首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined the properties and intracellular localization of acetylcholine receptors in the C2 muscle cell line and in a variant (T-) that accumulates AChR intracellularly. On immunoblots, the subunit structures of the AChR from wild-type and T- cells were similar except that the gamma and delta subunits of the variant AChR had altered mobilities. Digestion with endoglycosidases H and F demonstrated that this difference results from a failure of high-mannose N-linked oligosaccharides on AChR subunits to be processed to complex forms in the variant. N-linked glycosylation of other proteins in the variant was normal. When examined by immunocytochemistry, the distribution of internal AChR in wild-type cells was consistent with a location both in the endoplasmic reticulum and in the Golgi. Variant cells, however, showed no evidence of Golgi staining. Subcellular fractionation experiments also demonstrated AChR in the Golgi fractions of wild-type cells, but not in those derived from T- cells. We conclude that in T- myotubes most of the AChR fails to be transported out of the endoplasmic reticulum.  相似文献   

2.
We have used mutagenesis to investigate the potential N-glycosylation sites in the delta subunit of the mouse muscle acetylcholine receptor (AChR). Of the three sites, Asn76, Asn143, and Asn169, only the first two were glycosylated when the delta subunit was expressed in COS cells. Because the heterologously expressed delta subunit was similar in its properties to that expressed in C2 muscle cells, the sites of glycosylation are likely to be the same in both cases. In COS cells, mutations of the delta subunit that prevented glycosylation at either of the sites did not change its metabolic stability nor its steady-state level. These results are in contrast to those found previously for the alpha subunit, in which glycosylation at a single site metabolically stabilized the polypeptide (Blount, P., and Merlie, J. P. (1990) J. Cell Biol. 111, 2613-2622). Mutations of the delta subunit that prevented glycosylation, however, decreased its ability to form an alpha delta heterodimer when the alpha and delta subunit were expressed together. When all four subunits of the AChR (alpha, beta, delta, and epsilon) were coexpressed, mutation of the delta subunit to prevent glycosylation resulted in a reduced amount of fully assembled AChR and reduced surface AChR levels, consistent with the role of the heterodimer in the assembly reaction. These results suggest that glycosylation of the delta subunit at both Asn76 and Asn143 is needed for its efficient folding and/or its subsequent interaction with the alpha subunit.  相似文献   

3.
Each subunit of the nicotinic acetylcholine receptor (AChR) contains two conserved cysteine residues, which are known to form a disulfide bond, in the N-terminal extracellular domain. The role of this retained structural feature in the biogenesis of the AChR was studied by expressing site-directed mutant alpha and beta subunits together with other normal subunits from Torpedo californica AChR in Xenopus oocytes. Mutation of the cysteines at position 128 or 142 in the alpha subunit, or in the beta subunit, did not prevent subunit assembly. All Cys128 and Cys142 mutants of the alpha and beta subunits were able to associate with coexpressed other normal subunits, although associational efficiency of the mutant alpha subunits with the delta subunit was reduced. Functional studies of the mutant AChR complexes showed that the mutations in the alpha subunit abolished detectable 125I-alpha-bungarotoxin (alpha-BuTX) binding in whole oocytes, whereas the mutations in the beta subunit resulted in decreased total binding of 125I-alpha-BuTX and no detectable surface 125I-alpha-BuTX binding. Additionally, all mutant subunits, when co-expressed with the other normal subunits in oocytes, produced small acetylcholine-activated membrane currents, suggesting incorporation of only small numbers of functional mutant AChRs into the plasma membrane. The functional acetylcholine-gated ion channel formed with mutant alpha subunits, but not mutant beta subunits, could not be blocked by alpha-BuTX. Thus, a disulfide bond between Cys128 and Cys142 of the AChR alpha or beta subunits is not needed for acetylcholine-binding. However, this disulfide bond on the alpha subunit is necessary for formation of the alpha-BuTX-binding site. These results also suggest that the most significant effect caused by disrupting the conserved disulfide loop structure is intracellular retention of most of the assembled AChR complexes.  相似文献   

4.
5.
When the four subunits of the Torpedo californica nicotinic acetylcholine receptor (AChR) are expressed in mammalian fibroblasts, they properly assembly into alpha 2 beta gamma delta pentamers only at temperatures lower than 37 degrees C (Claudio, T., W. N. Green, D. S. Hartman, D. Hayden, H. L. Paulson, F. J. Sigworth, S. M. Sine, and A. Swedlund. 1987. Science (Wash. DC). 238:1688-1694). Experiments here with rat L6 myoblast cell lines indicate that this temperature sensitivity is not specific to fibroblasts, but is intrinsic to Torpedo subunits. A clonal isolate of L6 cells cotransfected with the four Torpedo subunit cDNAs synthesizes the exogenous AChR subunits at 37 degrees and 26 degrees C, but expresses Torpedo AChR complexes only at the lower temperature. When Torpedo alpha alone is expressed in L6 myotubes, hybrid AChRs are formed, again only at temperatures below 37 degrees C. These hybrid AChRs can contain either two Torpedo alpha subunits or one each of rat and Torpedo alpha, proving that the two alpha subunits in an AChR pentamer need not derive from the same polysome. Further analysis of hybrid and all-Torpedo AChR established that there is no internally sequestered pool of AChR at the nonpermissive temperature, and that the AChR, once formed, is thermostable. Two lines of experimentation with alpha subunits expressed in fibroblasts indicate that alpha polypeptides exhibit different conformations at 26 degrees and 37 degrees C, favoring the hypothesis that the temperature-sensitive step occurs before assembly and reflects, at least in part, misfolding of subunits: at 37 degrees C, there is a reduction in the fraction of alpha subunits that (a) bind the AChR antagonist alpha-bungarotoxin with high affinity; and (b) bind a monoclonal antibody that recognizes correctly folded and/or assembled alpha subunit.  相似文献   

6.
The nicotinic acetylcholine receptor (nAChR) is an oligomeric transmembrane glycoprotein consisting of four homologous subunits in stoichiometry of alpha 2, beta (gamma or epsilon). Recently the presence of a novel exon (P3A) in human alpha AChR gene has been reported. Two variants of the human alpha subunit arise from alternate RNA splicing, one with and one without the P3A exon. However, the evolutionary origin of the P3A exon and the regulation of the expression of the two variants in human muscle and non-human tissues is currently unknown. Examination of genomic DNA from various species shows that the P3A exon sequence is present only in hominoids, old world and new world primates species and is absent in the muscle cDNA or genomic DNA from rat, mouse or dog, indicating that P3A exon is evolutionary conserved for at least 50 million years. The P3A+ variant of alpha subunit was found to be constitutively expressed in skeletal muscle, brain, heart, kidney, liver, lung and thymus, while P3A-variant was differentially expressed only in skeletal muscle. Thus it appears that the P3A+ variant is generated by 'default' selection by the splicing machinery, while expression of the P3A- variant is regulated by tissue-specific factors in the skeletal muscle. Mechanisms regulating differential expression of the alpha subunit variants may be pertinent to the pathophysiology of myasthenia gravis.  相似文献   

7.
T cell hybridomas reactive with the acetylcholine receptor and its subunits   总被引:2,自引:0,他引:2  
A panel of thirty cloned rat-mouse T cell hybridomas was prepared by fusion of acetylcholine receptor (AChR)-reactive rat T cells with the mouse thymoma BW5147. The T cell hybrids were demonstrated to be AChR reactive by their ability to secrete IL 2 in response to either AChR itself or by purified AChR subunits (alpha,beta,gamma, or delta). Various patterns of AChR subunit reactivity were observed, suggesting a predominant recognition of the alpha subunit, and also a considerable cross-reactivity from one subunit to another.  相似文献   

8.
We have investigated the mechanisms of assembly and transport to the cell surface of the mouse muscle nicotinic acetylcholine receptor (AChR) in transiently transfected COS cells. In cells transfected with all four subunit cDNAs, AChR was expressed on the surface with properties resembling those seen in mouse muscle cells (Gu, Y., A. F. Franco, Jr., P.D. Gardner, J. B. Lansman, J. R. Forsayeth, and Z. W. Hall. 1990. Neuron. 5:147-157). When incomplete combinations of AChR subunits were expressed, surface binding of 125I-alpha-bungarotoxin was not detected except in the case of alpha beta gamma which expressed less than 15% of that seen with all four subunits. Immunoprecipitation and sucrose gradient sedimentation experiments showed that in cells expressing pairs of subunits, alpha delta and alpha gamma heterodimers were formed, but alpha beta was not. When three subunits were expressed, alpha delta beta and alpha gamma beta complexes were formed. Variation of the ratios of the four subunit cDNAs used in the transfection mixture showed that surface AChR expression was decreased by high concentrations of delta or gamma cDNAs in a mutually competitive manner. High expression of delta or gamma subunits also each inhibited formation of a heterodimer with alpha and the other subunit. These results are consistent with a defined pathway for AChR assembly in which alpha delta and alpha gamma heterodimers are formed first, followed by association with the beta subunit and with each other to form the complete AChR.  相似文献   

9.
A small panel of cloned acetylcholine receptor (AChR)-reactive helper T cells were examined for their ability to proliferate when stimulated with AChR or purified AChR subunits. It was observed that all T-cell lines preferentially responded to the AChR alpha subunit, but that some also were stimulated by other subunits as well. This was interpreted as indicating that the alpha subunit plays a major role in anti-AChR T-cell responses, but that considerable potential cross-reactivity exists among the subunits recognized by T cells. Furthermore, a high level of "microheterogeneity" in the T-cell-specificity repertoire was suggested by the fact that even this small panel of cloned lines expressed several patterns of subunit reactivity. Finally, all cloned T-cell lines examined were found to be capable of functioning as regulatory helpers in vitro by providing the necessary signals to AChR-responsive B cells, resulting in anti-AChR antibody production.  相似文献   

10.
The helical cytokine interleukin (IL) 6 and its specific binding subunit IL-6R alpha form a 1:1 complex which, by promoting homodimerization of the signalling subunit gp130 on the surface of target cells, triggers intracellular responses. We expressed differently tagged forms of gp130 and used them in solution-phase binding assays to show that the soluble extracellular domains of gp130 undergo dimerization in the absence of membranes. In vitro receptor assembly reactions were also performed in the presence of two sets of IL-6 variants carrying amino acid substitutions in two distinct areas of the cytokine surface (site 2, comprising exposed residues in the A and C helices, and site 3, in the terminal part of the CD loop). The binding affinity to IL-6R alpha of these variants is normal but their biological activity is poor or absent. We demonstrate here that both the site 2 and site 3 IL-6 variants complexed with IL-6R alpha bind a single gp130 molecule but are unable to dimerize it, whereas the combined site 2/3 variants lose the ability to interact with gp130. The binding properties of these variants in vitro, and the result of using a neutralizing monoclonal antibody directed against site 3, lead to the conclusion that gp130 dimer is formed through direct binding at two independent and differently oriented sites on IL-6. Immunoprecipitation experiments further reveal that the fully assembled receptor complex is composed of two IL-6, two IL-6R alpha and two gp130 molecules. We propose here a model representing the IL-6 receptor complex as hexameric, which might be common to other helical cytokines.  相似文献   

11.
We have investigated the role of the immunoglobulin-binding protein (BiP) in the folding and assembly of subunits of the acetylcholine receptor (AChR) in COS cells and in C2 muscle cells. Immunoprecipitation in COS cells showed that alpha, beta, and delta subunits are associated with BiP. In the case of the alpha subunit, which first folds to acquire toxin-binding activity and is then assembled with the other subunits to form the AChR, BiP was associated only with a form that is unassembled and does not bind alpha-bungarotoxin. Similar results were found in C2 cells. Although the alpha and beta subunits of the AChR are minor membrane proteins in C2 cells, they were prominent among the proteins immunoprecipitated by antibodies to BiP, suggesting that BiP could play a role in their maturation or folding. In pulse-chase experiments in C2 cells, however, labeled alpha subunit formed a stable complex with BiP that was first detected after most of the alpha subunit had acquired toxin-binding activity and whose amount continued to increase for several hours. These kinetics are not compatible with a role for the BiP complex in the folding or assembly pathway of the AChR, and suggest that BiP is associated with a misfolded form of the subunit that is slowly degraded.  相似文献   

12.
《The Journal of cell biology》1990,111(6):2613-2622
The structural elements required for normal maturation and assembly of the nicotinic acetylcholine receptor alpha subunit were investigated by expression of mutated subunits in transfected fibroblasts. Normally, the wild-type alpha subunit acquires high affinity alpha bungarotoxin binding in a time-dependent manner; however, mutation of the 128 and/or 142 cysteines to either serine or alanine, as well as deletion of the entire 14 amino acids in this region abolished all detectable high affinity binding. Nonglycosylated subunits that had a serine to glycine mutation in the consensus sequence also did not efficiently attain high affinity binding to toxin. In contrast, mutation of the proline at position 136 to glycine or alanine, or a double mutation of the cysteines at position 192 and 193 to serines had no effect on the acquisition of high affinity toxin binding. These data suggest that a disulfide bridge between cysteines 128 and 142 and oligosaccharide addition at asparagine 141 are required for the normal maturation of alpha subunit as assayed by high affinity toxin binding. The unassembled wild-type alpha subunit expressed in fibroblasts is normally degraded with a t1/2 of 2 h; upon assembly with the delta subunit, the degradation rate slows significantly (t1/2 greater than 13 h). All mutated alpha subunits retained the capacity to assemble with a delta subunit coexpressed in fibroblasts; however, mutated alpha subunits that were not glycosylated or did not acquire high affinity toxin binding were rapidly degraded (t1/2 = 20 min to 2 h) regardless of whether or not they assembled with the delta subunit. Assembly and rapid degradation of nonglycosylated acetylcholine receptor (AChR) subunits and subunit complexes were also observed in tunicamycin- treated BC3H-1 cells, a mouse musclelike cell line that normally expresses functional AChR. Hence, rapid degradation may be one form of regulation assuring that only correctly processed and assembled subunits accumulate, and ultimately make functional receptors in AChR- expressing cells.  相似文献   

13.
The assembly of the nicotinic acetylcholine receptor (AChR), an oligomeric cell surface protein, was studied in cultured muscle cells. To measure this process, the incorporation of metabolically labeled alpha-subunit into oligomeric AChR was monitored in pulse-chase experiments, either by the shift of this subunit from the unassembled (5 S) to the assembled (9 S) position in sucrose density gradients, or by its coprecipitation with antisera specific for the delta-subunit. We have found that AChR assembly is initiated 15-30 min after subunit biosynthesis and is completed within the next 60 min. The alpha-subunit is not overproduced, as all detectable pulse-labeled alpha-subunit can be chased into the oligomeric complex, suggesting that AChR assembly in this system is an efficient process. The rate of AChR assembly is decreased by metabolic inhibitors and by monensin, an ionophore that impairs the Golgi apparatus. We have observed that the gamma- and delta-subunits of AChR are phosphorylated in vivo. The delta-subunit is more highly phosphorylated in the unassembled than in the assembled state, indicating that its phosphorylation precedes assembly and that its dephosphorylation is concomitant with AChR assembly. These findings suggest that subunit assembly occurs in the Golgi apparatus and that phosphorylation/dephosphorylation mechanisms play a role in the control of AChR subunit assembly.  相似文献   

14.
P Blount  J P Merlie 《Neuron》1989,3(3):349-357
We have stably expressed in fibroblasts different pairs of alpha and non-alpha subunits of the mouse muscle nicotinic acetylcholine receptor (AChR). The gamma and delta, but not the beta, subunits associated efficiently with the alpha subunit, and they extensively modified its binding characteristics. The alpha gamma and alpha delta complexes formed distinctly different high affinity binding sites for the competitive antagonist d-tubocurarine that, together, completely accounted for the two nonequivalent antagonist binding sites in native AChR. The alpha delta complex and native AChR had similar affinities for the agonist carbamylcholine. In contrast, although the alpha gamma complex contains the higher affinity competitive antagonist binding site, it had an affinity for carbamylcholine that was an order of magnitude less than that of the alpha delta complex or the AChR. The comparatively low agonist affinity of the alpha gamma complex may represent an allosterically regulated binding site in the native AChR. These data support a model of two nonequivalent binding sites within the AChR and imply that the basis for this nonequivalence is the association of the alpha subunit with the gamma or delta subunit.  相似文献   

15.
16.
S Verrall  Z W Hall 《Cell》1992,68(1):23-31
Ligand-gated ion channels are oligomeric membrane proteins in which homologous subunits specifically recognize one another and assemble around an aqueous pore. To identify domains responsible for the specificity of subunit association, we used a dominant-negative assay in which truncated subunits of the mouse muscle acetylcholine receptor (AChR) were coexpressed with the four wild-type subunits in transfected COS cells. Fragments of the alpha, delta, and gamma subunits consisting solely of the extracellular N-terminal domain blocked surface expression of the AChR and the formation of alpha delta heterodimers, an early step in the assembly pathway of the AChR. Immunoprecipitation and sucrose gradient sedimentation experiments showed that an N-terminal fragment of the alpha subunit forms a specific complex with the intact delta subunit. Thus the extracellular N-terminal domain of the alpha, delta, and gamma subunits contains the information necessary for specific subunit association.  相似文献   

17.
Y Gu  P Camacho  P Gardner  Z W Hall 《Neuron》1991,6(6):879-887
We have used a species difference in epsilon subunits of the acetylcholine receptor (AChR) to investigate regions of the subunit protein that are important in receptor assembly. Upon transient transfection of COS cells, mouse epsilon subunit cDNA is approximately 10 times more effective than that of the rat in supporting expression of surface AChRs when the other subunits are from either mouse or rat. In cells transfected with only alpha and epsilon subunit cDNAs, the formation of an alpha epsilon heterodimer, a presumed assembly intermediate, is also less efficient with rat than with mouse epsilon subunit. By site-directed mutagenesis, we have found that these differences can be accounted for by 2 amino acid differences in the N-terminal domain at positions 106 and 115 of the rat and mouse epsilon subunits, suggesting that the region near these 2 amino acid residues is important for AChR assembly.  相似文献   

18.
W N Green  A F Ross  T Claudio 《Neuron》1991,7(4):659-666
Different combinations of Torpedo acetylcholine receptor (AChR) subunits stably expressed in mouse fibroblasts were used to establish a role for phosphorylation in AChR biogenesis. When cell lines expressing fully functional AChR complexes (alpha 2 beta gamma delta) were labeled with 32P, only gamma and delta subunits were phosphorylated. Forskolin, which causes a 2- to 3-fold increase in AChR expression by stimulating subunit assembly, increased unassembled gamma phosphorylation, but had little effect on unassembled delta. The forskolin effect on subunit phosphorylation was rapid, significantly preceding its effect on expression. The pivotal role of the gamma subunit was established by treating alpha beta gamma and alpha beta delta cell lines with forskolin and observing increased expression of only alpha beta gamma complexes. This effect was also observed in alpha gamma, but not alpha delta cells. We conclude that the cAMP-induced increase in expression of cell surface AChRs is due to phosphorylation of unassembled gamma subunits, which leads to increased efficiency of assembly of all four subunits.  相似文献   

19.
We have used the mouse alpha (alpha M) and human alpha (alpha H) subunits to investigate the molecular mechanisms of assembly of the mammalian acetylcholine receptor (AChR) transiently expressed in COS cells. COS cells expressing hybrid receptors incorporating alpha H along with other mouse subunits exhibited a 2-fold higher level of surface alpha-bungarotoxin (BuTx) binding than cells expressing the wild-type mouse AChR. When expressed either alone or with the delta subunit in COS cells, alpha H acquired the BuTx binding conformation (alpha Tx) more efficiently than did alpha M. By oligonucleotide-directed mutagenesis we showed that 2 residues in the amino-terminal domain were responsible for the differences between alpha M and alpha H. Alpha MST, the modified mouse alpha subunit, both folded more efficiently to form alpha Tx and was more effective in forming a stable alpha delta heterodimer than was alpha M. The kinetics of alpha Tx and alpha delta heterodimer formation revealed that the delta subunit increased the conversion of immature forms of the alpha subunit into the BuTx binding form and therefore provides evidence for interaction between the delta subunit and the immature form of the alpha subunit. These results provide evidence of the importance of the amino-terminal domains of the AChR subunits in the assembly process.  相似文献   

20.
M21 human melanoma cells express an Arg-Gly-Asp-directed adhesion receptor composed of noncovalently associated alpha and beta chains. To establish the structural and functional properties of this receptor on M21 human melanoma cells, stable variant cell lines were selected that express altered alpha chain levels. One of these variants, M21-L, fails to synthesize alpha chain protein or its mRNA, yet does produce normal levels of the beta chain. In these cells the beta chain does not reach the cell surface but rather accumulates within the cell. M21-L cells lacking the alpha chain are incapable of attaching to vitronectin, von Willebrand factor, fibrinogen, or an Arg-Gly-Asp-containing heptapeptide yet attach normally to fibronectin, whereas the unselected M21 cells attach to all of these adhesive proteins. In addition, a monoclonal antibody, LM609 generated to a functional site on the intact receptor, is capable of preventing M21 cell attachment to vitronectin, von Willebrand factor, fibrinogen, and the Arg-Gly-Asp peptide but not to fibronectin. Following a 2-min biosynthetic pulse-label, the newly synthesized alpha chain remains in free form for 5 min and then associates with previously synthesized beta chain present in an intracellular pool. Once oligomerization takes place, the receptor gains the capacity to recognize Arg-Gly-Asp, and at this time the epitope recognized by monoclonal antibody LM609 is formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号