首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteria of the genus Brucella are Gram-negative pathogens of several animal species that cause a zoonotic disease in humans known as brucellosis or Malta fever. Within their hosts, brucellae reside within different cell types where they establish a replicative niche and remain protected from the immune response. The aim of this article is to discuss recent advances in the field in the specific context of the Brucella intracellular 'lifestyle'. We initially discuss the different host cell targets and their relevance during infection. As it represents the key to intracellular replication, the focus is then set on the maturation of the Brucella phagosome, with particular emphasis on the Brucella factors that are directly implicated in intracellular trafficking and modulation of host cell signalling pathways. Recent data on the role of the type IV secretion system are discussed, novel effector molecules identified and how some of them impact on trafficking events. Current knowledge on Brucella gene regulation and control of host cell death are summarized, as they directly affect intracellular persistence. Understanding how Brucella molecules interplay with their host cell targets to modulate cellular functions and establish the intracellular niche will help unravel how this pathogen causes disease.  相似文献   

2.
布鲁氏菌毒力因子研究进展   总被引:1,自引:0,他引:1  
布鲁氏菌是一种革兰氏阴性、兼性胞内寄生菌,可引起人畜共患病布鲁氏菌病。布鲁氏菌致病机制复杂,可通过表达多种毒力因子等方式躲避或抑制宿主免疫系统的攻击并发挥其对机体的致病效应,实现其在宿主体内的长期存活。因此,布鲁氏菌病易转化为慢性感染。本文对目前已发现的多种布鲁氏菌毒力因子相关研究进展进行综述,以期进一步认识布鲁氏菌病的致病机理,为布鲁氏菌病防治提供参考。  相似文献   

3.
Brucella spp. are facultative intracellular pathogens that have the ability to survive and multiply in professional and non-professional phagocytes, and cause abortion in domestic animals and undulant fever in humans. Several species are recognized within the genus Brucella and this classification is mainly based on the difference in pathogenicity and in host preference. Brucella strains may occur as either smooth or rough, expressing smooth LPS (S-LPS) or rough LPS (R-LPS) as major surface antigen. This bacterium possesses an unconventional non-endotoxic lipopolysaccharide that confers resistance to anti-microbial attacks and modulates the host immune response. The strains that are pathogenic for humans (B. abortus, B. suis, B. melitensis) carry a smooth LPS involved in the virulence of these bacteria. The LPS O-chain protects the bacteria from cellular cationic peptides, oxygen metabolites and complement-mediated lysis and it is a key molecule for Brucella survival and replication in the host. Here, we review i) Brucella LPS structure; ii) Brucella genome, iii) genes involved in LPS biosynthesis; iv) the interaction between LPS and innate immunity.  相似文献   

4.
Brucella species are responsible for the global zoonotic disease brucellosis. These intracellular pathogens express a set of factors - including lipopolysaccharides, virulence regulator proteins and phosphatidylcholine - to ensure their full virulence. Some virulence factors are essential for invasion of the host cell, whereas others are crucial to avoid elimination by the host. They allow Brucella spp. to survive and proliferate within its replicative vacuole and enable the bacteria to escape detection by the host immune system. Several strategies have been used to develop animal vaccines against brucellosis, but no adequate vaccine yet exists to cure the disease in humans. This is probably due to the complicated pathophysiology of human Brucella spp. infection, which is different than in animal models. Here we review Brucella spp. virulence factors and how they control bacterial trafficking within the host cell.  相似文献   

5.
Virulence is described as an ability of an organism to infect the host and cause a disease. Virulence factors are the molecules that assist the bacterium colonize the host at the cellular level. These factors are either secretory, membrane associated or cytosolic in nature. The cytosolic factors facilitate the bacterium to undergo quick adaptive—metabolic, physiological and morphological shifts. The membrane associated virulence factors aid the bacterium in adhesion and evasion of the host cell. The secretory factors are important components of bacterial armoury which help the bacterium wade through the innate and adaptive immune response mounted within the host. In extracellular pathogens, the secretory virulence factors act synergistically to kill the host cells. In this review, we revisit the role of some of the secreted virulence factors of two human pathogens: Mycobacterium tuberculosis—an intracellular pathogen and Bacillus anthracis—an extracellular pathogen. The advances in research on the role of secretory factors of these pathogens during infection are discussed.  相似文献   

6.
《Journal of molecular biology》2019,431(21):4321-4344
Legionella pneumophila is the causative agent of the severe pneumonia Legionnaires' disease. L. pneumophila is ubiquitously found in freshwater environments, where it replicates within free-living protozoa. Aerosolization of contaminated water supplies allows the bacteria to be inhaled into the human lung, where L. pneumophila can be phagocytosed by alveolar macrophages and replicate intracellularly. The Dot/Icm type IV secretion system (T4SS) is one of the key virulence factors required for intracellular bacterial replication and subsequent disease. The Dot/Icm apparatus translocates more than 300 effector proteins into the host cell cytosol. These effectors interfere with a variety of cellular processes, thus enabling the bacterium to evade phagosome–lysosome fusion and establish an endoplasmic reticulum-derived Legionella-containing vacuole, which facilitates bacterial replication. In turn, the immune system has evolved numerous strategies to recognize intracellular bacteria such as L. pneumophila, leading to potent inflammatory responses that aid in eliminating infection. This review aims to provide an overview of L. pneumophila pathogenesis in the context of the host immune response.  相似文献   

7.
Organelle robbery: Brucella interactions with the endoplasmic reticulum   总被引:1,自引:0,他引:1  
Brucella is an intracellular pathogen that survives and multiplies inside host macrophages to cause brucellosis. The underlying mechanisms of intracellular survival, including the bacterial and the host determinants remain relatively unknown. Recent advances have helped to decipher how Brucella controls the biogenesis of its intramacrophagic replicative organelle. Brucella initially avoids or escapes the endocytic pathway to ensure its intracellular survival, which is then further secured via the biogenesis of an endoplasmic reticulum-derived replicative organelle. A major virulence factor, the VirB type IV secretion system, is required for sustained interactions and fusion with the host endoplasmic reticulum.  相似文献   

8.
Brucella abortus is an intracellular pathogen that relies on unconventional virulence factors to infect hosts. In non-professional phagocytes, Rho GTPases-activation by the Escherichia coli cytotoxic necrotizing factor (CNF) promoted massive Brucella entrance by membrane ruffling, a mechanism that differs from the common mode of entrance used by this bacterium in non-treated cells. Cytotoxic necrotizing factor treatment, however, did not alter the intracellular route followed by the wild type or non-virulent defined mutants. In contrast, expression of a constitutively active Rab5Q79L GTPase did not alter cell-invasion by Brucella but hampered its ability to reach the endoplasmic reticulum. The CNF-induced Brucella super-infection did not reduce the ability of host cells to synthesize DNA and progress through the cell cycle. Furthermore, CNF-treatment increased the isolation of Brucella-containing compartments by a factor of 15. These results demonstrate that in non-professional phagocytic cells, Brucella manipulates two different sets of GTPases during its biogenesis, being internalization and intracellular trafficking two consecutive but independent processes. Besides, CNF-induced super-infection demonstrates that Brucella does not interfere with crucial cellular processes and has shown its potential as tool to characterize the intracellular compartments occupied by this bacterium.  相似文献   

9.
分泌系统对于具有特殊细胞被膜结构的分枝杆菌,尤其是致病性分枝杆菌的存活和毒力非常重要.不少重要的致病因子或存活因子都通过特定的分泌系统进入环境,包括宿主体内.本文从分泌系统的基因、结构组成、分泌底物、转运机制及其与致病菌毒力的关系等几个方面介绍了分枝杆菌(mycobacteria)通用型分泌系统(general secretion pathway,SecA1)、替代型分泌系统(accessory Sec system,SecA2)、双精氨酸分泌系统(twin-arginine translocation,Tat)和Ⅶ型分泌系统(typeⅦsecretion systems,T7S system or ESX)4种分泌系统,并重点分析了Tat分泌系统.这些知识有利于从分泌系统及其底物的角度揭示结核分枝杆菌等胞内致病菌存活和逃避宿主免疫的机理,将为研发新的结核病控制措施提供依据.  相似文献   

10.
Shin S  Roy CR 《Cellular microbiology》2008,10(6):1209-1220
Key to the pathogenesis of intracellular pathogens is their ability to manipulate host cell processes, permitting the establishment of an intracellular replicative niche. In turn, the host cell deploys defence mechanisms that limit intracellular infection. The bacterial pathogen Legionella pneumophila, the aetiological agent of Legionnaire's Disease, has evolved virulence mechanisms that allow it to replicate within protozoa, its natural host. Many of these tactics also enable L. pneumophila's survival and replication inside macrophages within a membrane-bound compartment known as the Legionella-containing vacuole. One of the virulence factors indispensable for L. pneumophila's intracellular survival is a type IV secretion system, which translocates a large repertoire of bacterial effectors into the host cell. These effectors modulate multiple host cell processes and in particular, redirect trafficking of the L. pneumophila phagosome and mediate its conversion into an ER-derived organelle competent for intracellular bacterial replication. In this review, we discuss how L. pneumophila manipulates host cells, as well as host cell processes that either facilitate or impede its intracellular survival.  相似文献   

11.
12.
《Autophagy》2013,9(12):1865-1867
Staphylococcus aureus is an intracellular bacterium responsible for serious infectious processes. This pathogen escapes from the phagolysosomal pathway into the cytoplasm, a strategy that allows intracellular bacterial replication and survival with the consequent killing of the eukaryotic host cell and spreading of the infection. S. aureus is able to secrete several virulence factors such as enzymes and toxins. Our recent findings indicate that the main virulence factor of S. aureus, the pore-forming toxin α-hemolysin (Hla), is the secreted factor responsible for the activation of an alternative autophagic pathway. We have demonstrated that this noncanonical autophagic response is inhibited by artificially elevating the intracellular levels of cAMP. This effect is mediated by RAPGEF3/EPAC (Rap guanine nucleotide exchange factor (GEF)3/exchange protein activated by cAMP), a cAMP downstream effector that functions as a GEF for the small GTPase Rap. We have presented evidence that RAPGEF3 and RAP2B, through calpain activation, are the proteins involved in the regulation of Hla and S. aureus-induced autophagy. In addition, we have found that both, RAPGEF3 and RAP2B, are recruited to the S. aureus–containing phagosome. Of note, adding purified α-toxin or infecting the cells with S. aureus leads to a decrease in intracellular cAMP levels, which promotes autophagy induction, a response that favors pathogen intracellular survival, as previously demonstrated. We have identified some key signaling molecules involved in the autophagic response upon infection with a bacterial pathogen, which have important implications in understanding innate immune defense mechanisms.  相似文献   

13.
14.
Brucella species are facultative intracellular bacterial pathogens that cause brucellosis, a global zoonosis of profound importance. Although recent studies have demonstrated that Brucella spp. replicate within an intracellular compartment that contains endoplasmic reticulum (ER) resident proteins, the molecular mechanisms by which the pathogen secures this replicative niche remain obscure. Here, we address this issue by exploiting Drosophila S2 cells and RNA interference (RNAi) technology to develop a genetically tractable system that recapitulates critical aspects of mammalian cell infection. After validating this system by demonstrating a shared requirement for phosphoinositide 3-kinase (PI3K) activities in supporting Brucella infection in both host cell systems, we performed an RNAi screen of 240 genes, including 110 ER-associated genes, for molecules that mediate bacterial interactions with the ER. We uncovered 52 evolutionarily conserved host factors that, when depleted, inhibited or increased Brucella infection. Strikingly, 29 of these factors had not been previously suggested to support bacterial infection of host cells. The most intriguing of these was inositol-requiring enzyme 1 (IRE1), a transmembrane kinase that regulates the eukaryotic unfolded protein response (UPR). We employed IRE1alpha(-/-) murine embryonic fibroblasts (MEFs) to demonstrate a role for this protein in supporting Brucella infection of mammalian cells, and thereby, validated the utility of the Drosophila S2 cell system for uncovering novel Brucella host factors. Finally, we propose a model in which IRE1alpha, and other ER-associated genes uncovered in our screen, mediate Brucella replication by promoting autophagosome biogenesis.  相似文献   

15.
Brucella strains encounter oxygen deprivation during their intracellular replication in host cells, and the capacity of these bacteria to utilize NO(3) as an alternative electron acceptor for respiration plays an important role in their successful adaption to their intracellular niche. In this issue of Molecular Microbiology, Carrica et al (2012). report that NtrY and NtrX comprise a redox-responsive two-component regulator in Brucella abortus 2308 that responds to decreasing levels of O(2) and induces the expression of this strain's denitrification genes. Thus, NtrYX joins the increasing number of genetic regulators that contribute to the metabolic versatility required for the virulence of Brucella strains in their mammalian hosts.  相似文献   

16.
Barbier T  Nicolas C  Letesson JJ 《FEBS letters》2011,585(19):2929-2934
"In vivo" bacterial nutrition, i.e. the nature of the metabolic network and substrate(s) used by bacteria within their host, is a fundamental aspect of pathogenic or symbiotic lifestyles. A typical example are the Brucella spp., facultative intracellular pathogens responsible for chronic infections of animals and humans. Their virulence relies on their ability to modulate immune response and the physiology of host cells, but the fine-tuning of their metabolism in the host during infection appears increasingly crucial. Here we review new insights on the links between Brucella virulence and metabolism, pointing out the need to investigate both aspects to decipher Brucella infectious strategies.  相似文献   

17.
Brucella pathogenesis, genes identified from random large-scale screens   总被引:1,自引:0,他引:1  
Pathogenicity islands, specialized secretion systems, virulence plasmids, fimbriae, pili, adhesins, and toxins are all classical bacterial virulence factors. However, many of these factors, though widespread among bacterial pathogens, are not necessarily found among bacteria that colonize eukaryotic cells in a pathogenic/symbiotic relationship. Bacteria that form these relationships have developed other strategies to infect and grow in their hosts. This is particularly true for Brucella and other members of the class Proteobacteria. Thus far the identification of virulence factors for Brucella has been largely dependent on large-scale screens and testing in model systems. The genomes of the facultative intracellular pathogens Brucella melitensis and Brucella suis were sequenced recently. This has identified several more potential virulence factors for Brucella that were not found in large screens. Here, we present an overall view of Brucella virulence by compiling virulence data from the study of 184 attenuated mutants.  相似文献   

18.
19.
Staphylococcus aureus is an intracellular bacterium responsible for serious infectious processes. This pathogen escapes from the phagolysosomal pathway into the cytoplasm, a strategy that allows intracellular bacterial replication and survival with the consequent killing of the eukaryotic host cell and spreading of the infection. S. aureus is able to secrete several virulence factors such as enzymes and toxins. Our recent findings indicate that the main virulence factor of S. aureus, the pore-forming toxin α-hemolysin (Hla), is the secreted factor responsible for the activation of an alternative autophagic pathway. We have demonstrated that this noncanonical autophagic response is inhibited by artificially elevating the intracellular levels of cAMP. This effect is mediated by RAPGEF3/EPAC (Rap guanine nucleotide exchange factor (GEF)3/exchange protein activated by cAMP), a cAMP downstream effector that functions as a GEF for the small GTPase Rap. We have presented evidence that RAPGEF3 and RAP2B, through calpain activation, are the proteins involved in the regulation of Hla and S. aureus-induced autophagy. In addition, we have found that both, RAPGEF3 and RAP2B, are recruited to the S. aureus–containing phagosome. Of note, adding purified α-toxin or infecting the cells with S. aureus leads to a decrease in intracellular cAMP levels, which promotes autophagy induction, a response that favors pathogen intracellular survival, as previously demonstrated. We have identified some key signaling molecules involved in the autophagic response upon infection with a bacterial pathogen, which have important implications in understanding innate immune defense mechanisms.  相似文献   

20.
Using model systems in infection biology has led to the discoveries of many pathogen-encoded virulence factors and critical host immune factors to fight pathogenic infections. Studies of the remarkable Pseudomonas aeruginosa bacterium that infects and causes disease in hosts as divergent as humans and plants afford unique opportunities to shed new light on virulence strategies and host defence mechanisms. One of the rationales for using model systems as a discovery tool to characterise bacterial factors driving human infection outcomes is that many P. aeruginosa virulence factors are required for pathogenesis in diverse different hosts. On the other side, many host signalling components, such as the evolutionarily conserved mitogen-activated protein kinases, are involved in immune signalling in a diverse range of hosts. Some model organisms that have less complex immune systems also allow dissection of the direct impacts of innate immunity on host defence without the interference of adaptive immunity. In this review, we start with discussing the occurrence of P. aeruginosa in the environment and the ability of this bacterium to cause disease in various hosts as a natural opportunistic pathogen. We then summarise the use of some model systems to study host defence and P. aeruginosa virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号