首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 The metamorphosis of many marine invertebrate larvae is induced by environmental signals. Upon reception of the cues, internal signals have to be set in motion to convey information to all cells of the larvae. For hydrozoan larvae it was hypothesised that ectodermal neurosensory cells at the anterior part are those cells receptive of the inducer. Recently, it was shown that novel peptides with a common GLWamide terminus are found in Cnidaria. These peptides are located in a specific subset of the anterior sensory cells. It was hypothesised that the neuropeptides represent an internal signal coordinating the metamorphic process. In the current study we present further evidence for this hypothesis. Induction of metamorphosis is very specific for the GLWamide terminus and amidation is essential. The potency to metamorphose is strongly correlated with the presence of GLWamide-immunoreactive cell bodies. Our data fit our hypothesis about a very important role of GLWamides in the initiation of the morphogenetic processes very well. Received: 16 February 1998 / Accepted: 11 April 1998  相似文献   

2.
KPNAYKGKLPIGLWamide, a novel member of the GLWamide peptide family, was isolated from Hydra magnipapillata. The purification was monitored with a bioassay: contraction of the retractor muscle of a sea anemone, Anthopleura fuscoviridis. The new peptide, termed Hym-370, is longer than the other GLWamides previously isolated from H. magnipapillata and another sea anemone, A. elegantissima. The amino acid sequence of Hym-370 is six residues longer at its N-terminal than a putative sequence previously deduced from the cDNA encoding the precursor protein. The new longer isoform, like the shorter GLWamides, evoked concentration-dependent muscle contractions in both H. magnipapillata and A. fuscoviridis. In contrast, Hym-248, one of the shorter GLWamide peptides, specifically induced contraction of the endodermal muscles in H. magnipapillata. This is the first case in which a member of the hydra GLWamide family (Hym-GLWamides) has exhibited an activity not shared by the others. Polyclonal antibodies were raised to the common C-terminal tripeptide GLWamide and were used in immunohistochemistry to localize the GLWamides in the tissue of two species of hydra, H. magnipapillata and H. oligactis, and one species of sea anemone, A. fuscoviridis. In each case, nerve cells were specifically labeled. These results suggest that the GLWamides are ubiquitous among cnidarians and are involved in regulating the excitability of specific muscles.  相似文献   

3.
Coral larvae appear to sense appropriate environments for settlement and start metamorphosis by converting external cues into internal signals, although little is known about these molecular mechanisms. A family of neuropeptides, GLWamides, are thought to be such internal signals, acting hormonally to induce metamorphosis in some hydrozoan species. Here we report that one member of the GLWamide peptide family, Hym-248, can induce metamorphosis of planula larvae in the genus Acropora. The Acropora planulae responded to the peptide in a concentration-dependent manner. The GLWamide peptide would mimic endogenous molecules to start metamorphosis in Acropora as in case of hydrozoans. In addition, the peptide could be applied to produce "coral seedlings" with the aim of reef restoration.  相似文献   

4.
In planula larvae of the invertebrate Hydractinia echinata (Cnidaria, Hydrozoa), peptides of the GLWamide and the RFamide families are expressed in distinct subpopulations of neurons, distributed in a typical spatial pattern through the larval body. However, in the adult polyp GLWamide or RFamide-expressing cells are located at body parts that do not correspond to the prior larval regions. Since we had shown previously that during metamorphosis a large number of cells are removed by programmed cell death (PCD), we aimed to analyze whether cells of the neuropeptide-expressing larval nerve net are among those sacrificed. By immunohistochemical staining and in situ hybridization, we labeled GLWamide- and RFamide-expressing cells. Double staining of neuropeptides and degraded DNA (TUNEL analysis) identified some neurosensory cells as being apoptotic. Derangement of the cytoplasm and rapid destruction of neuropeptide precursor RNA indicated complete death of these particular sensory cells in the course of metamorphosis. Additionally, a small group of RFamide-positive sensory cells in the developing mouth region of the primary polyp could be shown to emerge by proliferation. Our results support the idea that during metamorphosis, specific parts of the larval neuronal network are subject to neurodegeneration and therefore not used for construction of the adult nerve net. Most neuronal cells of the primary polyp arise by de novo differentiation of stem cells commited to neural differentiation in embryogenesis. At least some nerve cells derive from proliferation of progenitor cells. Clarification of how the nerve net of these basal eumetazoans degenerates may add information to the understanding of neurodegeneration by apoptosis as a whole in the animal kingdom.  相似文献   

5.
A comparative cytomorphological analysis of Myxozoa and parasitic Cnidaria Polypodium hydriforme has been carried out in view of the Weill (1938) hypothesis, which regards Myxozoa as a reduced Cnidaria. The question on the relation of Myxozoa and Cnidaria was arising several times with the application of some new methods during the Myxozoa studies. At present the idea on their phylogenetic relationships has appeared again in connection with an absolutely new understanding of the myxozoan life cycle (Wolf, Markiw, 1984), as well as with the application of molecular-biological methods for their phylogenetic studies. The latter, however, provided some diverse results. So far no comparative cytomorphological analysis of Myxozoa and Polypodium has been carried out. The present paper is to fill the gap on the basis of accumulated facts. According to Weill (1938), the features of similarity of parasitic Cnidaria and Myxozoa are the following: 1) the presence in both of extrusomes (nematocysts and polar capsules) whose structure and development are surprizingly similar; 2) the nuclear dimorphism and somato-generative segregation; 3) the presence of a somatic nutritional cell, surrounding the multiplying generative cells; at present it is known that polyploidy of somatic nuclei and the absence of parasitophorous vacuole are characteristic of trophamnion of Polypodium and trophozoite of Myxozoa; 4) the presence of radial symmetry in both groups; 5) the construction of a diblastic organism made of a cluster of endodermal cells and a few ectodermal cells; 6) the similarity of their cell contacts (Grassé, 1970). At present it is possible to add to Weill's (1938) list of features common for parasitic Cnidaria and Myxozoa the number of important similarities between Polypodium and Myxozoa, some of which being not characteristic of Cnidaria: 1) the "cell in cell" organization of all Polypodium parasitic stages and all Myxozoa life cycle stages; 2) the presence of gametophore supplied with extrusomes; 3) both organisms have haplophase in their life cycles preceded by two-step meiosis; 4) there are mitochondria with tubular cristae in both organisms; 5) the absence of spermatozoa and eggs in both organisms; 6) the similarity of Polypodium cnidocile structure and the cone-like formation situated at the anterior end of polar capsule of actinospore (Lom. Dykova, 1997); 7) the participation of MTOC in the formation of extrusomes in both animals. In spite of the obvious similarity between Myxozoa and parasitic Cnidaria (including Polypodium) it is, however, necessary to take into account differences between them, the main being as follows: the absence in Myxozoa of flagellated stages, centrioles, tissues and organs, true blastophylla, planula-like larvae, gastrulation; the presence of low cell integrations in Myxozoa; Cnidaria and Myxozoa have different types of mitosis, their life cycles and the discharge mechanism of their stinging apparatus being also different. We consider as quite valid a suggestion by Siddall et al. (1995) that parasitic Cnidaria could present an early separated branch of the cnidarian evolution. Further studies of Myxozoa life cycle may show their more definite relation to parasitic Cnidaria. The problem has not yet been solved completely since the available molecular-biological data are rather contradictory and moreover there is no distinct idea as to the Eumetazoa ancestor so far. A further thorough investigation is badly needed in the feelds of developmental cycle, cytomorphology and molecular biology of the variety of narcomedusae and representatives of Myxozoa. This may help to find some transitional forms and stages of the animals and to understand whether we deal with a regressive evolution of parasitic Cnidaria or with a parallel evolution of taxa originated from the common ancestor.  相似文献   

6.
The coordination of physiological processes requires precise communication between cells. Cellular interactions allow cells to be functionally related, facilitating the maintaining of homeostasis. Neuropeptides functioning as intercellular signals are widely distributed in Metazoa. It is assumed that neuropeptides were the first intercellular transmitters, appearing early during the evolution. In Cnidarians, neuropeptides are mainly involved in neurotransmission, acting directly or indirectly on epithelial muscle cells, and thereby controlling coordinated movements. Allatostatins are a group of chemically unrelated neuropeptides that were originally characterized based on their ability to inhibit juvenil hormone synthesis in insects. Allatostatin-C has pleiotropic functions, acting as myoregulator in several insects. In these studies, we analyzed the myoregulatory effect of Aedes aegypti Allatostatin-C in Hydra sp., a member of the phylum Cnidaria. Allatostatin-C peptide conjugated with Qdots revealed specifically distributed cell populations that respond to the peptide in different regions of hydroids. In vivo physiological assays using Allatostatin-C showed that the peptide induced changes in shape and length in tentacles, peduncle and gastrovascular cavity. The observed changes were dose and time dependent suggesting the physiological nature of the response. Furthermore, at highest doses, Allatostatin-C induced peristaltic movements of the gastrovascular cavity resembling those that occur during feeding. In silico search of putative Allatostatin-C receptors in Cnidaria showed that genomes predict the existence of proteins of the somatostatin/Allatostatin-C receptors family. Altogether, these results suggest that Allatostatin-C has myoregulatory activity in Hydra sp, playing a role in the control of coordinated movements during feeding, indicating that Allatostatin-C/Somatostatin based signaling might be an ancestral mechanism.  相似文献   

7.
Tentacles from representatives of all four classes of the phylum Cnidaria were examined using antibodies against the neuropeptides FMRFamide and RFamide to reveal the organization of neurons and nerve nets associated with cnidocytes. The tentacles of all species examined contained FMRFamide- or RFamide-immunoreactive neurons, in varying densities. In representatives from the Scyphozoa, Hydrozoa, and Cubozoa, the FMRFamide-immunoreactive neurons formed plexuses at the base of the cnidocyte assemblages; in anthozoans, the absence of discrete assemblies of cnidocytes precluded visual co-localization of cnidocytes and immunoreactive neurons. In all four classes, immunoreactive sensory cells connected these peptidergic nerve nets to the surface of the tentacle. These findings suggest that members of all four cnidarian classes share a common organizational pattern, and it is proposed that this peptidergic innervation may be involved in the chemosensory regulation of cnidocyte discharge.  相似文献   

8.
As a sister group to Bilateria, Cnidaria is important for understanding early nervous system evolution. Here we examine neural development in the anthozoan cnidarian Nematostella vectensis in order to better understand whether similar developmental mechanisms are utilized to establish the strikingly different overall organization of bilaterian and cnidarian nervous systems. We generated a neuron-specific transgenic NvElav1 reporter line of N. vectensis and used it in combination with immunohistochemistry against neuropeptides, in situ hybridization and confocal microscopy to analyze nervous system formation in this cnidarian model organism in detail. We show that the development of neurons commences in the ectoderm during gastrulation and involves interkinetic nuclear migration. Transplantation experiments reveal that sensory and ganglion cells are autonomously generated by the ectoderm. In contrast to bilaterians, neurons are also generated throughout the endoderm during planula stages. Morpholino-mediated gene knockdown shows that the development of a subset of ectodermal neurons requires NvElav1, the ortholog to bilaterian neural elav1 genes. The orientation of ectodermal neurites changes during planula development from longitudinal (in early-born neurons) to transverse (in late-born neurons), whereas endodermal neurites can grow in both orientations at any stage. Our findings imply that elav1-dependent ectodermal neurogenesis evolved prior to the divergence of Cnidaria and Bilateria. Moreover, they suggest that, in contrast to bilaterians, almost the entire ectoderm and endoderm of the body column of Nematostella planulae have neurogenic potential and that the establishment of connectivity in its seemingly simple nervous system involves multiple neurite guidance systems.  相似文献   

9.
Plickert  Günter  Schneider  Birgit 《Hydrobiologia》2004,515(1-3):49-57
Peptides of the RFamide family occur in neurosecretory cells of all nervous systems of Cnidaria so far studied. Photoreceptive organs – if evolved in a cnidarian species – are always associated with neural cells showing RFamide immunoreactivity. Experimental evidence for the function of RFamides and other neuropeptides in nervous systems and photoreceptive organs is, however, scarce or lacking. RFamide and LWamide immunoreactivity were surveyed in photoreceptive organs of the hydromedusa Cladonema radiatum, in rhopalia of the scyphozoan Aurelia aurita, and in rhopalia of the cubomedusa Tripedalia cystophora. A possible function of neuropeptides in transmission of photic stimuli was assayed by analysing photic behavior in Tripedalia, which has highly developed eyes, and in the simply constructed planula of the hydroid Hydractinia echinata, in which the mode of light perception is unknown. In both species, light orientation was effectively prevented by RFamides administered to the animals in micromolar concentration. In contrast, among four other neuropeptides occurring in the larva of Hydractinia, only one interfered with phototaxis and then only at 10× higher concentrations. Planulae depleted of bioactive peptideamides also lost phototaxis while still locomotorily active. The results support the hypothesis that one possible function of RFamides in Cnidaria is to transmit photic stimuli to epitheliomuscular targets.  相似文献   

10.
Evolution of sensory structures in basal metazoa   总被引:3,自引:0,他引:3  
Cnidaria have traditionally been viewed as the most basal animalswith complex, organ-like multicellular structures dedicatedto sensory perception. However, sponges also have a surprisingrange of the genes required for sensory and neural functionsin Bilateria. Here, we: (1) discuss "sense organ" regulatorygenes, including; sine oculis, Brain 3, and eyes absent, thatare expressed in cnidarian sense organs; (2) assess the sensoryfeatures of the planula, polyp, and medusa life-history stagesof Cnidaria; and (3) discuss physiological and molecular datathat suggest sensory and "neural" processes in sponges. We thendevelop arguments explaining the shared aspects of developmentalregulation across sense organs and between sense organs andother structures. We focus on explanations involving divergentevolution from a common ancestral condition. In Bilateria, distinctsense-organ types share components of developmental-gene regulation.These regulators are also present in basal metazoans, suggestingevolution of multiple bilaterian organs from fewer antecedentsensory structures in a metazoan ancestor. More broadly, wehypothesize that developmental genetic similarities betweensense organs and appendages may reflect descent from closelyassociated structures, or a composite organ, in the common ancestorof Cnidaria and Bilateria, and we argue that such similaritiesbetween bilaterian sense organs and kidneys may derive froma multifunctional aggregations of choanocyte-like cells in ametazoan ancestor. We hope these speculative arguments presentedhere will stimulate further discussion of these and relatedquestions.  相似文献   

11.
Dendritic cells (DC) are highly motile and play a key role in mediating immune responses in various tissues and lymphatic organs. We investigated locomotion of mononuclear cell-derived DC at different maturation stages toward gradients of sensory neuropeptides in vitro. Calcitonin gene-related peptide, vasoactive intestinal polypeptide, secretin, and secretoneurin induced immature DC chemotaxis comparable to the potency of RANTES, whereas substance P and macrophage-inflammatory protein-3beta stimulated immature cell migration only slightly. Checkerboard analyses revealed a true chemotactic response induced by neuropeptides. Upon maturation of DC, neuropeptides inhibited spontaneous, macrophage-inflammatory protein-3beta- and 6Ckine-induced cell migration. Maturation-dependent changes in migratory behavior coincided with distinct neuropeptide-induced signal transduction in DC. Peripheral neuropeptides might guide immature DC to peripheral nerve fibers where high concentrations of these peptides can arrest the meanwhile matured cells. It seems that one function of sensory nerves is to fasten DC at sites of inflammation.  相似文献   

12.
13.
Several neuropeptides are present in the mammalian pineal gland. Most of these peptides, eg neuropeptide Y, vasoactive intestinal peptide, and peptide histidine isoleucine, are located in nerve fibres innervating the gland. In some mammalian species, neuropeptides are also found in cells scattered in the pineal parenchyma. In the rat, bipolar cells immunoreactive for somatostatin are present, just as cells containing mRNA encoding somatostatin can be detected in the gland by in situ hybridisation. In the pineal gland of the European hamster, many cells are immunoreactive for enkephalin. Ultrastructural cytochemical analysis of these cells reveals a pinealocyte morphology. Processes from the opioidergic pinealocytes terminate in the parenchyma between the non-immunoreactive pinealocytes. Some of the processes contain small clear and large dense core vesicles and end in club shaped swellings which make synapse-like contacts with other pinealocytes. The ultrastructural morphology suggests that the opioidergic cells exert a paracrine regulation on other pinealocytes.  相似文献   

14.
This study deals with the localization of crustacean hyperglycemic hormone (CHH) and gonad-inhibiting hormone (GIH) in the eyestalk of larvae and postlarvae ofHomarus gammarus, by immunocytochemistry and in situ hybridization. The CHH and GIH neuropeptides are located in the perikarya of neuroendocrine cells belonging to the X-organ of the medulla terminalis, in their tract joining the sinus gland, and in the neurohemal organ itself, at larval stages I, II and III and at the first postlarval stage (stage IV). In all the investigated stages, the mRNA encoding the aforementioned neuropeptides could only be detected in the perikarya of these neuroendocrine cells. In stage I, approximately 19 CHH-immunopositive and 20 GIH-immunopositive cells are present, both with a mean diameter of 7±1 μm. GIH cells are preferably localized at the periphery of the X-organ surrounding the CHH cells that are centrally situated. Colocalization of CHH and GIH immunoreactions can be observed in some cells. The cell system producing CHH and GIH in the larval and postlarval eyestalk is thus functional and is morphologically comparable to the corresponding neuroendocrine center in the adult lobster.  相似文献   

15.
The larval and polyp stages of extant Cnidaria are bi-layered with an absence of mesoderm and its differentiation products. This anatomy originally prompted the diploblast classification of the cnidarian phylum. The medusa stage, or jellyfish, however, has a more complex anatomy characterized by a swimming bell with a well-developed striated muscle layer. Based on developmental histology of the hydrozoan medusa this muscle derives from the entocodon, a mesoderm-like third cell layer established at the onset of medusa formation. According to recent molecular studies cnidarian homologs to bilaterian mesoderm and myogenic regulators are expressed in the larval and polyp stages as well as in the entocodon and derived striated muscle. Moreover striated and smooth muscle cells may have evolved directly and independently from non-muscle cells as indicated by phylogenetic analysis of myosin heavy chain genes (MHC class II). To accommodate all evidences we propose that striated muscle-based locomotion coevolved with the nervous and digestive systems in a basic metazoan Bauplan from which the ancestors of the Ctenophora (comb jellyfish), Cnidaria (jellyfish and polyps), as well as the Bilateria are derived. We argue for a motile tri-layered cnidarian ancestor and a monophyletic descent of striated muscle in Cnidaria and Bilateria. As a consequence, diploblasty evolved secondarily in cnidarian larvae and polyps.  相似文献   

16.
The primitive nervous system in planula larvae of Hydractinia echinata (Cnidaria) has sensory neurons containing LWamide or RFamide neuropeptides. LWamides have been shown to induce metamorphosis of planula larvae into adult polyps. We report here that RFamides act antagonistically to LWamides. RFamides inhibit metamorphosis when applied to planula larvae during metamorphosis induction by treatment with LWamides (or other inducing agents such as CsCl ions, diacylglycerol and bacterial inducers). Our results show further that RFamides act downstream of LWamide release, presumably directly on target cells mediating metamorphosis. These observations support a model in which metamorphosis in H. echinata is regulated by sensory neurons secreting LWamides and RFamides in response to environmental cues.Edited by D. Tautz  相似文献   

17.
Members of the phylum Myxozoa are obligate parasites, primarily of aquatic organisms. Their phylogeny has remained problematic, with studies placing them within either the Bilateria or Cnidaria. The discovery that the enigmatic Buddenbrockia plumatellae is a myxozoan that possesses distinct bilaterian features appeared to have finally resolved the debate. B. plumatellae is described as a triploblastic 'worm-like' organism, within which typical myxozoan malacospores form. Using EM we examined the early development of the B. plumatellae 'worms' within the bryozoan host Plumatella repens. The initial development involved numerous unicellular, amoeboid pre-saccular stages that were present within the basal lamina of the host's body wall. These stages migrate immediately beneath the peritoneum where a significant host tissue reaction occurs. The stages aggregate, initiating the formation of a 'worm'. The base of a developing 'worm' forms a pseudosyncytium which resolves into an ectoderm surrounding a mesendoderm. The pseudosyncytium is directly anchored into neighbouring host cells via masses of striated fibres. The replication of the ectodermal and mesendodermal cells extends the developing 'worm' into the coelom of the host. The mesendoderm resolves to form a mesoderm and an endoderm. Myogenesis appears to be initiated from the anchored end of the 'worm' and develops along the mesoderm. The aggregation and differentiation of amoeboid pre-saccular stages to initiate the 'worm' draws analogies to the sacculogenesis observed for Tetracapsuloides bryosalmonae, B. plumatellae's sister taxon within the class Malacosporea. The development of a multicellular, spore forming organism, from single cells does not correlate to any bilaterian or cnidarian species. Current phylogenies indicate the Myxozoa are basal bilaterians along with the Acoela and Mesozoa. Comparison with these other basal groups may help to resolve the placement of Myxozoa within the tree of life.  相似文献   

18.
19.
The hydroid Hydractinia: a versatile, informative cnidarian representative   总被引:3,自引:0,他引:3  
The Cnidaria represent the most ancient eumetazoan phylum. Members of this group possess typical animal cells and tissues such as sensory cells, nerve cells, muscle cells and epithelia. Due to their unique phylogenetic position, cnidarians have traditionally been used as a reference group in various comparative studies. We propose the colonial marine hydroid, Hydractinia, as a convenient, versatile platform for basic and applied research in developmental biology, reproduction, immunology, environmental studies and more. In addition to being a typical cnidarian representative, Hydractinia offers many practical and theoretical advantages: studies that are feasible in Hydra like regeneration, pattern regulation, and cell renewal from stem cells, can be supplemented by genetic analyses and classical embryology in Hydractinia. Metamorphosis of the planula larva of Hydractinia can be used as a model for cell activation and communication and the presence of a genetically controlled allorecognition system makes it a suitable model for comparative immunology. Most importantly, Hydractinia may be manipulated at most aspects of its (short) life cycle. It has already been the subject of many studies in various disciplines, some of which are discussed in this essay.  相似文献   

20.
McNeil JN  Tobe SS 《Peptides》2001,22(2):271-277
Many invertebrate neuropeptides have recently been identified and there is evidence that the same compound may serve different roles in different species and/or multiple functions within a given species. However, until the relevant receptors or 'knock out' animals, lacking the neuropeptide of interest, become available it will be difficult to clarify the precise inter- and intraspecific functions of these neuropeptides. In the present paper, we argue that until these tools are available a more meaningful understanding of the roles of neuropeptides could be obtained by carrying out experiments within an ecological context. Furthermore, this approach would allow us to generate hypotheses that could be rigorously tested when more sophisticated techniques are developed. We discuss these ideas using our interdisciplinary research on the reproductive biology of the true armyworm, Pseudaletia unipuncta, as a case study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号