand, released lysosomal enzymes that were taken up by human deficient cells with a higher efficiency than those from fibroblasts. The uptake was subject to competitive inhibition by mannose 6-phosphate, the kinetics of which were comparable with those reported for ‘high-uptake’ forms of lysosomal enzymes [1–2]. Electrophoretic studies showed that rat hepatoma cells were not only capable of ingesting hexosaminidase from normal human fibroblasts, but also defectively processed enzyme [4–5] released by ‘I-cells’. These findings make rat hepatoma cells a useful model for the study of recognition and uptake of lysosomal enzymes.  相似文献   

19.
In Pseudomonas aeruginosa, the chromosomally encoded class C cephalosporinase (AmpC β-lactamase) is often responsible for high-level resistance to β-lactam antibiotics. Despite years of study of these important β-lactamases, knowledge regarding how amino acid sequence dictates function of the AmpC Pseudomonas-derived cephalosporinase (PDC) remains scarce. Insights into structure-function relationships are crucial to the design of both β-lactams and high-affinity inhibitors. In order to understand how PDC recognizes the C3/C4 carboxylate of β-lactams, we first examined a molecular model of a P. aeruginosa AmpC β-lactamase, PDC-3, in complex with a boronate inhibitor that possesses a side chain that mimics the thiazolidine/dihydrothiazine ring and the C3/C4 carboxylate characteristic of β-lactam substrates. We next tested the hypothesis generated by our model, i.e. that more than one amino acid residue is involved in recognition of the C3/C4 β-lactam carboxylate, and engineered alanine variants at three putative carboxylate binding amino acids. Antimicrobial susceptibility testing showed that the PDC-3 β-lactamase maintains a high level of activity despite the substitution of C3/C4 β-lactam carboxylate recognition residues. Enzyme kinetics were determined for a panel of nine penicillin and cephalosporin analog boronates synthesized as active site probes of the PDC-3 enzyme and the Arg349Ala variant. Our examination of the PDC-3 active site revealed that more than one residue could serve to interact with the C3/C4 carboxylate of the β-lactam. This functional versatility has implications for novel drug design, protein evolution, and resistance profile of this enzyme.  相似文献   

20.
Curdlan, a high molecular weight extracellular β(1→3) glucan produced by pure culture fermentation by Agrobacterium radiobacter NCIM 2443 contains large number of free hydroxyl groups. The reaction of hydroxyl containing supports with epichlorohydrin results in activated epoxy groups that can covalently link with available amino, hydroxyl, or sulfhydryl groups of enzymes, thereby immobilizing it. The present work reports on preparation of epoxy-activated matrix for immobilization of a model enzyme, porcine pancreatic lipase. The binding capacity of the matrix prepared by extraction of epoxy-activated curdlan by isopropyl alcohol was found to be 58.7% with about 0.6% loss of the enzyme activity during immobilization. Further, the specific activity of the enzyme increased marginally from 9.37 to 10.2. The corresponding value was 10.15 for a commercial sample of curdlan, epoxy-activated as for laboratory-isolated curdlan. Sepharose, the most widely used support matrix for the immobilization of enzymes was used for comparison in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号