首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
p21ras plays an important role in the control of cell proliferation. The molecular mechanisms implicated are unknown. We report that the injection of oncogenic Lys12 Ras into Xenopus laevis oocytes promoted the activation of mitogen-activated protein kinase (MAP kinase) after a lag of about 90 min. MAP kinase activity was 10-fold higher 4 h after injection of oncogenic Lys12 Ras than after injection of nononcogenic Gly12 Ras. The stimulated MAP kinase activity remained at a plateau for at least 18 h. Maximal stimulation was obtained with 5 ng of Lys12 Ras, which is similar to the amount that elicits germinal vesicle breakdown. DEAE-Sephacel chromatography of extracts from Lys12 Ras-injected oocytes showed one peak of MAP kinase. MAP kinase activation by Lys12 Ras was associated with tyrosine phosphorylation of MAP kinase (p42). As previously shown, the S6-kinase II (likely pp90rsk), which is activated in vitro by MAP kinase, was also activated by oncogenic Lys12 Ras. Lys12 Ras with an additional mutation (Glu38) in the effector region that binds GTPase-activating protein (GAP) did not promote MAP kinase or S6 kinase activations. Thus, GAP may be involved downstream to Ras in these activation processes. Our results indicate that the Ras-GAP complex promotes MAP kinase activation in oocytes. This supports the idea that Ras-GAP controls MAP kinase, a kinase implicated in the action of various stimuli.  相似文献   

2.
The effect of phorbol 12-myristate 13-acetate on the phosphorylation of the ras p21 protein was studied by metabolically labeling cultured cells with [32P]orthophosphate and using a monoclonal antibody to immunoprecipitate the protein. Phorbol 12-myristate 13-acetate (100 nM) induced phosphorylation of cKi-ras p21 in a mouse adrenocortical cell line (Yl) expressing high levels of cKi-ras with exon 4B. Phosphorylation was detected at 10 min and was maximal at 2 h. The ras protein was not phosphorylated in response to phorbol 12-myristate 13-acetate in NIH 3T3 cells expressing activated cHa-ras or vHa-ras. In vitro, protein kinase C phosphorylated cKi-ras in a phosphatidylserine and diolein-dependent manner. Both in intact cells and in vitro the amino acid phosphorylated was serine. Analysis of p21 from NIH 3T3 cells expressing a variety of ras proteins indicated that phosphorylation occurs within a domain encoded by exon 4B of cKi-ras. Phosphorylation affected neither the binding nor the GTPase activity of the ras protein. We conclude that cKi-ras is a substrate for protein kinase C and that the site of phosphorylation is likely to be serine 181 encoded by exon 4B.  相似文献   

3.
Previous studies in this laboratory have shown that insulin treatment of Xenopus oocytes leads to an increase in phosphorylation of ribosomal protein S6. To investigate the mechanism of this increase, S6 kinase activity was measured in lysates of oocytes exposed to insulin. Insulin caused a rapid 4- to 6-fold increase in S6 kinase activity, which was maximal by 20 min and which could be reversed by removal of insulin prior to homogenization. Dose-response curves showed a detectable increase in specific activity at 1 nM insulin with a maximal effect at 100 nM. Treatment of oocytes with puromycin did not prevent this increase in S6 kinase activity, suggesting activation rather than synthesis of the enzyme. DEAE-Sephacel chromatography of extracts from insulin-treated oocytes revealed two peaks of S6 kinase activity, and the specific activity of the peak eluting at 300 nM NaCl was increased 3-fold in oocytes treated with insulin. The same peak of S6 kinase activity was increased 40% within 10 min in oocytes injected with highly purified insulin-receptor kinase. These results indicate that the insulin-dependent increase in S6 phosphorylation is due, at least in part, to activation of an S6 protein kinase, and this activation may result from the action of the insulin receptor at an intracellular location.  相似文献   

4.
5.
Swiss-3T3 cells were scrape-loaded with oncogenically activated p21ras protein. 10-20 min after introducing Val12p21ras into the cell, diacylglycerol levels were increased, but levels of inositol phosphates were unaltered. However, cellular choline and phosphocholine levels were increased with a similar time course to that observed for diacylglycerol production, suggesting that ras increases phosphatidylcholine turnover but not phosphatidylinositol turnover. Down-regulation of protein kinase C (by prolonged exposure to phorbol esters prior to scrape loading) blocked the ability of ras protein to elevate the levels of diacylglycerol, choline, and phosphocholine. Oncogenic ras can, therefore, cause a substantial increase in diacylglycerol (which correlates with increased phosphatidylcholine breakdown) in a protein kinase C-dependent fashion. Val12p21ras also increased arachidonic acid release, which was also dependent on protein kinase C activation. Induction of DNA synthesis by oncogenic ras was unaffected by inhibitors of prostaglandin synthesis, indicating that conversion of the released arachidonic acid to various prostaglandins is not required for stimulation of DNA synthesis by ras. We suggest that ras rapidly activates protein kinase C, which in turn activates a number of cellular signalling systems, leading to a sustained increase in diacylglycerol levels. This elevation of diacylglycerol could sustain protein kinase C activation over the 12-15 h required for initiation of DNA synthesis.  相似文献   

6.
Phosphorylation of ribosomal protein S6 is elevated in polyomavirus-infected cells. This elevation results only in part from activation of S6 kinase activity. These effects appear to reflect independent activities of wild-type middle T antigen. Hr-t mutant NG59, encoding a defective middle T protein, and mutant Py808A, encoding no middle T protein, were unable to induce S6 kinase activity or elevate S6 phosphorylation. Two other site-directed mutants encoding altered middle T proteins did elevate S6 phosphorylation while only weakly stimulating S6 kinase activity. These results suggest at least two independent pathways leading to elevation of S6 phosphorylation. One pathway leads to induction of S6 kinase activity following activation of pp60c-src by transformation-competent middle T antigen. Another pathway operates independently of S6 kinase induction and can be regulated by transformation-defective middle T mutants such as Py1387T. This mutant, encoding a truncated middle T protein that failed to associate with the plasma membrane and to activate pp60c-src, caused increased levels of S6 phosphorylation without detectably increasing S6 kinase activity. The ability of mutants such as Py1387T to induce S6 phosphorylation correlated with their ability to increase phosphorylation of VP1, an event linked to maturation of infectious virions.  相似文献   

7.
We have recently shown that a peptide (residues 35-47) from a functional region of the ras p21 protein, thought to be involved in the binding of p21 to GTPase activating protein, the antibiotic azatyrosine, known to induce the ras-recision gene, and the selective protein kinase C inhibitor, CGP 41,251, all inhibit oncogenic p21 protein-induced maturation of oocytes in a dose-dependent manner. We now show that these three agents only partially inhibit insulin-induced oocyte maturation, known to be dependent on activation of cellular p21 protein. On the other hand, the anti-p21 protein antibody Y13-259 completely inhibits both insulin- and oncogenic p21 protein-induced maturation as does a tetrapeptide, CVIM, known to block the enzyme farnesyl transferase which covalently attaches the farnesyl moiety to the p21 protein allowing it to attach to the cell membrane. Our results suggest that while the oncogenic and insulin-activated normal p21 proteins share certain elements of their signal transduction pathways in common, these pathways diverge and allow for selective inhibition of the oncogenic pathway.  相似文献   

8.
The Ras-GTPase-activating protein (RasGAP) is an important modulator of p21ras - dependent signal transduction in Xenopus oocytes and in mammalian cells. We investigated the role of the RasGAP SH3 domain in signal transduction with a monoclonal antibody against the SH3 domain of RasGaP. This antibody prevented the activation of the maturation-promoting factor complex (cyclin B-p34cdc2) by oncogenic Ras. The antibody appears to be specific because as little as 5 ng injected per oocyte reduced the level of Cdc2 activation by 50% whereas 100 ng of nonspecific immunoglobulin G did not affect Cdc2 activation. The antibody blocked the Cdc2 activation induced by oncogenic Ras but not that induced by progesterone, which acts independently of Ras. A peptide corresponding to positions 317 to 326 of a sequence in the SH3 domain of human RasGAP blocked Cdc2 activation, whereas a peptide corresponding to positions 273 to 305 of a sequence in the N-terminal moiety of the SH3 domain of RasGAP had no effect. The antibody did not block the mitogen-activated protein (MAP) kinase cascade (activation of MAPK/ERK kinase [MEK], MAP kinase, and S6 kinase p90rsk). Surprisingly, injection of the negative MAP kinase mutant protein ERK2 K52R (containing a K-to-R mutation at position 52) blocked the Cdc2 activation induced by oncogenic Ras as well as blocking the activation of MAP kinase. Thus, MAP kinase is also implicated in the regulation of Cdc2 activity. In this study, we further investigated the regulation of the synthesis of the c-mos oncogene product, which is necessary for the activation of Cdc2. We report that the synthesis of the c-mos oncogene product, which is necessary for the activation antibody to the SH3 domain of RasGAP and by injecting the negative MAP kinase mutant protein ERK2 K52R. These results suggest that oncogenic Ras activates two signaling mechanisms: the MAP kinase cascade and a signaling pathway implicating the SH3 domain of RasGAP. These mechanisms might control Mos protein expression implicated in Cdc2 activation.  相似文献   

9.
Insulin was found to stimulate the phosphorylation of the 21,000-dalton protein encoded by the ras oncogene of Harvey murine sarcoma virus in membrane fraction both in vivo and in vitro. When the human ras proteins expressed in E. coli were reconstituted with purified human insulin receptor, GTPase activity of normal or its mutated oncogenic ras protein was not stimulated by the addition of insulin. Likewise, tyrosine kinase activity or insulin binding capacity of the receptor was not influenced when assayed in the presence of the ras proteins. These results suggest that ras proteins may be coupled with the insulin receptor system through some unidentified membrane factors.  相似文献   

10.
Nuclear factor kappa B (NF-kappa B) plays a critical role in the regulation of a large variety of cellular genes. However, the mechanism whereby this nuclear factor is activated remains to be determined. In this report, we present evidence that in oocytes from Xenopus laevis, (i) ras p21- and phospholipase C (PLC)-mediated phosphatidylcholine (PC) hydrolysis activates NF-kappa B and (ii) protein kinase C zeta subspecies is involved in the activation of NF-kappa B in response to insulin/ras p21/PC-PLC. Thus, the microinjection of either ras p21 or PC-PLC, or the exposure of oocytes to insulin, promotes a significant translocation to the nucleus of an NF-kappa B-like activity. This effect is not observed when oocytes are incubated with phorbol myristate acetate or progesterone, both of which utilize a ras p21-independent pathway for oocyte activation. These data strongly suggest a critical role of the insulin/ras p21/PC-PLC/protein kinase C zeta pathway in the control of NF-kappa B activation.  相似文献   

11.
D Bar-Sagi  J R Feramisco 《Cell》1985,42(3):841-848
To investigate the possible role of ras proteins in the differentiation process signaled by nerve growth factor, we have microinjected the proto-oncogenic and oncogenic (T24) forms of the human H-ras protein into living rat pheochromocytoma cells (PC12). PC12 cells, which have the phenotype of replicating chromaffin-like cells under normal growth conditions, respond to nerve growth factor by differentiating into nonreplicating sympathetic neuron-like cells. Microinjection of the ras oncogene protein promoted the morphological differentiation of PC12 cells into neuron-like cells. In contrast, microinjection of similar amounts of the proto-oncogene form of the ras protein had no apparent effect on PC12 cells. The induction of morphological differentiation by the ras oncogene protein occurred in the absence of nerve growth factor, was dependent on protein synthesis, and was accompanied by cessation of cell division. Treatment of PC12 cells with nerve growth factor or cAMP analogue prior to injection did not alter the phenotypic changes induced by the ras oncogene protein.  相似文献   

12.
Protein phosphorylation mediated by cAMP-dependent protein kinase is instrumental in maintaining meiotic arrest of mouse oocytes. To assess whether protein phosphorylation mediated by calcium/phospholipid-dependent protein kinase (protein kinase C) might also inhibit the resumption of meiosis, we treated oocytes with activators of this enzyme. The active phorbol esters 12-O-tetra-decanoyl phorbol-13-acetate (TPA) and 4 beta-phorbol 12,13-didecanoate (4 beta-PDD) inhibited germinal vesicle breakdown (GVBD), as did a more natural activator of protein kinase, C, sn-1,2-dioctanoylglycerol (diC8). An inactive phorbol ester, 4 alpha-phorbol 12,13-didecanoate (4 alpha-PDD), did not inhibit GVBD. We then examined whether protein kinase C activators inhibit a step in the cAMP-modulated pathway that regulates resumption of meiosis. TPA did not inhibit the maturation-associated decrease in oocyte cAMP. Microinjected heat-stable protein inhibitor of cAMP-dependent protein kinase failed to induce GVBD in the presence of TPA. Both TPA and diC8 partially inhibited specific changes in oocyte phosphoprotein metabolism that are tightly correlated with resumption of meiosis; these agents also induced the apparent phosphorylation of specific oocyte proteins. These results suggest that protein kinase C activators may inhibit resumption of meiosis by acting distal to a decrease in cAMP-dependent protein kinase activity, but prior to changes in oocyte phosphoprotein metabolism that are presumably required for resumption of meiosis. Finally, we compared the effects of db-cAMP and protein kinase C activators on polar body emission following GVBD. TPA, 4 beta-PDD or diC8, but not 4 alpha-PDD or db-cAMP, inhibited polar body emission in a dose-dependent manner. The morphology and cytology of oocytes in which polar body emission was inhibited by TPA or 4 beta-PDD differed from that of oocytes treated with diC8. Thirty to 60% of the former were round in shape and exhibited a clump of chromosomes but no spindle; the remainder were distended in shape and exhibited a metaphase I spindle. All oocytes treated with diC8, however, were round, had dispersed chromosomes, and no spindle. These results suggest that, in contrast to resumption of meiosis, polar body emission is inhibited by activation of protein kinase C but not cAMP-dependent protein kinase.  相似文献   

13.
Signalling proteins such as phospholipase C-gamma (PLC-gamma) or GTPase-activating protein (GAP) of ras contain conserved regions of approximately 100 amino acids termed src homology 2 (SH2) domains. SH2 domains were shown to be responsible for mediating association between signalling proteins and tyrosine-phosphorylated proteins, including growth factor receptors. Nck is an ubiquitously expressed protein consisting exclusively of one SH2 and three SH3 domains. Here we show that epidermal growth factor or platelet-derived growth factor stimulation of intact human or murine cells leads to phosphorylation of Nck protein on tyrosine, serine, and threonine residues. Similar stimulation of Nck phosphorylation was detected upon activation of rat basophilic leukemia RBL-2H3 cells by cross-linking of the high-affinity immunoglobulin E receptors (Fc epsilon RI). Ligand-activated, tyrosine-autophosphorylated platelet-derived growth factor or epidermal growth factor receptors were coimmunoprecipitated with anti-Nck antibodies, and the association with either receptor molecule was mediated by the SH2 domain of Nck. Addition of phorbol ester was also able to stimulate Nck phosphorylation on serine residues. However, growth factor-induced serine/threonine phosphorylation of Nck was not mediated by protein kinase C. Interestingly, approximately fivefold overexpression of Nck in NIH 3T3 cells resulted in formation of oncogenic foci. These results show that Nck is an oncogenic protein and a common target for the action of different surface receptors. Nck probably functions as an adaptor protein which links surface receptors with tyrosine kinase activity to downstream signalling pathways involved in the control of cell proliferation.  相似文献   

14.
Glycogen synthase kinase 3 (GSK3) is a widely expressed Ser/Thr protein kinase that phosphorylates numerous substrates. This large number of substrates requires precise and specific regulation of GSK3 activity, which is achieved by a combination of phosphorylation, localization, and interactions with GSK3-binding proteins. Members of the Wnt canonical pathway have been shown to influence GSK3 activity. Through a yeast two-hybrid screen, we identified the Wnt canonical pathway co-receptor protein low density lipoprotein receptor-related protein 6 (LRP6) as a GSK3-binding protein. The interaction between the C terminus of LRP6 and GSK3 was also confirmed by in vitro GST pull-down assays and in situ coimmunoprecipitation assays. In vitro assays using immunoprecipitated proteins demonstrated that the C terminus of LRP6 significantly attenuated the activity of GSK3beta. In situ, LRP6 significantly decreased GSK3beta-mediated phosphorylation of tau at both primed and unprimed sites. Finally, it was also demonstrated that GSK3beta phosphorylates the PPP(S/T)P motifs in the C terminus of LRP6. This is the first identification of a direct interaction between LRP6 and GSK3, which results in an attenuation of GSK3 activity.  相似文献   

15.
Signal transduction induced by generations of second messengers from membrane phospholipids is a major regulatory mechanism in the control of cell proliferation. Indeed, oncogenic p21ras alters the intracellular levels of phospholipid metabolites in both mammalian cells and Xenopus oocytes. However, it is still controversial whether this alteration it is biologically significant. We have analyzed the ras-induced signal transduction pathway in Xenopus oocytes and have correlated its mechanism of activation with that of the three most relevant phospholipases (PLs). After microinjection, ras-p21 induces a rapid PLD activation followed by a late PLA2 activation. By contrast, phosphatidylcholine-specific PLC was not activated under similar conditions. When each of these PLs was studied for its ability to activate intracellular signalling kinases, all of them were found to activate maturation-promoting factor efficiently. However, only PLD was able to activate MAP kinase and S6 kinase II, a similar pattern to that induced by p21ras proteins. Thus, the comparison of activated enzymes after microinjection of p21ras or PLs indicated that only PLD microinjection mimetized p21ras signalling. Finally, inhibition of the endogenous PLD activity by neomycin substantially reduced the biological activity of p21ras. All these results suggest that PLD activation may constitute a relevant step in ras-induced germinal vesicle breakdown in Xenopus oocytes.  相似文献   

16.
Mitogen-activated protein (MAP) kinase is a serine/threonine kinase whose function is thought to be essential for the transduction of mitogenic signals. MAP kinase is activated by phosphorylation induced by a variety of extracellular stimuli, and its direct upstream activator has been identified. Using amphibian and mammalian systems, we show here that ras can activate MAP kinase and its activator. Injection of v-Ha-ras p21 into Xenopus immature oocytes activated both MAP kinase and maturation-promoting factor (MPF) activities. The activation of MAP kinase preceded that of MPF, demonstrating that ras activates MAP kinase in an MPF-independent pathway. Moreover, we found that the MAP kinase activator is also activated in ras-injected oocytes. Activation of MAP kinase and its activator occurred also when the v-Ki-ras gene was conditionally induced in rat fibroblastic 3Y1 cells. Furthermore, we observed that ras activated MAP kinase and its activator in a cell-free system prepared from Xenopus oocytes. Using an antibody against the Xenopus 45-kDa MAP kinase activator, we demonstrated that the 45-kDa activator molecule was activated by ras. These findings suggest that the MAP kinase activator/MAP kinase system may be the downstream components of ras signal transduction pathways.  相似文献   

17.
To examine signal transduction events activated by oncogenic p21ras, we have studied kinases that are activated following the scrape loading of p21ras into quiescent cells. We observe rapid activation of 42 kDa and 46 kDa protein kinases. The 42 kDa kinase is the mitogen and extracellular-signal regulated kinase ERK2, (MAP2 kinase), which is activated by phosphorylation on tyrosine and threonine in response to oncogenic p21ras, while the 46 kDa kinase is likely to be another member of the ERK family. Stimulation of these kinases by oncogenic p21ras does not require the presence of growth factors, showing that oncogenic p21ras uncouples kinase activation from external signals. In ras transformed cell lines, these kinases are constitutively activated. We propose that the kinases are important components of the signal transduction pathway activated by p21ras oncoprotein.  相似文献   

18.
The serine/threonine kinase activity of the Raf-1 proto-oncogene product is stimulated by the activation of many tyrosine kinases, including growth factor receptors and pp60v-src. Recent studies of growth factor signal transduction pathways demonstrate that Raf-1 functions downstream of activated tyrosine kinases and p21ras and upstream of mitogen-activated protein kinase. However, coexpression of both activated tyrosine kinases and p21ras is required for maximal activation of Raf-1 in the baculovirus-Sf9 expression system. In this study, we investigated the role of tyrosine kinases and tyrosine phosphorylation in the regulation of Raf-1 activity. Using the baculovirus-Sf9 expression system, we identified Tyr-340 and Tyr-341 as the major tyrosine phosphorylation sites of Raf-1 when coexpressed with activated tyrosine kinases. Introduction of a negatively charged residue that may mimic the effect of phosphorylation at these sites activated the catalytic activity of Raf-1 and generated proteins that could transform BALB/3T3 cells and induce the meiotic maturation of Xenopus oocytes. In contrast, substitution of noncharged residues that were unable to be phosphorylated produced a protein that could not be enzymatically activated by tyrosine kinases and that could block the meiotic maturation of oocytes induced by components of the receptor tyrosine kinase pathway. These findings demonstrate that maturation of the tyrosine phosphorylation sites can dramatically alter the function of Raf-1. In addition, this is the first report that a transforming Raf-1 protein can be generated by a single amino acid substitution.  相似文献   

19.
Mitogen-activated protein kinases (MAPKs) are rapidly and transiently activated when both quiescent Go-arrested cells and G2-arrested oocytes are stimulated to reenter the cell cycle. We previously developed a cell-free system from lysates of quiescent Xenopus oocytes that responds to oncogenic H-ras protein by activating a MAPK, p42MAPK. Here, we show that the oncogenic protein kinase mos is also a potent activator of p42MAPK in these lysates. Mos also induces p42MAPK activation in lysates of activated eggs taken at a time when neither mos nor p42MAPK is normally active, showing that the mos-responsive MAPK activation pathway persists beyond the stage where mos normally functions. Similarly, lysates of somatic cells (rabbit reticulocytes) also retain a mos-inducible MAPK activation pathway. The mos-induced activation of MAPKs in all three lysates leads to phosphorylation of the pp90rsk proteins, downstream targets of the MAPK signaling pathway in vivo. The in vitro activation of MAPKs by mos in cell-free systems derived from oocytes and somatic cells suggests that mos contributes to oncogenic transformation by inappropriately inducing the activation of MAPKs.  相似文献   

20.
Activated oncogenic ras proteins are powerful mitogenic agents which by themselves can initiate and maintain the proliferation of quiescent cells in the absence of any exogenous growth factors. In an attempt to understand how ras proteins induce proliferation we examined the early events in the G0 to G1 transition caused by the activation of a thermolabile K-ras protein in quiescent, serum-starved tsKSV-transformed NRK cells. We show that ras reactivation, in the absence of exogenous growth factors, triggered a rapid surge in free cytosolic Ca2+ and diacylglycerol production, which led to a transient increase in membrane-associated protein kinase C (PKC) activity which was necessary for G1 transit. Unlike TPA-stimulated PKC activity, the ras-induced increase in PKC was readily extracted from membranes by EGTA. These signal transducing events occurred despite the fact that ras activation did not induce the tyrosine phosphorylation of any known surface receptor. The results indicate that the K-ras protein triggers the G0 to G1 transition by an intracellular mechanism and not indirectly via autocrine stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号