首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumor necrosis factor alpha (Tnf) plays a pleiotropic role in murine malaria. Some investigations have correlated Tnf with hypothermia, hyperlactatemia, hypoglycemia, and a suppression of the erythropoietic response, although others have not. In this study, we have evaluated parasitemia, survival rate and several pathological features in C57BL/6JTnf−/− and C57BL/6JTnf+/+ mice after infection with Plasmodium chabaudi adami 408XZ. Compared to the C57BL/6JTnf+/+ mice, C57BL/6JTnf−/− mice showed increased parasitemia and decreased survival rate, whereas blood glucose, blood lactate and body weight were not significantly different. However, C57BL/6JTnf−/− mice suffered significantly more from severe anemia and hypothermia than C57BL/6JTnf+/+ mice. These results suggest that Tnf is an important mediator of parasite control, but not of anemia development. We hypothesize that the high mortality observed in the Tnf knock-out mice is due to increased anemia and pathology as a direct result of increased levels of parasitemia.  相似文献   

2.
When polygenic traits are under stabilizing selection, many different combinations of alleles allow close adaptation to the optimum. If alleles have equal effects, all combinations that result in the same deviation from the optimum are equivalent. Furthermore, the genetic variance that is maintained by mutation–selection balance is 2μ/S per locus, where μ is the mutation rate and S the strength of stabilizing selection. In reality, alleles vary in their effects, making the fitness landscape asymmetric and complicating analysis of the equilibria. We show that that the resulting genetic variance depends on the fraction of alleles near fixation, which contribute by 2μ/S, and on the total mutational effects of alleles that are at intermediate frequency. The interplay between stabilizing selection and mutation leads to a sharp transition: alleles with effects smaller than a threshold value of 2μ/S remain polymorphic, whereas those with larger effects are fixed. The genetic load in equilibrium is less than for traits of equal effects, and the fitness equilibria are more similar. We find that if the optimum is displaced, alleles with effects close to the threshold value sweep first, and their rate of increase is bounded by μS. Long-term response leads in general to well-adapted traits, unlike the case of equal effects that often end up at a suboptimal fitness peak. However, the particular peaks to which the populations converge are extremely sensitive to the initial states and to the speed of the shift of the optimum trait value.  相似文献   

3.
In the plant blue-light sensor phototropin, illumination of the chromophoric LOV domains causes activation of the serine/threonine kinase domain. Flavin mononucleotide (FMN) is a chromophore molecule in the two LOV domains (LOV1 and LOV2), but only LOV2 is responsible for kinase activation. Previous studies reported an important role of an additional helix connected to the C-terminal of LOV2 (Jα helix) for the function of phototropin; however, it remains unclear how the Jα helix affects light-induced structural changes in LOV2. In this study we compared light-induced protein structural changes of the LOV2 domain of Arabidopsis phot1 in the absence (LOV2-core) and presence (LOV2-Jα) of the Jα helix by Fourier-transform infrared spectroscopy. Prominent peaks were observed only in the amide-I region (1650 (−)/1625 (+) cm−1) of LOV2-Jα at physiological temperatures (≥260 K), corresponding to structural perturbation of the α-helix. The peaks were diminished by point mutation of functionally important amino acids such as Phe-556 between FMN and the β-sheet, Gln-575 being hydrogen-bonded with FMN, and Ile-608 on the Jα helix. We thus conclude that a light signal is relayed from FMN through these amino acids and eventually changes the interaction between LOV2-core and the Jα helix in Arabidopsis phot1.  相似文献   

4.
A novel tetranuclear complex, [Ni(μ3-OH)(DPA)]4(ClO4)4 (where DPA = 2,2′-dipicolylamine) has been synthesized, with characterization including electronic and infrared spectroscopy, elemental analysis, mass spectrometry, crystal structure analysis, and variable-temperature and variable-field magnetic susceptibility measurements. The complex features a 4Ni-4OH cubane-type cluster, displaying both ferromagnetic and antiferromagnetic intracluster interactions in a 2J model (J1 = −3.4 cm−1, J2 = 4.7 cm−1, D = 2.0 cm−1). Each nickel atom sits in a pseudooctahedral environment, with one DPA molecule facially coordinated and the remaining three coordination sites occupied by the bridging hydroxide anions that make up the cubane core.  相似文献   

5.
The in-situ formed hydrazone Schiff base ligand (E)-N′-(2-oxy-3-methoxybenzylidene)benzohydrazide (L2−) reacts with copper(II) acetate to a tetranuclear open cubane [Cu(L)]4 complex which crystallizes as two symmetry-independent (Z′ = 2) S4-symmetrical molecules in different twofold special positions with a homodromic water tetramer. The two independent (A and B) open- or pseudo-cubanes with Cu4O4 cores of 4 + 2 class (Ruiz classification) each have three different magnetic exchange pathways leading to an overall antiferromagnetic coupling with J1B = J2B = −17.2 cm−1, J1A = −36.7 cm−1, J2A = −159 cm−1, J3A = J3B = 33.5 cm−1, g = 2.40 and ρ = 0.0687. The magnetic properties have been analysed using the H = −Σi,jJij(SiSj) spin Hamiltonian.  相似文献   

6.
Alkoxo-phenoxo bridged tetranuclear copper(II) complexes [Cu4L2(O2CC6H4-p-OH)2] (1) and [Cu4L2(O2CC6H4-o-OH)2] (2) containing pentadentate Schiff base ligand N,N-(2-hydroxypropane-1,3-diyl)bis(salicylaldimine) (H3L) are prepared and structurally characterized. Crystal structures of the complexes show the covalent linkage between two {Cu2L(O2CR)}(R = C6H4-p-OH, C6H4-o-OH) units through the phenoxo atoms of the Schiff base ligand showing axial/equatorial bonding modes. The Cu(1)-O(2)-Cu(2) alkoxo bridge angle is 131° in 1 and 2. The pendant ortho- and para- OH groups of the three-atom bridging carboxylate ligands show no apparent bonding interactions with the metal or other group(s). The complexes show a d-d band near 635 nm in CH2Cl2. Variable temperature magnetic susceptibility measurements in the temperature range 300-18 K show antiferromagnetically coupled spin system. A theoretical fit of the magnetic data using exchange parameters J1 and J2 for the intradimer and interdimer units of the quasi-linear tetrameric core gave values as: J1=−132,J2=−72 cm−1 for 1 and J1=−167,J2=−67 cm−1 for 2.  相似文献   

7.
The tridentate unsymmetrical ligand N-(2-hydroxymethylphenyl)salicylideneimine H2L, derived from salicylaldehyde and 2-aminobenzylalcohol, with [ONO] donor atoms yields [L2FeIII2Cl2] (1) and [L6FeIII4] (2) complexes containing alkoxide bridges, which have been structurally characterized by X-ray diffraction. In complex 1, each ferric ion is five-coordinated with a distorted square-pyramidal geometry, the basal planes of which are symmetrically bridged by two alkoxide oxygen atoms. Analysis of the susceptibility data reveals antiferromagnetic interactions with an exchange parameter J = −15.8 cm−1 between the high-spin d5 ferric centers. The structure of 2 can be considered as “linear (2,2,2)” to specify the number of enolate oxygen atoms between four iron atoms. Variable-temperature magnetic susceptibility data are fitted to a “three-J” model, yielding pairwise antiferromagnetic exchange interactions, J12 = J34 = −13.4 cm−1, J13 = J24 = −7.1 cm−1, J23 = −14.9 cm−1, between the neighboring ferric centers; J14 is assumed to be negligible. Complex 2 has a complicated low-lying magnetic structure with a non-diamagnetic ground state. In addition, the Fe-O-Fe angles at the bridging ligands seem to be determinant for the strength of the antiferromagnetic interactions.  相似文献   

8.
We examined variability in carotenoid concentration in the gonads and eggs of four sea urchin species (Strongylocentrotus purpuratus, Strongylocentrotus franciscanus, Strongylocentrotus pallidus and Strongylocentrotus droebachiensis) to explore the possible role of carotenes as photoprotectants. Carotene concentrations were measured in gonads and gametes of each species, while in eggs the ultraviolet radiation (UV-R) sensitivity and self-shading capacity by carotenes were calculated. Mean concentrations of carotenes in gonads ranged from 0.13±0.017 mg g−1 dw (S. purpuratus), 0.14±0.019 mg g−1 dw (S. franciscanus), 0.29±0.079 mg g−1 dw (S. pallidus) to 0.36±0.06 mg g−1 dw (S. droebachiensis). In eggs, concentrations ranged from 0.026±0.003 to 0.09±0.034 mg g−1 dw. UV-R sensitivity in eggs was quantified by measuring UV-R induced first-cleavage delay. Intra-specifically, cleavage delay varied significantly between individuals, and could be correlated with carotene concentration. Interspecific differences in cleavage delay and carotene concentrations were not correlated. Using the observed concentration of β, β-echinenone (which makes up between 82.4% and 94.9% of the total carotene concentration in the eggs) and a molar extinction coefficient of ε=13.7×103 mol−1 cm−1 at 334 nm, we calculated self-shading efficiency in the eggs. Self-shading capacity (J334) indicated that the eggs could only screen from 4.6% (J334=0.046) down to 1.5% (J334=0.015) of UV-R at 334 nm. While not sunscreens, we suggest that carotenes can photoprotective in echinoid eggs, probably by mitigating the effects of reactive oxygen species.  相似文献   

9.
Synthesis, spectroscopic and magnetic properties, and X-ray crystal structures of two copper(II) polymers Cu(2-qic)Br (2-qic = quinoline-2-carboxylate) (1) and Cu(2-pic)Br (2-pic = pyridine-2-carboxylate) (2) are described. These compounds are isostructural with Cu(2-qic)Cl and Cu(2-pic)Cl, respectively, the X-ray crystal structures of which were reported recently. Both complexes are polynuclear copper(II) compounds (1D and 2D, respectively) based on syn-anti carboxylate bridges and additionally on linear monobromo- (in 1) and dibromo-bridging (in 2) motifs. The magnetic properties were investigated in the temperature range 1.8-300 K. They reveal the occurrence of strong antiferromagnetic coupling (J1 = −102.5 cm−1) through the single bromo-bridge in 1, which is much stronger than that transmitted by the single chloro-bridge (J = −57.0 cm−1). Very weak ferromagnetic interaction through the syn-anti carboxylate bridge J2 is expected as it was observed in isomorphous Cu(2-qic)Cl (J = 0.37 cm−1). For 2 a weak ferromagnetic couplings through the syn-anti carboxylate (zJ′ = 1.35 cm−1) and dibromo-bridges (J = 8.31 cm−1) were found. The experimental results indicate that the observed ferromagnetic exchange through dibromo-bridge is weaker than that in the chloride analog (J = 15.0 cm−1). The magnitude of magnetic interactions is discussed on the basis of structural data of compounds 1 and 2 and their halide analogues.  相似文献   

10.
Four trinuclear Cu(II) complexes, [(CuL1)33-OH)](NO3)2 (1), [(CuL2)33-OH)](I)2·H2O (2), [(CuL3)33-OH)](I)2 (3) and [(CuL1)33-OH)][CuII3] (4), where HL1 (8-amino-4-methyl-5-azaoct-3-en-2-one), HL2 [7-amino-4-methyl-5-azaoct-3-en-2-one] and HL3 [7-amino-4-methyl-5-azahept-3-en-2-one] are the three tridentate Schiff bases, have been synthesized and structurally characterized by X-ray crystallography. All four complexes contain a partial cubane core, [(CuL)33-OH)]2+ in which the three [CuL] subunits are interconnected through two types of oxygen bridges afforded by the oxygen atoms of the ligands and the central OH group. The copper(II) ions are in a distorted square-pyramidal environment. The equatorial plane consists of the bridging oxygen of the central OH group together with three atoms (N, N, O) from the Schiff base. The oxygen atom of the Schiff base also coordinates to the axial position of Cu(II) of another subunit to form the cyclic trimer. Magnetic susceptibilities have been determined for these complexes over the temperature range of 2-300 K. The isotropic Hamiltonian, H = −J12S1S2 − J13S1S3 − J23S2S3 has been used to interpret the magnetic data. The best fit parameters obtained are: J = −54.98 cm−1, g = 2.24 for 1; J = −56.66 cm−1, g = 2.19 for 2;J = −44.39 cm−1, g = 2.16 for 3; J = −89.92 cm−1, g = 2.25 for 4. The EPR data at low temperature indicate that the phenomenon of spin frustration occurs for complexes 1-3.  相似文献   

11.
Magnetic interactions in binuclear copper(II) complexes, [Cu2(apyhist)2Cl2](ClO4)2 (1) and [Cu2(2-pyhist)2Cl2](ClO4)2 (2) with tridentate diimine ligands and chloro-bridged groups (where apyhist=(4-imidazolyl)ethylene-2-amino-1-ethylpyridine and 2-pyhist=(4-imidazolyl)ethylene-2-aminomethylpyridine) were studied with the aim of better elucidating magneto-structural correlations in such species, both in solution and in solid state. X-ray analyses revealed that chloro-bridged ligands keep the copper(II) ion coordinated to adjacent unit, at Cu-Cl distances of 2.271 and 2.737 Å, and a Cu-Cl-Cu angle of 87.46° in compound 1. Each CuII atom is also coordinated to three N atoms from the imine ligand, in a distorted tetragonal pyramidal environment. Magnetic measurements carried out in temperatures from 0.8 to 290 K and in magnetic field up to 170 kOe indicated that besides the intramolecular magnetic coupling between the copper centers [J/k=−(1.93±0.05) K] further interactions between adjacent dimers [Jz/k=−(1.3±0.1) K] should be taken into account. Similar results were observed for compound 2, for which [J/k=−(4.27±0.05) K] and [Jz/k=−(3.7±0.1) K]. In solution, the interconversion of the dimer 1 and the related monomer species [Cu(apyhist)(H2O)2] (ClO4)2 (3) monitored by EPR spectra, was verified to be very dependent on the solvent.  相似文献   

12.
Two 1D complexes [Mn(4- methylpyrazole)3(H2O)(tp)]n (2) and [Mn(4-methylpyrazole)4(tp)]n (3) (tp = terephthalate) were synthesized and characterized by means of X-ray analysis and magnetic studies. The molecular structure of 2 reveals that Mn(II) centers with asymmetric coordination surroundings are bridged by crystallographically different tp ligands, forming a 1D chain. The 1D coordination chains are interconnected by hydrogen bonds between free carboxylate oxygen atoms in a chain and hydrogens of pyrazole nitrogen atoms in neighboring chains, leading to a 3D framework. Compound 3 also exhibits a 1D coordination chain which is hydrogen-bonded to adjacent chains, providing a 2D sheet structure. Interestingly, the structures include intra- and interchain hydrogen bonds contributed from N-H groups of the capping 4-methylpyrazole ligands. Magnetic measurements show weak antiferromagnetic interactions with exchange coupling parameters of J = −0.018 cm−1 for 2 and J = −0.062 cm−1 for 3 through the extended tp ligand on the basis of an infinite chain model (H = −JSi · Si + 1).  相似文献   

13.
Quinonoid dihydropteridine reductase (QDPR) catalyzes the regeneration of tetrahydrobiopterin (BH4), a cofactor for monoamine synthesis, phenylalanine hydroxylation and nitric oxide production. Here, we produced and analyzed a transgenic Qdpr−/− mouse model. Unexpectedly, the BH4 contents in the Qdpr−/− mice were not decreased and even increased in some tissues, whereas those of the oxidized form dihydrobiopterin (BH2) were significantly increased. We demonstrated that unlike the wild-type mice, dihydrofolate reductase regenerated BH4 from BH2 in the mutants. Furthermore, we revealed wide alterations in folate-associated metabolism in the Qdpr−/− mice, which suggests an interconnection between folate and biopterin metabolism in the transgenic mouse model.  相似文献   

14.
During long bone development and post-natal growth, the cartilaginous model of the skeleton is progressively replaced by bone, a process known as endochondral ossification. In the primary spongiosa, osteoclasts degrade the mineralized cartilage produced by hypertrophic chondrocytes to generate cartilage trabeculae that osteoblasts embed in bone matrix. This leads to the formation of the trabecular bone network of the secondary spongiosa that will undergo continuous remodeling. Osteoclasts are specialized in mineralized tissue degradation, with the combined ability to solubilize hydroxyapatite and to degrade extracellular matrix proteins. We reported previously that osteoclasts lacking Dock5 could not degrade bone due to abnormal podosome organization and absence of sealing zone formation. Consequently, adult Dock5/ mice have increased trabecular bone mass. We used Dock5/ mice to further investigate the different functions of osteoclast during endochondral bone formation. We show that long bones are overall morphologically normal in developing and growing Dock5/ mice. We demonstrate that Dock5/ mice also have normal hypertrophic cartilage and cartilage trabecular network. Conversely, trabecular bone volume increased progressively in the secondary spongiosa of Dock5/ growing mice as compared to Dock5+/+ animals, even though their osteoclast numbers were the same. In vitro, we show that Dock5/ osteoclasts do present acidic compartments at the ventral plasma membrane and produce normal amounts of active MMP9, TRAP and CtsK for matrix protein degradation but they are unable to solubilize minerals. These observations reveal that contrarily to bone resorption, the ability of osteoclasts to dissolve minerals is dispensable for the degradation of mineralized hypertrophic cartilage during endochondral bone formation.  相似文献   

15.
16.
Reaction of [Cu2L](ClO4)4 with CH3CN in acetonitrile, and Him in DMF gave cyanide and imidazolate bridged macrocyclic dinuclear copper (II) complexes with the formula [Cu2L(CN)](ClO4)3 (1) and [Cu2L(im)](ClO4)2 · 0.7Br · 0.3Cl, (2), respectively (L = N[(CH2)2NHCH2(C6H4-p)CH2NH(CH2)2]3N). In 2, each Cu(II) atom is coordinated with four macrocyclic nitrogen atoms and one imidazolate N atom, forming a slightly distorted square pyramidal geometry. Magnetic susceptibility measurements of 1 and 2 show that the two Cu(II) atoms of the binuclear unit are antiferromagnetically coupled with g = 2.148, J = −86.09 cm−1 for 1, and g = 2.047, J = −38.20 cm−1 for 2. The correlation between the structures and the J values is discussed.  相似文献   

17.
The copper(II) complex with tolfenamic acid [Cu(tolf)2(H2O)]2 was studied by X-band and K-band EPR spectroscopies in the temperature range from 90 to 300 K. The Cu2+ ions in dinuclear complex show a strong antiferromagnetic exchange interaction with |J| = 292 cm−1. The EPR spectra, which were observed for [Cu(tolf)2(H2O)]2, are typical powder spectra of the copper pairs. The spectra exhibit the hyperfine structure in low temperature range. The values of the spin-Hamiltonian parameters were determined on the basis of the best fit for the simulated spectra at both K-band (0.75 cm−1) at T = 298 K and X-band (0.3 cm−1) at T = 93 K as compared with the experimentally observed spectra. These values show that the local environment around the copper species is distorted tetragonal pyramid. This EPR evidence is consistent with the crystallographic data.  相似文献   

18.
Two new polynuclear complexes of Cu(II), [(μ-1,1,3-N3)2{Cu2(me2tn)2(N3)2}]n (1) (me2tn=2,2-dimethylpropane-1,3-diamine) and [Cu2(μ-C2O4)(μ-N3)(ipr2en)2]n(ClO4)n (2) (ipr2en=N,N-di-isopropylethane-1,2-diamine) have been synthesized and structurally characterized by X-ray crystallography. The crystal structure of 1 displays a 2D network in which distorted octahedral copper(II) centers, chelated by a me2tn ligand and bound to a terminal azide, are connected through μ-1,1,3 bridging azide anions. The structure of 2 shows 1D chains comprising alternating [(ipr2en)Cu-Ox-Cu(ipr2en)] units and end-to-end azide ligand. The chains on mutual H-bonding interaction through ClO4, give rise to a 2D supramolecular architecture. The magnetic data of complexes were recorded in the temperature range, 300-2 K. In case of complex 1, the magnetic data are consistent with a ferromagnetic interaction through the end-on azide bridge (JFM=10 cm−1) and a weak antiferromagnetic interaction (zj=−0.8 cm−1) between the ferromagnetically coupled dimers and an average g-value of 2.05. The susceptibility data of 2 were fitted using an alternating AF-AF chain spin 1/2 law which leads to the following parameters Joxalate=−180 cm−1, Jazide=−43 cm−1 and g=2.25 cm−1.  相似文献   

19.
Based on the complex ligand (CuL H2L = 2,3-dioxo-5,6:15,16-dibenzo-1,4,8,13-tetraazacyclotetradeca-7,13-diene), which includes macrocyclic oxamido bridge, three trinuclear complexes were prepared. They are of the formula [(CuL)2M(ClO4)2] (M = Co(1), Ni(2)) and [(CuL)2Zn(CH3OH)2] · (ClO4)2 (3). The crystal structures of the three complexes have been determined and the M(II) of the three complexes all exist on the mirror plane. Complex 1 is the first Cu-Co complex bridged by oxamido. Their magnetic properties were studied by susceptibility versus temperature measurement, the best fitting of the experimental data led to J = −28.12 cm−1 for 1, J = −42.88 cm−1 for 2, and J = −2.13 cm−1 for 3.  相似文献   

20.
A tetranuclear Cu(II) complex [Cu4L4(H2O)4](ClO4)4 has been synthesized using the terdentate Schiff base 2-(pyridine-2-yliminomethyl)-phenol (HL) (the condensation product of salicylaldehyde and 2-aminopyridine) and copper perchlorate. Chemical characterizations such as IR and UV/Vis of the complex have been carried out. A single-crystal diffraction study shows that the complex contains a nearly planar tetranuclear core containing four copper atoms, which occupy four equivalent five-coordinate sites with a square pyramidal environment. Magnetic measurements have been carried out over the temperature range 2-300 K and with 100 Oe field strengths. Analysis of magnetic susceptibility data indicates a strong antiferromagnetic (J1 = −638 cm−1) exchange interaction between diphenoxo-bridged Cu(II) centers and a moderate antiferromagnetic (J2 = −34 cm−1) interaction between N-C-N bridged Cu(II) centers. Magnetic exchange interactions (J’s) are also discussed on the basis of a computational study using DFT methodology. The spin density distribution (singlet ground state) is calculated to visualize the effect of delocalization of spin density through bridging groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号