首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The copper(II) complexing ability and the biological activity of beta-casomorphin-7 tetrazole analogues have been investigated. Potentiometric and spectroscopic (UV-Vis, CD and EPR) studies have been used to establish the thermodynamic stability, speciation and structure of Cu(II) complexes with YP-psi(CN4)-FPGPI-NH2 (1), YPF-psi(CN4)-AGPI-NH2 (2) and YPFP-psi(CN4)-GPI-NH2 (3). Comparison of the binding ability of the tetrazole analogues reveals that the most effective ligand for copper(II) is YPF-psi(CN4)-AGPI-NH2. The effectiveness of this ligand comes from its particular conformation suited for the Cu(II) 2N co-ordination mode in the physiological pH region. The ability of casomorphin tetrazole analogues to activate rat mast cells to histamine release in vitro in the presence of copper(II) has been studied.  相似文献   

2.
A study of the effect of the tetrazole moiety, a cis-amide bond surrogate, on the Cu(II) coordinating properties of oligopeptides is reported. Insertion of the tetrazole moiety Psi[CN(4)] into the peptide sequence of [D-Ala(2)]deltorphin I changes considerably the coordination ability of the peptide. Potentiometric and spectroscopic results show that if the tetrazole moiety is in a suitable position in the peptide chain, i.e. it follows the second residue, a stable CuL species involving 3N coordination is formed in the physiological pH range. The tetrazole Psi[CN(4)] ring provides one of these nitrogens. The data indicate that Cu(II) ions are strongly trapped inside a bent peptide backbone. The peptide conformation changes achieved by Cu(II) coordination may be essential for the binding of tetrazole deltorphins at opiate receptors.  相似文献   

3.
The aim of the investigation was to establish the chelating ability of a new proctolin analogue of the sequence Arg-Tyr-LeuPsi[CN(4)]Ala-Thr towards copper(II) ions. The insertion of the tetrazole moiety into the peptide sequence has considerably changed the coordination ability of the ligand. Potentiometric and spectroscopic (UV-Vis, CD, EPR) results indicate that the incorporation of 1,5-disubstituted tetrazole ring favours the formation of a stable complex form of CuH(-1)L. This 4N coordination type complex is the dominant species in the physiological pH range. The tetrazole moiety provides one of these nitrogens. The data indicate that Cu(II) ions are strongly trapped inside the peptide backbone. These findings suggest that Cu(II) can hold peptide chains in a bent conformation. This bent conformation may be essential for bioactivity of the tetrazole peptides.  相似文献   

4.
Linear and cyclic hymenistatin I (HS I) analogues with dipeptide segments Ile2-Pro3 Pro3-Pro4 and Val6-Pro7 replaced by their tetrazole analogues Ile2-psi[CN4]-Ala3', Pro3-psi[CN4]-Ala4 and Val6-psi[CN4]-Ala7 were synthesized by the solid phase peptide synthesis method and cyclized with the TBTU and/or HATU reagent. The peptides were examined for their immunosuppressive activity in the lymphocyte proliferation test (LPT).  相似文献   

5.
CD studies on tetrazole analogues of opioid peptides show that peptides sharing the same N-terminal sequence, H-TyrPsi[CN(4)]Gly-, give very large Cotton effects of the Tyr side chain in the near-UV region. CD spectra of five such peptides: H-TyrPsi[CN(4)]Gly-Gly-Phe-Leu-OH (I), H-TyrPsi[CN(4)]Gly-Phe-Pro-Gly-Pro-Ile-NH(2) (II), H-TyrPsi[CN(4)]Gly-Phe-Pro-NH(2) (III), H-TyrPsi[CN(4)]Gly-Phe-Gly-Tyr-Pro-Ser-NH(2) (IV), and H-TyrPsi[CN(4)]Gly-Phe-Asp-Val-Val-Gly-NH(2) (V), and two others for comparison: H-Tyr-GlyPsi[CN(4)]Gly-Phe-Leu-OH (VI) and H-TyrPsi[CN(4)]Ala-Phe-Gly-Tyr-Pro-Ser-NH(2) (VII), were measured in methanol, 2,2,2-trifluoroethanol, and water at different pH values. The spectra show that the conformations of the Tyr(1) residue in peptides I-V are very similar in all solvents used but differ distinctly from those observed for VI and VII. Strong Tyr bands in the aromatic region result probably from the rigid structure of the common N-terminal part of peptides I-V. These bands are weaker for IV, which maybe due to the presence of a second Tyr residue in that peptide, giving an opposite contribution to the CD spectrum as that arising from Tyr1. It seems that the rigid structure of the N-terminal part of I-V results from the interaction of the Tyr(1) side chain and the tetrazole ring. The CD bands of the Tyr residues of VI and VII are much smaller than those of I-V in all solvents, except VII in trifluoroethanol (TFE) where Tyr bands comparable in intensity to those of I-V are observed. This spectral property may derive from the same sign contribution of both Tyr residues of VII to the CD spectrum.  相似文献   

6.
Resveratrol (1, 3,5,4'-trihydroxy-trans-stilbene), a polyphenol found in grapes and other food products, is known as an antioxidant and cancer chemopreventive agent. However, 1 was shown to induce genotoxicity through a high frequency of micronucleus and sister chromatid exchange in vitro and DNA-cleaving activity in the presence of Cu(II). The present study was designed to explore the structure-activity relationship of 1 in DNA strand scission and to characterize the substrate specificity for Cu(II) and DNA binding. When pBR322DNA was incubated with 1 or its analogues differing in the number and positions of hydroxyl groups in the presence of Cu(II), the ability of 4-hydroxystilbene analogues to induce DNA strand scission is much stronger than that of 3-hydroxy analogues. The high binding affinity with both Cu(II) and DNA was also observed by 4-hydroxystilbene analogues. The reduction of Cu(II) which is essential for activation of molecular oxygen proceeded by addition of 1 to the solution of the Cu(II)-DNA complex, while such reduction was not observed with the addition of isoresveratrol, in which the 4-hydroxy group of 1 is changed to the 3-position. The results show that the 4-hydroxystilbene structure of 1 is a major determinant of generation of reactive oxygen species that was responsible for DNA strand scission.  相似文献   

7.
Epperson JD  Ming LJ 《Biochemistry》2000,39(14):4037-4045
Bacitracin is a widely used metal-dependent peptide antibiotic produced by Bacillus subtilis and Bacillus licheniformis with a potent bactericidal activity directed primarily against Gram-positive organisms. This antibiotic requires a divalent metal ion such as Zn(II) for its biological activity, and has been reported to bind several other transition metal ions, including Co(II), Ni(II), and Cu(II). Despite the wide use of bacitracin, a structure-activity relationship for this drug has not been established, and the structure of its metal complexes has not been fully determined. We report here one- and two-dimensional nuclear magnetic resonance (NMR) studies of the structure of the metal complexes of several bacitracin analogues by the use of paramagnetic Co(II) as a probe. The Co(II) complex of this antibiotic exhibits many well-resolved isotropically shifted (1)H NMR signals in a large spectral window ( approximately 200 ppm) due to protons near the metal, resulting from both contact and dipolar shift mechanisms. The assignment of the isotropically shifted (1)H NMR features concludes that bacitracin A(1), the most potent component of the bacitracin mixture, binds to Co(II) via the His-10 imidazole ring N(epsilon), the thiazoline nitrogen, and the monodentate Glu-4 carboxylate to form a labile complex in aqueous solutions. The free amine of Ile-1 does not bind Co(II). Several different analogues of bacitracin have also been isolated or prepared, and the studies of their Co(II) binding properties further indicate that the antimicrobial activity of these derivatives correlates directly to their metal binding mode. For example, the isotropically shifted (1)H NMR spectral features of the high-potent bacitracin analogues, including bacitracins A(1), B(1), and B(2), are virtually identical. However, Glu-4 and/or the thiazoline ring does not bind Co(II) in the bacitracin analogues with low antibiotic activities, including bacitracins A(2) and F.  相似文献   

8.
The N-terminal native sequence tripeptide of alpha-fetoprotein, L-threonyl-L-leucyl-L-histidine N-methylamide, was synthesized and its interaction with Cu(II) ions was investigated by potentiometric titration at 25 degrees C in 0.15 M-NaCl and by visible-absorption, e.p.r. and n.m.r. spectroscopy. Analyses of the results in the pH range 4-10 indicated the presence of multiple complex species in solution: MHL, MH-2L, MHL2, ML2 and MH-1L2, where M, H and L represent metal ion, proton and ligand anion respectively. Only the species MH-2L and MH-1L2 are present in significant amounts at physiological pH. The results of the visible-absorption spectroscopy are consistent with the findings of species distribution that MH-2L is the major complex species detected above physiological pH that has the spectral characteristics of lambda max. = 523 nm and epsilon max. = 98 M-1.cm-1. The nine superhyperfine lines in e.p.r. spectra of the major species MH-2L strongly support the co-ordination of four nitrogen atoms by Cu(II). Both 1H- and 13C-n.m.r. studies suggest that the species MH-2L is a square-planar complex. The results from the equilibrium-dialysis experiments showed that this peptide is able to compete with albumin for Cu(II) ions. At equimolar concentrations of albumin and the peptide, about 52% of the Cu(II) was bound to the peptide. The possibility that alpha-fetoprotein plays an important role as the Cu(II)-transport protein in fetal life is discussed.  相似文献   

9.
Linear and cyclic analogues of cyclolinopeptide A (CLA) with two dipeptide segments (Val(5)-Pro(6) and Pro(6)-Pro(7)) replaced by their tetrazole derivatives were synthesized by the SPPS technique and cyclized using TBTU (O-(benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate) reagent. The conformational properties of the c(Leu(1)-Ile(2)-Ile(3)-Leu(4)-Val(5)-Pro(6)-psi[CN(4)]-Ala(7)-Phe(8)-Phe(9)) were investigated by NMR and computational techniques. The overall solution structure of this cyclic peptide resembles that observed for the CLA in the solid state. These studies of cyclic tetrazole CLA analogue confirm that the 1,5-disubstituted tetrazole ring functions as an effective, well-tolerated cis-amide bond mimic in solution. The peptides were examined for their immunosuppressive activity in the humoral response test. For cyclic analogues the immunosuppressive activity, at low doses, is equal in magnitude to the activity presented by cyclosporin A and native CLA. The conformational and biological data seem indicate that the Pro-Pro-Phe-Phe moiety and the preservation of the CLA backbone conformation are important for immunosuppressive activity.  相似文献   

10.
Synthetic procedures are described that allow access to new copper(II) complexes with dipeptides containing the alpha-aminoisobutyric residue (Aib) as ligands. The solid complexes [Cu(H(-1)L(A))](n).nH(2)O (1) (L(A)H=H-Aib-Gly-OH), [Cu(H(-1)L(B))(MeOH)](n).nMeOH (2) (L(B)H=H-Aib-L-Leu-OH) and [Cu(H(-1)L(C))](n) (3) (L(C)H=H-Aib-L-Phe-OH) have been isolated and characterized by single-crystal X-ray crystallography, solid-state IR spectra and UV-Vis spectroscopy in solution (H(-1)L(2-) is the dianionic form of the corresponding dipeptide). Complexes 1 and 3 are three-dimensional coordination polymers with similar structures. The doubly deprotonated dipeptide behaves as a N(amino), N(peptide), O(carboxylate), O'(carboxylate), O(peptide) mu(3) ligand and binds to one Cu(II) atom at its amino and peptide nitrogens and at one carboxylate oxygen, to a second metal at the other carboxylate oxygen, while a third Cu(II) atom is attached to the peptide oxygen. The geometry around copper(II) is distorted square pyramidal with the peptide oxygen at the apex of the pyramid. The structure of 2 consists of zigzag polymeric chains, where the doubly deprotonated dipeptide behaves as a N(amino), N(peptide), O(carboxylate), O'(carboxylate) mu(2) ligand. The geometry at copper(II) is square pyramidal with the methanol oxygen at the apex. The IR data are discussed in terms of the nature of bonding and known structures. The UV-Vis spectra show that the solid-state structures of 1, 2 and 3 do not persist in H(2)O.  相似文献   

11.
The structure of Z-Pro psi [CN4]-Ala-OBzl has been determined by X-ray crystallographic techniques. The structure crystallizes in space group P2(1) with cell constants a = 22.176(3) A, b = 6.141(1)A, c = 8.275(1) A, beta = 98.31(1), and Z = 2. The structure has been refined to a residual of 0.038 for 2538 independent data. The amide bond between the prolyl and alanyl residues is cis, a result of the presence of the tetrazole ring system, as is the urethane bond linking the benzyloxycarbonyl and the prolyl groups. A comparison of the structures in this study to other structures containing cis amide bonds shows that the tetrazole ring system, when incorporated into peptides, mimics a cis amide bond. Changes in the distance between the alpha-carbons adjacent to the tetrazole rings in the linear peptide as compared with the bicyclic diketopiperazine required a reassessment of the conformational mimicry with the cis amide bond.  相似文献   

12.
We previously reported the IZ-3adH peptide, which formed a triple-stranded coiled-coil after binding Ni(II), Cu(II), or Zn(II). In this paper, we report the peptide, IZ-3aH, having a new metal binding specificity. The IZ-3aH peptide was found to bind Cu(II) and Zn(II) and form a triple-stranded coiled-coil. However, it did not bind Ni(II). Metal ion titrations monitored by circular dichroism revealed that the dissociation constants, K(d) were 9 microm for Zn(II) and 10 microm for Cu(II). The bound Cu(II) ion has a planar tetragonal geometry, where the coordination positions are three nitrogens of the His residues and one H(2)O.  相似文献   

13.
The tetradecapeptide containing the 10 aminoacid repeated sequence on the C-terminus of the Ni(II)-induced Cap43 protein, was analyzed for Ni(II) and Cu(II) binding. A combined pH-metric and spectroscopic UV-VIS, EPR, CD and NMR study of Ni(II) and Cu(II) binding to the blocked CH3CO-Thr-Arg-Ser-Arg-Ser-His-Thr-Ser-Glu-Gly-Thr-Arg-Ser-Arg-NH2 (Ac-TRSRSHTSEGTRSR-Am) peptide, modeling a part of the C-terminal sequence of the Cap43 protein, revealed the formation of octahedral complexes involving imidazole nitrogen of histidine, at pH 5.5 and pH 7 for Cu(II) and Ni(II), respectively; a major square planar 4N-Ni(II) complex (about 100% at pH 9, log K* = -28.16) involving imidazole nitrogen of histidine and three deprotonated amide nitrogens of the backbone of the peptide was revealed; a 3N-Cu(II) complex (maximum about 70% at pH 7, log K*=-13.91) and a series of 4N-Cu(II) complexes starting at pH 5.5 (maximum about 90% at pH 8.7, log K* = -21.39 for CuH(-3)L), were revealed. This work supports the existence of a metal binding site at the COOH-terminal part of the Cap43 peptide.  相似文献   

14.
The kinetics of the decomposition of H(2)O(2) catalyzed by Cu(II) has been studied by the initial-rate method in aqueous phosphate media at near physiological pH. The activity of the catalyst is increased by [Fe(CN)(6)](3-) and decreased by VO(3)(-), CrO(4)(2-) and Zn(II). Three reaction pathways are involved in the Cu(II)-H(2)O(2) reaction, the kinetic orders of the catalyst being 1 (rate constant k1), 2 (rate constant k2) and 3 (rate constant k3). The three pathways present fractional apparent orders (>1) in H(2)O(2) and base catalysis. The apparent activation energies associated to rate constants k1, k2 and k3 are 102+/-4, 65+/-8 and 61+/-5 kJ mol(-1). Free-radical chain mechanisms are proposed for the three pathways.  相似文献   

15.
Eleven oxytocin analogues substituted in position 4, 5 or 9 by tetrazole analogues of amino acids were prepared using solid-phase peptide synthesis method and tested for rat uterotonic in vitro and pressor activities, as well as for their affinity to human oxytocin receptor. The tetrazolic group has been used as a bioisosteric substitution of carboxylic, ester or amide groups in structure-activity relationship studies of biologically active compounds. Replacement of the amide groups of Gln(4) and Asn(5) in oxytocin by tetrazole analogues of aspartic, glutamic and alpha-aminoadipic acids containing the tetrazole moiety in the side chains leads to analogues with decreased biological activities. Oxytocin analogues in which the glycine amide residue in position 9 was substituted by tetrazole analogues of glycine had diminished activities as well. The analysis of differences in rat uterotonic activity and in the affinity to human oxytocin receptors of analogues containing either an acidic 5-substituted tetrazolic group or a neutral 1,5- or 2,5-tetrazole nucleus makes it possible to draw some new conclusions concerning the role of the amide group of amino acids in positions 4, 5 and 9 of oxytocin for its activity. The data suggest that the interaction of the side chain of Gln(4) with the oxytocin receptor is influenced mainly by electronic effects and the hydrogen bonding capacity of the amide group. Steric effects of the side chain are minor. Substitution of Asn(5) by its tetrazole derivative gave an analogue of very low activity. The result suggests that in the interaction between the amide group of Asn(5) and the binding sites of oxytocic receptor hydrogen bonds are of less importance than the spatial requirements for this group.  相似文献   

16.
The co-ordination chemistry of some new oxamides towards Cu(II) ions was studied using various techniques: potentiometry, voltammetry, spectroscopy (UV-Vis, CD and EPR) and ESI-MS spectrometry. All tested compounds chelate the copper(II) ions with formation of 1:1 and 1:2 (metal-to-ligand ratio) complexes. The Cu(II) ions are bound by 1N, 2N or 3N nitrogen donor systems. Additionally, an unusual co-ordination to amide N-atoms without additional anchoring site is suggested. The (14)N hyperfine splitting observed for the system ox6-Cu(II) above pH 10 clearly indicates the involvement of at least three N donor atoms in the copper ion binding. Moreover, the surrounding by three amide-N and one carbonyl-O stabilizes the high oxidation state of copper(III), although such complexes are very unstable in solution.  相似文献   

17.
Shields SB  Franklin SJ 《Biochemistry》2004,43(51):16086-16091
A chimeric Cu-binding peptide has been designed on the basis of a turn substitution of the prion (PrP) octarepeat Cu-binding site into the engrailed homeodomain helix-turn-helix motif (HTH). This system is a model for the investigation of a single PrP Cu-binding site in a defined protein context. The 28-mer Cu-HTH peptide P7 spectroscopically mimics the PrP octarepeat (P7 = TERRRQQLSHGGGWGEAQIKIWFQNKRA). The Cu(II)-binding affinity of P7 was determined by ESI-MS and tryptophan fluorescence titrations to be K(d) = 2.5 +/- 0.7 microM at pH = 7.0. The quenching of fluorescence of the Trp within the binding loop (underlined above) is pH dependent and highly specific for Cu(II). No Trp quenching was observed in the presence of divalent Zn, Mn, Co, Ni, or Ca ions, and ESI-MS titrations confirmed that these divalent ions do not appreciably bind to P7. The EPR spectrum of Cu(II)-P7 shows that the Cu environment is axial and consistent with 6-coordinate N(3)O(H(2)O)(2) or N(4)(H(2)O)(2) coordination (A( parallel) = 172 x10(-)(4) cm(-)(1); g( parallel) = 2.27), very similar to that of the PrP octarepeat itself. Also like PrP, circular dichroism studies show that apo P7 is predominantly disordered in solution, and the structure is slightly enhanced by Cu binding. These data show the Cu-PrP HTH peptide reproduces the Cu-binding behavior of a single PrP octarepeat in a new context.  相似文献   

18.
1. A large number of potentially bidentate and tridentate amides, X-Y-CONH-Z, were used as model ligands to investigate the complex formation of Cu(II) with the deprotonated peptide nitrogen in biological molecules. A combination of potentiometric titration, spectrophotometry and electron paramagnetic resonance was applied to analyse the structure of the Cu(II) chelates formed at neurtal and basic pH. 2. By systematic variation of the primary binding function X, the ring size of the chelate, and the spatial properties of the C-terminal and N-terminal substituents, three classes of amide ligands could be established with reference to their capacity for Cu(II)-induced deprotonation of NHCO and metal binding. 3. Under physiological conditions of pH, peptide (class A) chelates are only formed by those bidentate amide ligands with X being an imidazole (sp2) nitrogen or a terminal (sp3) amino nitrogen. Mercaptide sulfur must also be considered to belong in this group of strong copper(II)-binding sites, but in our low-molecular-weight model ligands the redox equilibrium 2 Cu(II) + 2 RSH in equilibrium or formed from 2 CU(II) + RSSR + 2 H+ interferes, yielding insoluble Cu(I)-S polymers above pH 4. In addition to the unidentate binding strength of X, entropy effects play an important role. Depending on whether X is an imidazole or amino nitrogen, only five-membered or six-membered monocyclic chelate structures respectively cause coordination of the deprotonated peptide function. 4. Biuret (class B) Cu(II) chelates are only formed under non-physiological conditions at pH > 11.5 producing the well known violet chromophores CuIIN4(-). In general these complexes, which also include the Cu(II) biguanides, show a clearly resolved electron paramagnetic resonance spectrum with nitrogen superhyperfine structure. 5. A third class of peptide model ligands (class C) consists of those amides where the CuII-X bond does not provide enough thermodynamic stability. The binding site of these class C amides includes functional groups such as carboxylate (COO-), methionine sulfur (RSR'), aliphatic or aromatic hydroxyl (OH) and amide nitrogen (NHCO) itself. When X is a pyridine (sp2) nitrogen or an amino (sp3) nitrogen, NHCO deprotonation is only promoted in five-membered but not six-membered ring chelates. On the other hand, a combination of COO- and NH2, as in asparagine, will allow deprotonation of NHCO in the presence of Cu(II). And third, despite a pronounced unidentate affinity of the imidazole nitrogen for Cu(II), N-acetylhistamine acts as a class C amine, in contrast to imidazolylacetamide, which forms a stable Cu(II) peptide chelate. This difference in Cu binding is explained on the basis of space-filling models. These clearly demonstrate that in the case of the 2:1 complex of Cu(II) with N-acetylhistamine, the planarity of the ionised peptide function can not be retained in a square planar arrangement of the two amide ligands around the copper center.  相似文献   

19.
A relatively recent method developed to determine the molecular weights of intact peptides and proteins, matrix-assisted UV laser desorption time-of-flight mass spectrometry (LDTOF-MS), has been evaluated as a new means to investigate the metal ion-binding properties of model synthetic peptides. A contiguous sequence of 25 residues on the surface of the 74 kDa human plasma metal-binding transport protein histidine-rich glycoprotein (HRG) has been identified as a bioactive metal-binding domain. The peptide, (GHHPH)5G, was synthesized and evaluated by LDTOF-MS before and after the addition of Cu(II) in solution with 2,5-dihydroxybenzoic acid as the matrix. In the absence of added Cu(II), the major protonated molecular ion (M + H)+ was observed to have a mass equal to its calculated mass (2904.0 Da). In the presence of Cu(II), however, five additional peaks were observed at mass increments of approximately 63.9 Da. The maximum Cu(II)-binding capacity observed for the 26-residue peptide (5 g-atoms/mol) suggested that up to 1 Cu(II) may be bound per 5-residue internal repeat unit (GHHPH) within this peptide; several other monovalent and divalent metal cations were not bound under identical conditions of analysis. The Cu(II)-binding stoichiometry was verified by spectrophotometric titration and by frontal analyses of the immobilized peptide with a solution of Cu(II) ions. These results demonstrate the ability to verify directly the solution-phase binding capacity of metal-binding peptides by LDTOF-MS.  相似文献   

20.
A series of copper(II) complexes of the type [Cu(L)]2+, where L = N,N'-dialkyl-1,10-phenanthroline-2,9-dimethanamine and R = methyl (L1), n-propyl (L2), isopropyl (L3), sec-butyl (L4), or tert-butyl (L5) group, have been synthesized. The interaction of the complexes with DNA has been studied by DNA fiber electron paramagnetic resonance (EPR) spectroscopy, emission, viscosity and electrochemical measurements and agarose gel electrophoresis. In the X-ray crystal structure of [Cu(HL2)Cl2]NO3, copper(II) is coordinated to two ring nitrogens and one of the two secondary amine nitrogens of the side chains and two chloride ions as well and the coordination geometry is best described as trigonal bipyramidal distorted square based pyramidal (TBDSBP). Electronic and EPR spectral studies reveal that all the complexes in aqueous solution around pH 7 possess CuN3O2 rather than CuN4O chromophore with one of the alkylamino side chain not involved in coordination. The structures of the complexes in aqueous solution around pH 7 change from distorted tetragonal to trigonal bipyramidal as the size of the alkyl group is increased. The observed changes in the physicochemical features of the complexes on binding to DNA suggest that the complexes, except [Cu(L5)]2+, bind to DNA with partial intercalation of the derivatised phen ring in between the DNA base pairs. Electrochemical studies reveal that the complexes prefer to bind to DNA in Cu(II) rather than Cu(I) oxidation state. Interestingly, [Cu(L5)]2+ shows the highest DNA cleavage activity among all the present copper(II) complexes suggesting that the bulky N-tert-butyl group plays an important role in modifying the coordination environment around the copper(II) center, the Cu(II)/Cu(I) redox potential and hence the formation of activated oxidant responsible for the cleavage. These results were compared with those for bis(1,10-phenanthroline)copper(II), [Cu(phen)2]2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号