首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study investigates phenotypic and functional differentiation of peritoneal macrophages during ovalbumin-induced subcutaneous immunization of mice. For the first time we show that, in mouse peritoneal macrophages, ovalbumin immunization induces an increase in cyclooxygenase-2 (COX-2) and 5-lipoxygenase activating protein (FLAP) expression whereas it inhibits cytosolic phospholipase A2 (cPLA2) expression. The study of arachidonic acid (AA) metabolism in peritoneal macrophages from control (cPM) and ovalbumin-immunized (iPM) mice shows that the reduced cPLA2 expression is correlated to a reduced basal AA metabolism, but is not a limiting factor for the opsonized zymosan-, PMA-, or A23187-triggered AA metabolism. We also show that in vitro ovalbumin challenge induces, only in iPM, cPLA2 activation through phosphorylation of serine residues, via a mechanism involving MAP kinases, and through increased intracellular calcium concentrations, leading to eicosanoid production. In parallel, we report that, in peritoneal macrophages, ovalbumin immunization induces the expression of CD23, the low affinity receptor for IgEs known for its involvement in allergic diseases. Thus, the modified expression of the enzymes involved in AA metabolism and the difference of response of cPM and iPM toward the antigen are important elements to understand the underlying mechanisms of ovalbumin-induced allergic responses.  相似文献   

2.
The present study investigates phenotypic and functional differentiation of peritoneal macrophages during ovalbumin-induced subcutaneous immunization of mice. For the first time we show that, in mouse peritoneal macrophages, ovalbumin immunization induces an increase in cyclooxygenase-2 (COX-2) and 5-lipoxygenase activating protein (FLAP) expression whereas it inhibits cytosolic phospholipase A(2) (cPLA2) expression. The study of arachidonic acid (AA) metabolism in peritoneal macrophages from control (cPM) and ovalbumin-immunized (iPM) mice shows that the reduced cPLA2 expression is correlated to a reduced basal AA metabolism, but is not a limiting factor for the opsonized zymosan-, PMA-, or A23187-triggered AA metabolism. We also show that in vitro ovalbumin challenge induces, only in iPM, cPLA2 activation through phosphorylation of serine residues, via a mechanism involving MAP kinases, and through increased intracellular calcium concentrations, leading to eicosanoid production. In parallel, we report that, in peritoneal macrophages, ovalbumin immunization induces the expression of CD23, the low affinity receptor for IgEs known for its involvement in allergic diseases. Thus, the modified expression of the enzymes involved in AA metabolism and the difference of response of cPM and iPM toward the antigen are important elements to understand the underlying mechanisms of ovalbumin-induced allergic responses.  相似文献   

3.
LPS from bacteria can result in the development of sepsis syndrome and acute lung injury. Although acute exposure to endotoxin primes leukocytes for enhanced synthesis of leukotrienes (LT), little is known about the effect of chronic exposure. Therefore, we determined the effect of prolonged LPS treatment on 5-lipoxygenase (5-LO) metabolism of arachidonic acid in alveolar macrophages (AM) and in peripheral blood monocytes. Pretreatment of AM with LPS caused time- and dose-dependent suppression of LT synthetic capacity. LPS pretreatment failed to inhibit arachidonic acid (AA) release. The fact that LPS inhibited LT synthesis from endogenous AA more than from exogenous AA suggested an effect on 5-LO-activating protein (FLAP). In addition, an inhibitory effect of LPS treatment on AM 5-LO activity was suggested by cell-free 5-LO enzyme assay. No effect on the expression of either 5-LO or FLAP proteins was observed. New protein synthesis was necessary for LPS-induced reduction of 5-LO metabolism in AM, and immunoblotting demonstrated marked induction of NO synthase (NOS). Inhibition by LPS was reproduced by an NO donor and was abrogated by inhibitors of constitutive and inducible NOS. Compared with AM, peripheral blood monocytes exhibited no suppression by LPS of 5-LO metabolism and no induction of inducible NOS. We conclude that prolonged exposure to LPS impairs AM 5-LO metabolism by NO-mediated suppression of both 5-LO and FLAP function. Because LT contribute to antimicrobial defense, this down-regulation of 5-LO metabolism may contribute to the increased susceptibility to pneumonia in patients following sepsis.  相似文献   

4.
PGs produced from arachidonic acid by the action of cyclooxygenase enzymes play a pivotal role in the regulation of both inflammatory and immune responses. Because leukotriene B4 (LTB4), a product of 5-lipoxygenase (5-LO) pathway, can exert numerous immunoregulatory and proinflammatory activities, we examined the effects of PGs on LTB4 release from dendritic cells (DC) and from peritoneal macrophages. In concentration-dependent manner, PGE1 and PGE2 inhibited the production of LTB4 from DC, but not from peritoneal macrophage, with an IC50 of 0.04 microM. The same effect was observed with MK-886, a 5-LO-activating protein (FLAP)-specific inhibitor. The decreased release of LTB4 was associated with an enhanced level of IL-10. Furthermore, the inhibition of LTB4 synthesis by PGs was significantly reversed by anti-IL-10, suggesting the involvement of an IL-10-dependent mechanism. Hence, we examined the effects of exogenous IL-10 on the 5-LO pathway. We demonstrate that IL-10 suppresses the production of LTB4 from DC by inhibiting FLAP protein expression without any effect on 5-LO and cytosolic phospholipase A2. Taken together, our results suggest links between DC cyclooxygenase and 5-LO pathways during the inflammatory response, and FLAP is a key target for the PG-induced IL-10-suppressive effects.  相似文献   

5.
BackgroundSubcellular distribution of 5-lipoxygenase (5-LO) to the perinuclear region and interaction with the 5-LO-activating protein (FLAP) are assumed as key steps in leukotriene biosynthesis and are prone to FLAP antagonists.MethodsFLAP and/or 5-LO were stably expressed in HEK293 cells, 5-LO products were analyzed by HPLC, and 5-LO and FLAP subcellular localization was visualized by immunofluorescence microscopy.Results5-LO and FLAP were stably expressed in HEK293 cells, and upon Ca2 +-ionophore A23187 stimulation exogenous AA was efficiently transformed into the 5-LO products 5-hydro(pero)xyeicosatetraenoic acid (5-H(p)ETE) and the trans-isomers of LTB4. A23187 stimulation caused 5-LO accumulation at the nuclear membrane only when FLAP was co-expressed. Unexpectedly, A23187 stimulation of HEK cells expressing 5-LO and FLAP without exogenous AA failed in 5-LO product synthesis. HEK cells liberated AA in response to A23187, and transfected HEK cells expressing 12-LO generated 12-HETE after A23187 challenge from endogenous AA. FLAP co-expression increased 5-LO product formation in A23187-stimulated cells at low AA concentrations. Only in cells expressing FLAP and 5-LO, the FLAP antagonist MK886 blocked FLAP-mediated increase in 5-LO product formation, and prevented 5-LO nuclear membrane translocation and co-localization with FLAP.ConclusionThe cellular biosynthesis of 5-LO products from endogenously derived substrate requires not only functional 5-LO/FLAP co-localization but also additional prerequisites which are dispensable when exogenous AA is supplied; identification of these determinants is challenging.General significanceWe present a cell model to study the role of FLAP as 5-LO interacting protein in LT biosynthesis in intact cells and for characterization of putative FLAP antagonists.  相似文献   

6.
Reactive oxygen species (ROS) are important regulatory molecules implicated in the signaling cascade triggered by tumor necrosis factor (TNF)-alpha, although the events through which TNF-alpha induces ROS generation are not yet well characterized. We therefore investigated selected candidates likely to mediate TNF-alpha-induced ROS generation. Consistent with the role of Rac in that process, stable expression of Rac(Asn-17), a dominant negative Rac1 mutant, completely blocked TNF-alpha-induced ROS generation. To understand better the mediators downstream of Rac, we investigated the involvement of cytosolic phospholipase A(2) (cPLA(2)) activation and metabolism of the resultant arachidonic acid (AA) by 5-lipoxygenase (5-LO). TNF-alpha-induced ROS generation was blocked by inhibition of cPLA(2) or 5-LO, but not cyclooxygenase, suggesting that TNF-alpha-induced ROS generation is dependent on synthesis of AA and its subsequent metabolism to leukotrienes. Consistent with that hypothesis, TNF-alpha Rac-dependently stimulated endogenous production of leukotriene B(4) (LTB(4)), while exogenous application of LTB(4) increased levels of ROS. In contrast, application of leukotrienes C(4), D(4), and E(4) or prostaglandin E(2) had little effect. Our findings suggest that LTB(4) production by 5-LO is situated downstream of the Rac-cPLA(2) cascade, and we conclude that Rac, cPLA(2), and LTB(4) play pivotal roles in the ROS-generating cascade triggered by TNF-alpha.  相似文献   

7.
Cysteinyl-leukotrienes are potent bronchoconstrictor mediators synthesized by the 5-lipoxygenase (5-LO) pathway. Eosinophilopoietic cytokines such as IL-5 enhance cysteinyl-leukotriene synthesis in eosinophils in vitro, mimicking changes in eosinophils from asthmatic patients, but the mechanism is unknown. We hypothesized that IL-5 induces the expression of 5-LO and/or its activating protein FLAP in eosinophils, and that this might be modulated by anti-inflammatory corticosteroids. Compared with control cultures, IL-5 increased the proportion of normal blood eosinophils immunostaining for FLAP (65 +/- 4 vs 34 +/- 4%; p < 0.0001), enhanced immunoblot levels of FLAP by 51 +/- 14% (p = 0.03), and quadrupled ionophore-stimulated leukotriene C4 synthesis from 5.7 to 20.8 ng/106 cells (p < 0.02). IL-5 effects persisted for 24 h and were abolished by cycloheximide and actinomycin D. The proportion of FLAP+ eosinophils was also increased by dexamethasone (p < 0.0001). Neither IL-5 nor dexamethasone altered 5-LO expression, but IL-5 significantly increased 5-LO immunofluorescence localizing to eosinophil nuclei. Compared with normal subjects, allergic asthmatic patients had a greater proportion of circulating FLAP+ eosinophils (46 +/- 6 vs 27 +/- 3%; p < 0.03) and a smaller IL-5-induced increase in FLAP immunoreactivity (p < 0.05). Thus, IL-5 increases FLAP expression and translocates 5-LO to the nucleus in normal blood eosinophils in vitro. This is associated with an enhanced capacity for cysteinyl-leukotriene synthesis and mimics in vivo increases in FLAP expression in eosinophils from allergic asthmatics.  相似文献   

8.
As peripheral blood monocytes (PBM) differentiate into tissue macrophages, they undergo a variety of functional changes. One such difference which has been described is an enhanced metabolism of arachidonic acid (AA) via the 5-lipoxygenase (5-LO) pathway in alveolar macrophages (AM) as compared to PBM. In order to elucidate a possible mechanism for this difference, we compared the metabolism of endogenously released AA mobilized by agonists and of exogenously supplied fatty acid in adherent autologous PBM and AM obtained from six normal subjects. Exogenous AA was metabolized to larger amounts of both cyclooxygenase (CO) and 5-LO products by PBM as compared with AM. Although the two cell types released similar amounts of endogenous AA in response to ionophore A23187, marked differences in the pattern of its metabolism were observed. In PBM, a large proportion of released AA remained unmetabolized, and that which was metabolized was converted predominantly to CO products. In contrast, arachidonate released by AM was efficiently metabolized, predominantly via the 5-LO pathway. Similar results were obtained when cells were stimulated with the particulate zymosan, with PBM synthesizing mainly CO and AM, mainly 5-LO eicosanoids. In addition, culture of PBM for up to 5 days in an aerobic environment did not alter their response to A23187 stimulation. These results suggest that the lesser 5-LO metabolism by PBM than AM is not explained by lesser phospholipase or 5-LO activities, but rather a compartmentalization of the endogenous AA deacylated by phospholipase and the 5-LO enzyme in the PBM. The acquisition of the capacity to metabolize endogenous AA to large quantities of 5-LO products as mononuclear phagocytes differentiate in the lung may equip them with the ability to mount an inflammatory response in the alveolar space.  相似文献   

9.
In a previous study, osteosarcoma cells expressing both 5-lipoxygenase (5-LO) and 5 lipoxygenase-activating protein (FLAP) synthesized leukotrienes upon A23187 stimulation (Dixon, R. A. F., R. E. Diehl, E. Opas, E. Rands, P. J. Vickers, J. F. Evans, J. W. Gillard, and D. K. Miller. 1990. Nature (Lond.). 343:282-284). Osteosarcoma cells expressing 5-LO but not expressing FLAP were unable to synthesize leukotrienes. Thus, it was determined that FLAP was required for the cellular synthesis of leukotrienes. To examine the role of FLAP in A23187-induced translocation of 5-LO to a membrane fraction, we have studied the A23187-stimulated translocation of 5-LO in osteosarcoma cells expressing both 5-LO and FLAP, and in osteosarcoma cells expressing 5-LO only. We demonstrate that in cells expressing both 5-LO and FLAP, 5-LO translocates to membranes in response to A23187 stimulation. This 5-LO translocation is inhibited when cells are stimulated in the presence of MK-886. In osteosarcoma cells expressing 5-LO but not expressing FLAP, 5-LO is able to associate with membranes following A23187 stimulation. In contrast to the cells containing both 5-LO and FLAP, MK-886 is unable to prevent 5-LO membrane association in cells transfected with 5-LO alone. Therefore, we have demonstrated that in this cell system, 5-LO membrane association and activation can be separated into at least two distinct steps: (1) calcium-dependent movement of 5-LO to membranes without product formation, which can occur in the absence of FLAP (membrane association), and (2) activation of 5-LO with product formation, which is FLAP dependent and inhibited by MK-886 (enzyme activation).  相似文献   

10.
5-lipoxygenase and FLAP   总被引:15,自引:0,他引:15  
The initial steps in the biosynthesis of leukotrienes from arachidonic acid are carried out by the enzyme 5-lipoxygenase (5-LO). In intact cells, the helper protein 5-LO activating protein (FLAP) is necessary for efficient enzyme utilization of endogenous substrate. The last decade has witnessed remarkable progress in our understanding of these two proteins. Here we review the molecular and cellular aspects of the expression, function, and regulation of 5-LO and FLAP.  相似文献   

11.
12.
Leukotrienes (LTs) are lipid-signaling molecules derived from arachidonic acid (AA) that initiate and amplify inflammation. To initiate LT formation, the 5-lipoxygenase (5-LO) enzyme translocates to nuclear membranes, where it associates with its scaffold protein, 5-lipoxygenase–activating protein (FLAP), to form the core of the multiprotein LT synthetic complex. FLAP is considered to function by binding free AA and facilitating its use as a substrate by 5-LO to form the initial LT, LTA4. We used a combination of fluorescence lifetime imaging microscopy, cell biology, and biochemistry to identify discrete AA-dependent and AA-independent steps that occur on nuclear membranes to control the assembly of the LT synthetic complex in polymorphonuclear leukocytes. The association of AA with FLAP changes the configuration of the scaffold protein, enhances recruitment of membrane-associated 5-LO to form complexes with FLAP, and controls the closeness of this association. Granulocyte monocyte colony–stimulating factor provides a second AA-independent signal that controls the closeness of 5-LO and FLAP within complexes but not the number of complexes that are assembled. Our results demonstrate that the LT synthetic complex is a signal integrator that transduces extracellular signals to modulate the interaction of 5-LO and FLAP.  相似文献   

13.
Leukotrienes (LTs) are produced by several biosynthetic enzymes including cytosolic phospholipase A2 (cPLA2), 5-lipoxygenase (5-LO), and 5-lipoxygenase activating protein (FLAP) in the perinuclear area. In the present study, we showed that pretreatment with methyl-beta-cyclodextrin (MbetaCD), a cholesterol-depleting agent, dramatically reduced the synthesis of LTs in response to A23187 in mast cells. A23187-induced LT synthesis was inhibited by pretreatment with MbetaCD, and this effect was reversed when cholesterol was added. In an approach to identifying the MbetaCD-sensitive protein(s), we observed that FLAP co-localized with flotillin-1, a lipid raft marker protein, in the lipid raft-rich low-density region of sucrose gradients. In addition, electron microscopic analysis revealed that FLAP co-localized with flotillin-1. Together, these results suggest that FLAP is present in cholesterol-rich lipid raft-like domains and that its localization in these domains is critical for LT synthesis.  相似文献   

14.
Sjursen W  Brekke OL  Johansen B 《Cytokine》2000,12(8):1189-1194
The involvement of cytosolic phospholipase A(2)(cPLA(2)) and secretory non-pancreatic PLA(2)(npPLA(2)) in release of arachidonic acid (AA) preceding eicosanoid formation in the human keratinocyte cell line HaCaT was examined. Interleukin 1beta (IL-1beta) and tumour necrosis factor-alpha (TNF), phorbol myristate acetate (PMA) and calcium ionophore A(23187)increased the extracellular AA release, and stimulated eicosanoid synthesis as determined by HPLC analysis. The main metabolites after stimulation with IL-1beta, PMA or A(23187)were PGE(2), an unidentified PG and LTB(4), while TNF stimulated HETE-production. Both cPLA(2)and npPLA(2)message and enzyme activity were detected in unstimulated HaCaT cells. IL-1beta, PMA and TNF increased both cPLA(2)enzyme activity and expression, but did not lead to any increase in npPLA(2)expression or activity. The selective npPLA(2)inhibitors LY311727 and 12-epi-scalaradial, or the cPLA(2)inhibitor arachidonyl trifluoro methyl ketone (AACOCF(3)) reduced IL-1beta-induced eicosanoid production in a concentration dependent manner. The results presented strongly suggest that both cPLA(2)and npPLA(2)contribute to the long-term generation of AA preceding eicosanoid production in differentiated, human keratinocytes. Inhibitors against npPLA2 or cPLA2 enzymes should be useful in treating inflammatory skin diseases, such as psoriasis.  相似文献   

15.
Arachidonic acid (AA) metabolism was assessed in cultured alveolar macrophages (AM) obtained from newborn (10 days old) and adult (2 months and 4 months old) rats. The AMs were stimulated with the calcium ionophore, A23187 (10 microM). The released radiolabelled AA metabolites were measured by thin layer chromatography. The results showed that among different aged rats, the synthesis of 5-lipoxygenase (5-LO) metabolites, LTB4, LTC4, LTD4 and 5-HETE were increased with age inspite of similar levels of [14C]AA release. In response to A23187, 5-LO metabolic capacity of 2 and 4 months old adult rat AMs were increased 21-fold and 34-fold, respectively, compared with 10 days old rat AMs. As the metabolic capacity increased, the release of prostaglandins and thromboxane B2 tended to decrease markedly. Newborn rats (10 days old) AM, at the initial developmental stage, did not produce a noticeable amount of 5-LO metabolites which, conceivably, contribute to high susceptibility of neonatal lung to infection.  相似文献   

16.
Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Several other proteins, including cPLA2a (cytosolic phospholipase A2a) and FLAP (5-LO-activating protein) also assemble at the perinuclear region before production of LTA4. LTC4 synthase is an integral membrane protein that is present at the nuclear envelope; however, LTA4 hydrolase remains cytosolic. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by b-oxidation from the w-carboxy position and after CoA ester formation. Other specific pathways of leukotriene metabolism include the 12-hydroxydehydrogenase/15-oxo-prostaglandin-13-reductase that forms a series of conjugated diene metabolites that have been observed to be excreted into human urine. Metabolism of LTC4 occurs by sequential peptide cleavage reactions involving a g-glutamyl transpeptidase that forms LTD4 (leukotriene D4) and a membrane-bound dipeptidase that converts LTD4 into LTE4 (leukotriene E4) before w-oxidation. These metabolic transformations of the primary leukotrienes are critical for termination of their biological activity, and defects in expression of participating enzymes may be involved in specific genetic disease.  相似文献   

17.
18.
19.
In a recent investigation, we demonstrated that long-term treatment of macrophages with IL-13 enhances cPLA2 expression and modulates zymosan-stimulated AA mobilization. In the present study, we examine the ability of IL-13 to modify the cPLA2 activity and the AA mobilization of macrophages after a short-period of treatment. We demonstrate that in resting macrophages, IL-13 induces, through a MAP kinase-dependent process, (1) an increase of free AA release within 15 min, followed by increased PGE2 production and (2) a time-dependent serine phosphorylation of cPLA2. Conversely, in macrophages stimulated by zymosan, IL-13 added 30 min before zymosan inhibited the AA release and the serine phosphorylation of cPLA2 induced by the phagocytic agonist. In conclusion, these findings show for the first time that a Th2-type cytokine can upregulate cPLA2 activity and downregulate zymosan-induced AA metabolism. Thus, establishment of the connection between these two events may help to understand the complex regulatory role of IL-13 on the macrophage AA metabolism.  相似文献   

20.
Leukotrienes are important mediators of the eosinophilic influx and mucus hypersecretion in the lungs in a murine model of asthma. We used in situ PCR in this model of human asthma to detect lung mRNA for 5-lipoxygenase (5-LO) and 5-LO-activating protein (FLAP), key proteins necessary for leukotriene synthesis. Lung tissue was obtained on day 28 from mice treated with i.p. (days 0 and 14) and intranasal (days 14, 25, 26, and 27) OVA or saline. After fixation, the tissue sections underwent protease- and RNase-free DNase digestion, before in situ RT-PCR using target-specific cDNA amplification. 5-LO and FLAP-specific mRNA was visualized by a digoxigenin detection system, and positive cells were analyzed by morphometry. 5-LO and FLAP-specific mRNA and protein were associated primarily with eosinophils and alveolar macrophages in the airways and pulmonary blood vessels in OVA-sensitized/challenged mice. 5-LO and FLAP protein expression increased on a per-cell basis in alveolar macrophages of OVA-treated mice compared with saline controls. Pulmonary blood vessel endothelial cells were also positive for 5-LO, FLAP mRNA, and protein. 5-LO inhibition significantly decreased 5-LO and FLAP-specific mRNA and protein expression in the lung inflammatory cells and endothelial cells. These studies demonstrate a marked increase in key 5-LO pathway proteins in the allergic lung inflammatory response and an important immunomodulatory effect of leukotriene blockade to decrease 5-LO and FLAP gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号