首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
高速逆流色谱法分离纯化丹参并尝试制订中药指纹图谱   总被引:19,自引:0,他引:19  
用国产高速逆流色谱(HSCCC)分离纯化中草药——丹参,选用正己烷乙醇水体系,固定相保留率达到788%。采用分步洗脱,3个产地丹参各分离得到12个洗脱组分,经高效液相色谱仪和紫外光谱仪检测证明3张HSCCC洗脱图谱中对应洗脱峰为同一组分。HSCCC洗脱图谱不包含非共有峰,并且对应洗脱峰保留时间的相对标准偏差RSD<3%,符合国家标准关于制订指纹图谱方法学考察资料的技术参数。因此,HSCCC作为制订指纹图谱的方法之一具有可行性。  相似文献   

2.
以雷公藤植物粗提物为原料,建立了高速逆流色谱分离纯化雷公藤红素的分离纯化方法。优化了两相溶剂体系的组成及配比。优化后的分离纯化溶剂体系为正己烷-乙酸乙酯-甲醇-水,其体积之比为2∶3∶3∶2(上相为固定相,下相为流动相),实验温度为室温,主机转速为800 rpm,正向洗脱,流动相流速为2.0 m L/min。目标产物的分离时间较短、产品纯度高(97.5%)、分离过程稳定。  相似文献   

3.
利用高速逆流色谱法从雷公藤植物粗提物分离得到一个化合物.两相溶剂体系为正己烷/乙酸乙酯/甲醇/水(2∶3∶3∶2,V/V/V/V),水相作流动相,有机相作固定相.经单晶X-衍射分析确定该化合物为雷酚内酯异构体.晶体参数为:晶体为正交晶系,空间群为P2(1)2(1)2(1);晶胞参数为:a=0.71913(10) nm,...  相似文献   

4.
以栀子苷粗提取物为原料,采用高速逆流色谱法分离栀子苷,溶剂系统为A:乙酸乙酯∶正丁醇∶水(2∶1.5∶3)和B∶正丁醇∶水(1∶1),上相为固定相,下相为流动相,流速为2.0 mL/min,转速为850 r/min,温度控制在25℃,纯度用HPLC测定.结果表明,利用溶剂系统A和B进行HSCCC制备栀子苷,使栀子苷含量从50.75%(HPLC)分别提高至86.6%和91.8%,回收率分别为81.36%和78.12%.  相似文献   

5.
高速逆流色谱法分离制备丹酚酸B   总被引:15,自引:0,他引:15  
采用高速逆流色谱法分离纯化丹参水溶性成分丹酚酸类物质,制备丹酚酸B化学对照品。分离采用的溶剂系统为正己烷-乙酸乙酯-水-甲醇(1.5:5:5:1.5),上相做固定相,下相做流动相,流速为1.7 mL/min,仪器转速850 rpm,进样量80 mg,纯度用HPLC方法测定。结果表明:一次分离可制备63.4 mg丹酚酸B,其纯度为98.6%。该方法操作简单,可作为高纯度丹酚酸B化学对照品的制备分离方法。  相似文献   

6.
应用高速逆流色谱(HSCCC)进行了雨生红球藻中虾青素的分离制备工艺优化,结果最优条件为正己烷∶乙酸乙酯∶乙醇∶水(6. 5∶5∶6. 5∶3,v/v/v/v)作为两相溶剂系统,以下相为固定相,上相为流动相,转速850 r/min,流速3 mL/min,温度25℃,上样浓度10 mg/mL,上样量10 mL。进一步应用高效液相色谱、质谱并与标准品比对,对所得虾青素进行鉴定。本文的研究结果为应用HSCCC高效制备雨生红球藻虾青素提供了技术支持。  相似文献   

7.
本文首次采用高速逆流色谱结合高效液相色谱的方法对桂枝正丁醇相进行分离纯化。首先,以石油醚-乙酸乙酯-甲醇-水(8∶2∶6∶4,v/v)为高速逆流色谱溶剂系统,将桂枝正丁醇萃取相分为两个馏分,然后结合制备高效液相,共分离得到4个高纯度化合物。通过核磁共振波谱鉴定其化学结构,分别为香豆素(1)、反式-邻甲氧基桂皮酸(2)、桂皮酸(3)、反式-桂皮醛(4),这四种化合物纯度经高效液相检测均大于95%。该方法简便、快速、节省溶剂,可以对桂枝正丁醇相进行快速有效的分离纯化,具有较好的实用价值,为桂枝资源的进一步开发应用提供了技术和物质支持。  相似文献   

8.
应用高速逆流色谱(HSCCC)分离纯化山茱萸中的没食子酸   总被引:11,自引:0,他引:11  
应用高速逆流色谱(HSCCC)分离山茱萸中的没食子酸并结合波谱技术进行结构鉴定。经过一次逆流色谱分离,可以得到纯度在70%以上的没食子酸,第二次分离即可使其纯度达到97%以上。  相似文献   

9.
高速逆流色谱法分离纯化茶黄素   总被引:21,自引:0,他引:21  
首次应用高速逆流色谱法分离纯化茶黄素单体成分,溶剂系统为乙酸乙酯-正己烷-甲醇-水(3:1:1:6),优化了分离茶黄素的条件。同时与SephadexLH-20柱色谱法梯度洗脱对比,结果表明,高速逆流色谱法分离时间相对较短,可进行较大量的分离制备。高速逆流色谱法较之SephadexLH-20柱色谱法还有一个突出的优点,即无不可逆吸附污染及不会导致样品化学变性。  相似文献   

10.
高速逆流色谱纯化二氢杨梅素   总被引:14,自引:0,他引:14  
本实验采用高速逆流色谱纯化二氢杨梅素。结果表明:选用溶剂系统为石油醚:乙酸乙酯:甲醇:水(1:3:2:2),在转速为800r/min,进样量为200mg、进样速度为1.5ml/min的条件下,能很好地将80%左右的粗二氢杨梅素提纯到90%以上,进样速度、进样量对二氢杨梅素的分离有一定影响。  相似文献   

11.
12.
Z-Ligustilide was separated and purified from the traditional Chinese medicinal plant Angelica sinensis by high-speed counter-current chromatography (HSCCC). Analytical HSCCC was first used for the systematic selection of the two-phase solvent system. Preparative HSCCC separation was performed with a two-phase solvent system composed of petroleum ether (60-90 degrees C)-ethanol-water at an optimum volume ratio of 10:17:10 (v/v). A total of 38 mg Z-ligustilide at 98.8% purity was obtained in one step from 200 mg crude extract as determined by HPLC analysis. The structure of the target compound was identified by electron impact ionisation mass spectrometry.  相似文献   

13.
本研究重点考察了实验室自行设计研制的J型螺旋槽圆盘柱逆流色谱系统对正丁醇-醋酸-水体系和聚乙二醇(PEG1000)-磷酸盐-水双水相体系的固定相保留能力,并研究了流动相流速(F)、柱转速(w)和温度(T)等因素对固定相保留率(Sf)的影响。结果表明,该新型分离柱可使两种溶剂体系在L-I-T、U-O-H和L-I-H三种洗脱模式下都可获得较高的Sf,即以下相为流动相,采用由螺旋槽内端(I)向外端(O)的流通方式,或以上相为流动相,采用由螺旋槽外端(O)向内端(I)的流通方式可以获得较高的固定相保留。其保留能力较传统的螺旋管逆流色谱柱有显著提高。Sf随着w的增加而升高,随着F的增加而降低,且Sf与F1/2/w线性相关。20oC~45oC之间温度对Sf影响不明显,但低于20oC不利于双水相体系的保留。应用研究表明,采用正丁醇-醋酸-水(4:1:5,V/V/V)和PEG1000-磷酸钾盐-水(12.5:12.5:75,W/W/W)(pH9.0)体系可以在较高的流动相流速和较高的固定相保留下分别实现对亮氨酸-酪氨酸(Leu-Tyr)和缬氨酸-酪氨酸(Val-Tyr)二肽混合物、细胞色素C与肌红蛋白混合物、肌红蛋白与溶菌酶...  相似文献   

14.
Monacolin K from red yeast rice was extracted by accelerated solvent extraction (ASE). The effects of various extraction parameters including extraction temperature, static extraction time and cycle index on yield were investigated using a DIONEX ASE 300 system to select the optimal conditions by an orthogonal test design L9 (3)3. The optimum extraction conditions were determined as follows: extraction temperature 120 °C, static extraction time 7 min, and cycle index 3. Under the optimal conditions, the yield of ASE extract and monacolin K was 5.35% and 9.26 mg/g of dry red yeast rice, respectively. A separation and purification method of monacolin K was then established using high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane–ethyl acetate–methanol–water (8:2:5:5, v/v/v/v). From 300 mg of crude extract, 51.2 mg of monacolin K was obtained with the purity of 98.7%. The chemical structure of isolated compound was identified by UV, ESI-MS and 1H NMR.  相似文献   

15.
16.
17.
黑暗和光照对丹参培养细胞生长和生理生化特性的影响   总被引:3,自引:0,他引:3  
以丹参(Salvia miltiorrhiza Bunge)幼嫩叶片为外植体,在Ms 2,4-D0.5mg/L 6BA1.5mg/L培养基上诱导形成愈伤组织,愈伤组织置于不同条件下培养。探讨丹参细胞培养过程中蛋白质、酶活性的变化与细胞生长周期之间的关系。结果显示黑暗和光照下,培养细胞的生长周期为27天;可溶性蛋白含量和超氧化物歧化酶(SOD)活性均出现两个明显峰值,而过氧化物酶(POD)活性变化较复杂。丹参细胞生长呈“S”形周期性变化,其可溶性蛋白、酶活性也呈相应的周期性变化。  相似文献   

18.
Herbs used in traditional Chinese medicine (TCM) have diverse cultural/historical backgrounds and are described based on complex nomenclature systems. Using the family Aristolochiaceae as an example, at least three categories of nomenclature could be identified: (1) one-to-one (one plant part from one species): the herb guan mutong refers to the root of Aristolochia manshuriensis; (2) multiple-to-one (multiple plant parts from the same species serve as different herbs): three herbs, madouling, qingmuxiang and tianxianteng, derived respectively from the fruit, root and stem of Aristolochia debilis; and (3) one-to-multiple (one herb refers to multiple species): the herb fangji refers to the root of either Aristolochia fangchi, Stephania tetrandra or Cocculus trilobus; in this case, the first belongs to a different family (Aristolochiaceae) than the latter two (Menispermaceae), and only the first contains aristolochic acid (AA), as demonstrated by independent analytical data provided in this article. Further, mutong (Akebia quinata) is allowed in TCM herbal medicine practice to be substituted with either guan mutong (Aristolochia manshuriensis) or chuan mutong (Clematis armandii); and mu fangji (Cocculus trilobus) by guang fanchi (Aristolochia fangchi) or hanzhong fangji (Aristolochia heterophylla), thereby increasing the risk of exposing renotoxic AA-containing Aristolochia species to patients. To avoid these and other confusions, we wish to emphasize the importance of a pharmaceutical name, which defines the species name, the plant part, and sometimes the special process performed on the herb, including cultivating conditions. The pharmaceutical name as referred to in this article is defined, and is limited to those botanicals that are intended to be used as drug. It is hoped that by following the pharmaceutical name, toxic herbs can be effectively identified and substitution or adulteration avoided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号