首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K-bearing minerals with enormous reserve in the world, were not easy to provide the available K nutrient element for plant direct uptake because of the slow K release rate. With the potential potassium-solubilizing microorganisms, the slow K release rate from minerals would be improved significantly. In this work, Cenococcum geophilum Fr, one of the most common ectomycorrhizal fungi in boreal to temperate regions, was adopted to dissolve K-bearing minerals for K release. Five kinds of potassium aluminosilicate minerals were tested by bioleaching experiments in pure culture, including feldspar, nepheline, biotite, muscovite and illite. The available and unavailable potassium amounts in minerals before and after bioleaching were measured and compared with each other. The effect of mineral structure on the potassium solubilization efficiency by Cenococcum geophilum Fr. was discussed. Furthermore, the microenvironment formation between fungi and mineral surface to enhance the K release rate was investigated through detecting K, Al, Si concentrations and metabolites amounts (polysaccharide and organic acids) in microenvironment and external environment, respectively. Experimental results demonstrated that Cenococcum geophilum Fr. was a potential candidate of potassium solubilizing microorganisms, and both mineral structure and microenvironment have significant effects on the K release rate.  相似文献   

2.
Of 80 fluorescent pseudomonad strains screened for phosphate solubilization, three strains (BFPB9, FP12 and FP13) showed the ability to solubilize tri-calcium phosphate (Ca3(PO4)2). During mineral phosphate solubilization, decrease of pH in the culture medium due to the production of organic acids by the strains was observed. These phosphate solubilizing strains produced indole-3-acetic acid (IAA) and protease as well as exhibited a broad-spectrum antifungal activity against phytopathogenic fungi. When tested in PCR using the gene-specific primers, strain BFPB9 showed the presence of hcnBC genes that encode hydrogen cyanide. On the basis of phenotypic traits, 16S rRNA sequence homology and subsequent phylogenetic analysis, strains BFPB9, FP12 and FP13 were designated as Pseudomonas aeruginosa, P. plecoglossicida and P. mosselii, respectively. Present investigation reports the phosphate solubilization potential and biocontrol ability of new strains that belong to P. plecoglossicida and P. mosselii. Because of the innate potential of phosphate solubilization, production of siderophore, IAA, protease, cellulase and HCN strains reported in this study can be used as biofertilizers as well as biocontrol agents.  相似文献   

3.
Twenty endophytic bacteria were isolated from the meristematic tissues of three varieties of strawberry cultivated in vitro, and further identified, by FAME profile, into the genera Bacillus and Sphingopyxis. The strains were also characterized according to indole acetic acid production, phosphate solubilization and potential for plant growth promotion. Results showed that 15 strains produced high levels of IAA and all 20 showed potential for solubilizing inorganic phosphate. Plant growth promotion evaluated under greenhouse conditions revealed the ability of the strains to enhance the root number, length and dry weight and also the leaf number, petiole length and dry weight of the aerial portion. Seven Bacillus spp. strains promoted root development and one strain of Sphingopyxis sp. promoted the development of plant shoots. The plant growth promotion showed to be correlated to IAA production and phosphate solubilization. The data also suggested that bacterial effects could potentially be harnessed to promote plant growth during seedling acclimatization in strawberry.  相似文献   

4.
A total of 198 bacterial strains were isolated from various niches of saline–alkali soils, out of which 85 strains were able to solubilize phosphate on plates at 30 °C. The strain RMLU-26, identified as Xanthomonas campestris, was the most efficient with its ability to solubilize P, subjected to N-methyl-N′-nitro-N-nitrosoguanidine (NTG) for development of mutants. The P solubilizing ability of X. campestris is reported for the first time. The wild type and mutant strains of X. campestris revealed a differential response to various stress factors (high pH, temperature, and salt concentration). The mutant strain revealed maximum P solubilization (67.1%) at 30 °C and pH 8.0 while the wild type strain showed maximum solubilization (41.9%) at 35 °C and pH 7.0. Percent P2O5 solubilization by both strains revealed a steep decline in tricalcium phosphate solubilization with an increase in NaCl concentration from 0.5 to 10% along with a concomitant drop in pH of the medium from 8.0 to 4.5 in wild type and 4.0 in mutant strain. However, a 1.5- to 2-fold increase in ‘P’ solubilization was observed in the mutant strain when compared to the wild type strain in the presence of NaCl. The overall improved tolerance of the strains to alkalinity and salinity could be due to accumulation and/or secretion of specific solute (xanthan).  相似文献   

5.

Introduction

In addition to fixing atmospheric nitrogen, some bacterial isolates can also solubilize insoluble phosphates, further contributing to plant growth.

Aims

The objectives of this study were the following: isolate, select, and identify nodulating bacteria in the cowpea that are efficient not only in biological nitrogen fixation (BNF) but also in the solubilization of insoluble inorganic phosphates; identify and quantify the organic acids produced; and establish the relationship between those acids and the solubilizing capacity.

Methods

The bacteria were captured from two soils containing high concentrations of insoluble phosphorus from the cities of Lavras and Patos de Minas, using the cowpea [Vigna unguiculata (L.) Walp.] as bait. We obtained 78 strains, which were characterized according to their cultural attributes in culture medium 79 with the strains UFLA 03-84, INPA 03-11B, and BR3267 (approved by the Ministry of Livestock and Supply Agriculture—MAPA, as inoculants for the cowpea) and Burkholderia cepacia (LMG1222T), which was used as a positive control for phosphate solubilization. Strains that were selected for their efficiency in both processes were identified by 16S rDNA sequence analysis. We evaluated the symbiotic efficiency (BNF) in a greenhouse and the solubilization efficiency of CaHPO4, Al(H2PO4)3, and FePO4.2H2O in solid and liquid GELP media. Strains that excelled at the solubilization of these phosphate sources were also evaluated for the production of the following organic acids: oxalic, citric, gluconic, lactic, succinic, and propionic.

Results

The presence of Acinetobacter, Bacillus, Firmicutes, Microbacterium, Paenibacillus, and Rhizobium was detected by 16S rDNA sequencing and analysis. Bacterial strains obtained from cowpea nodules varied greatly in the efficiency of their BNF and phosphate solubilization processes, especially in the strains UFLA 03-09, UFLA 03-10, UFLA 03-12, and UFLA 03-13, which were more efficient in both processes. More strains were able to solubilize insoluble inorganic calcium and iron phosphates in liquid medium than in solid medium. The production of organic acids was related to the solubilization of CaHPO4 and FePO4.2H2O for some strains, and the type and concentration of the acid influenced this process.

Conclusions

These are the first results obtained with bacterial isolates from tropical soils in which the production of organic acids was detected and quantified to examine the solubilization of insoluble inorganic phosphates.  相似文献   

6.
The ability ofRhizobium andBradyrhizobium strains to solubilize phosphate from hydroxyapatite was determined in a medium containing NH4Cl or KNO3. The presence of NH4 + in the medium resulted in higher solubilization of phosphate as compared to the presence of KNO3, with the exception ofR. leguminosarium bv. viceae strain TAL 1236 and 1402 which solubilized comparable amounts of phosphate in a medium containing either KNO3 or NH4Cl. These results suggest that the strains employ two different mechanisms for phosphate solubilization, one depending on the presence of NH4 +, the other not requiring its presence. Temperature and aeration (O2 demand) optima were 30°C and 4.2 Hz (shaking frequency), respectively. In nonsterile soil the tested strain (R. meliloti TAL 1236) was very effective in solubilizing rock phosphate.  相似文献   

7.
The use of halotolerant phosphate solubilizing bacteria as inoculants to convert insoluble phosphorus of salt-affected soils to an accessible form is a promising strategy to improve the phosphorus ingestion of plants in salt-affected agriculture. A total of four aerobic isolates with biggest clear halos on the 10% NaCl NBRIP medium plate containing tricalcium phosphate were isolated from the rhizospheric soils of native plants growing on the wall of Dagong Ancinet Brine Well, located in Sichuan of China. And these four isolates were classified to the same strain, named QW10-11, and closely related to Bacillus megatherium var. phosphaticum DSM 3228 and B. megaterium ATCC 14581 according to their phenotype and 16S rRNA. However, the Molecular evolutionary evidences of 16S-23S rRNA ISR further suggested that QW10-11, DSM 3228 and ATCC 14581 have respectively fall into the different sub-divisions in intra specific phylogeny. Strain QW10-11 has significantly better ability of tricalcium phosphate solubilization than that of lecithin solubilization. When it grows under pH 4.8–8.0, 24–33°C and 5–10% NaCl, it can exhibit the higher values of solubilized tricalcium phosphate between 59.3 and 71.4 μg ml−1. Furthermore, its tricalcium phosphate solubilizing activity was associated with the release of organic acids. Taken together, our results indicted that QW10-11 from the rhizospheric soils of halobiot of Dagong Ancinet Brine Well is attractive as efficient phosphate solubilizing candidates in the salt-affected agriculture.  相似文献   

8.
A total of 23 phosphate solubilizing bacteria (PSB) and 35 phosphate solubilizing fungi (PSF) were isolated from 19 samples of salt affected soils. The ability of 12 selected PSB and PSF to grow and solubilize tricalcium phosphate in the presence of different concentrations of NaCl was examined. Among 12 PSB, Aerococcus sp. strain PSBCRG1-1 recorded the highest (12.15) log viable cell count at 0.4 M NaCl concentration after 7 days after incubation (DAI) and the lowest log cell count (1.39) was recorded by Pseudomonas aeruginosa strain PSBI3-1 at 2.0 M NaCl concentration after 24 h of incubation. Highest mycelial dry weight irrespective of NaCl concentrations was recorded by the Aspergillus terreus strain PSFCRG2-1 (0.567 g). The percent Pi release, in general, was found to increase with increase in NaCl concentration up to 0.8 M for bacterial solubilization and declined thereafter. At 15 DAI, strain Aerococcus sp. strain PSBCRG1-1 irrespective of NaCl concentrations showed the maximum P-solubilization (12.12%) which was significantly superior over all other isolates. The amount of Pi released in general among PSF was found to decrease with increase in NaCl concentration at all the incubation periods. Aspergillus sp. strain PSFNRH-2 (20.81%) recorded the maximum Pi release irrespective of the NaCl concentrations and was significantly superior over all other PSF at 7 DAI.  相似文献   

9.
Although production of organic acids (OAs) is usually mentioned as the main mechanism of phosphate solubilization, the relationship between carbon sources (C-sources) and OAs produced during phosphate-solubilization by microorganisms is still poorly understood. We evaluated the influence of different C-sources on FePO4·2H2O and Ca3(PO4)2 solubilization by bacteria and on the identity/quantity of the OAs produced. Our results showed that the amount of phosphate solubilization depends on the strain, C-source, OAs, and type of phosphate. Among the five strains under study isolated from cowpea nodules (Rhizobium tropici strain UFLA 03-08, Acinetobacter sp. strain UFLA 03-09, Paenibacillus kribbensis strain UFLA 03-10, P. kribbensis strain UFLA 03-106, and Paenibacillus sp. strain UFLA 03-116), three of them solubilized Ca3(PO4)2 in all C-sources. The influence of C-sources on Ca3(PO4)2-solubilization increased in the following order: cellulose?<?lactose?<?mannitol?<?glucose. A significant positive correlation between the amount of phosphorus solubilized from Ca3(PO4)2 and the concentration of total OAs in the presence of glucose and mannitol was observed for these three strains. In the presence of glucose, the highest solubilization rates are associated with high concentrations of tartaric acid, and in the presence of mannitol, are associated with maleic acid. Only one strain produced OAs in the medium with lactose and Ca3(PO4)2, but there was no OAs in the medium containing cellulose. Despite the production of OAs, albeit in small concentrations, in all the C-sources investigated, FePO4·2H2O-solubilization was not observed. Thus, a relationship among C-sources, OAs, and phosphate solubilization was not always verified.  相似文献   

10.
Potassium (K) is the third major essential macronutrient for plant growth and more than 90% of potassium in the soil exists in the form of insoluble rocks and silicate minerals. 150 potassium solubilizing bacterial (KSB) strains were isolated from rhizosphere soil using Aleksandrov medium containing insoluble mica powder. Ten efficient KSB strains were selected and quantification studies showed that higher K solubilization (50.6?mg L?1) was observed in the strain HMP27 followed by strain WHP47 (46.4?mg L?1) in liquid medium. Potassium solubilization by the bacterial strains is determined by measuring zone of clearance around the bacterial colony. This procedure requires 10–15?days incubation. Therefore, a simple, rapid, and user-friendly method has been developed for screening of potassium solubilizing bacteria using the bromothymol blue dye in modified Aleksandrov medium. Microorganisms possessing potassium solubilization property developed a clear zone around bacterial colony and changed the colour of dye from greenish blue to yellow after two days incubation. High-performance liquid chromatography analysis of the filtrates showed the presence of oxalic, tartaric, citric, and succinic acid, which could be responsible for solubilization of potassium. This method will allow researchers to readily isolate new potassium solubilizing strains adapted to specific environments.  相似文献   

11.
This study was undertaken to explore the role of Trichoderma sp. in phosphate (P) solubilization and antagonism against fungal phytopathogens. All fungal isolates (SE6, KT6, KT28, and BRT11) and a standard culture of T. harzianum (Th-std) were able to antagonize two fungal phytopathogens (Sclerotium rolfsii and Rhizoctonia solani) of chickpea (Cicer arietinum L.) wilt complex. Transmission electron microscopic studies (TEM) further confirmed ultra-cytological changes in the sclerotia of S. rolfsii parasitized by Trichoderma sp. All fungal cultures exhibited production of NH3 and siderophore, but only BRT11, SE6, and Th-std could produce HCN. Among all the cultures tested, isolate KT6 was found to be most effective for solubilization of ferric phosphate releasing 398.4 μg ml−1 phosphate while isolates BRT11 and SE6 showed more potential for tricalcium phosphate (TCP) solubilization releasing 449.05 and 412.64 μg ml−1 phosphate, respectively, in their culture filtrates. Part of this study focused on the influence of abiotic stress conditions such as pH, temperature, and heavy metal (cadmium) on phosphate (TCP) solubilizing efficiency. Two selected cultures KT6 and T. harzianum retained their P solubilizing potential at varying concentrations of cadmium (0–1000 μg ml−1). Isolate KT6 and standard culture of T. harzianum released 278.4 and 287.6 μg ml−1 phosphate, respectively, at 1000 μg ml−1cadmium. Maximum solubilization of TCP was obtained at alkaline pH and at 28°C temperature. Isolate BRT11 was found most alkalo-tolerant releasing 448.0 μg ml−1 phosphate at pH 9.  相似文献   

12.
Four strains (Enterobacter sp. EnHy-401, Arthrobacter sp.ArHy-505, Azotobacter sp.AzHy-510 and Enterobacter sp.EnHy-402) which have the ability to solubilize tricalcium phosphate (TCP) were used to study the mechanism of P-solubilization. It was found that three phosphate solubilizing bacteria (EnHy-401, ArHy-505 and AzHy-510) producing exopolysaccharide (EPS) have a stronger ability for P-solubilization than isolate EnHy-402 without EPS production, of those, the strain EnHy-401 with the highest EPS production and efficient organic acids on P-solubilization had a stronger capacity for P-solubilization than the others. Further studies demonstrated that addition of EPS into medium could increase the amount of phosphorus solubilized by organic acid, but failed to release phosphorus from TCP alone. The synergistic effects of EPS and organic acid on TCP solubilization varied with the origin and the concentration of EPS in medium. EPS produced by EnHy-401 was most effective in promoting phosphorus release at an optimal concentration in medium. The increase of P-solubilization brought by EPS attributed to the participation of EPS led to the change in homeostasis of P-solubilization, pushing it towards P dissolved by holding free phosphorus in the medium, consequently resulting in greater phosphorus released from insoluble phosphate. We therefore suggest that EPS with ability of phosphorus-holding may be a novel important factor in the microbial dissolution of TCP except for organic acid.  相似文献   

13.

A phosphate solubilizing bacterium ZB was isolated from the rhizosphere soil of Araucaria, which falls into the species Pantoea agglomerans. Optimization for phosphate solubilization by strain ZB was performed. At optimum culture conditions, the isolate showed great ability of solubilizing different insoluble inorganic phosphate sources viz. Ca3(PO4)2 (TCP), Hydroxyapatite (HP), CaHPO4, AlPO4, FePO4 along with rock phosphates (RPs). Inoculation with planktonic cells was found to enhance dissolved phosphorous as compared to that achieved by symplasma inoculation. Besides inoculation with different status of cells, pre-incubation could also exert a great effect on phosphate solubilization ability of P. agglomerans. When isolate ZB was cultured with glucose as carbon sources, phosphorous was more efficiently dissolved from HP and RP without pre-incubation in comparison to that obtained with pre-cultivation. Pre-cultivation, however, was more suitable for P solubilization than no pre-cultivation when bacteria were grown with xylose. A positive correlation was detected between the production of organic acids and phosphate solubilization. P. agglomerans ZB possessed many plant growth promotion traits such as N2 fixation and production of indole 3-acetic acid, phytase, alkaline phosphatase. Pot experiment showed inoculation with single isolate ZB or biofertilizer prepared from semi-solid fermentation of isolate ZB with spent mushroom substrate (SMS) compost could enhance plant growth with respect to number of leaves, plant leave area, stem diameter, root length, root dry mass, shoot dry mass and biomass when compared to the abiotic control, revealing strain ZB could be a promising environmental-friendly biofertilizer to apply for agricultural field.

  相似文献   

14.
The mineral phosphate solubilizing (MPS) ability of a Serratia marcescens strain, namely CTM 50650, isolated from the phosphate mine of Gafsa, was characterized on a chemically defined medium (NBRIP broth). Various insoluble inorganic phosphates, including rock phosphate (RP), calcium phosphate (CaHPO4), tri-calcium phosphate (Ca3(PO4)2) and hydroxyapatite were tested as sole sources of phosphate for bacterial growth. Solubilization of these phosphates by S. marcescens CTM 50650 was very efficient. Indeed, under optimal conditions, the soluble phosphorus (P) concentration it produced reached 967, 500, 595 and 326 mg/l from CaHPO4, Ca3(PO4)2, hydroxyapatite and RP, respectively. Study of the mechanisms involved in the MPS activity of CTM 50650, showed that phosphate solubilization was concomitant with significant drop in pH. HPLC-analysis of culture supernatants revealed the secretion of gluconic acid (GA) resulting from direct oxidation pathway of glucose when the CTM 50650 cells were grown on NBRIP containing glucose as unique carbon source. This was correlated with the simultaneous detection by PCR for the first time in a S. marcescens strain producing GA, of a gene encoding glucose dehydrogenase responsible for GA production, as well as the genes pqqA, B, C and E involved in biosynthesis of its PQQ cofactor. This study is expected to lead to the development of an environmental-friendly process for fertilizer production considering the capacity of S. marcescens CTM 50650 to achieve yields of P extraction up to 75% from the Gafsa RP.  相似文献   

15.
A pot experiment was conducted in the green house to investigate the establishment of phosphate solubilizing strains of Azotobacter chroococcum, including soil isolates and their mutants, in the rhizosphere and their effect on growth parameters and root biomass of three genetically divergent wheat cultivars (Triticum aestivum L.). Five fertilizer treatments were performed: Control, 90 kg N ha—1, 90 kg N + 60 kg P2O5 ha—1, 120 kg N ha—1 and 120 kg N + 60 kg P2O5 ha—1. Phosphate solubilizing and phytohormone producing parent soil isolates and mutant strains of A. chroococcum were isolated and selected by an enrichment method. In vitro phosphate solubilization and growth hormone production by mutant strains was increased compared with soil isolates. Seed inoculation of wheat varieties with P solubilizing and phytohormone producing A. chroococcum showed better response compared with controls. Mutant strains of A. chroococcum showed higher increase in grain (12.6%) and straw (11.4%) yield over control and their survival (12—14%) in the rhizosphere as compared to their parent soil isolate (P4). Mutant strain M37 performed better in all three varieties in terms of increase in grain yield (14.0%) and root biomass (11.4%) over control.  相似文献   

16.
Phosphate solubilizing yeast (PSY) were isolated from rhizosphere, non-rhizosphere and fruits from Bhavnagar district. The potential of 25 yeasts were analyzed on the basis of phosphate solubilizing zone to growth on solid medium denoted as solubilization index (SI) which ranged from 1.10 to 1.50. Among 25 yeast isolates, 6 yeast belonging to genus Saccharomyces (2), Hansenula, Klockera, Rhodotorula and Debaryomyces exhibited highest SI (1.33–1.50) were further examined for in vitro tricalcium phosphate (TCP) and low grade rock phosphate (RP) solubilization. TCP proved superior to RP with all the yeasts. Within low grade RPs tested, except isolate Y5, all isolates showed maximum solubilization with Hirapur RP (HRP) ranging from 7.24 to 19.30 mg% P2O5. Among six PSY screened, Debaryomyces hansenii showing maximal HRP solubilization was chosen for further physiological studies. Maximum HRP solubilization was expressed in following condition: pH optima 7.0, temperature optima 28°C and optimal period of incubation were 15 days. Acidic pH of the spent media was a constant feature in all the cases. No correlation could be established between final acidity produced by yeasts and the quantity of phosphate liberated.  相似文献   

17.
Aims: To study phosphate solubilization in Penicillium purpurogenum as function of medium pH, and carbon and nitrogen concentrations. Methods and Results: Tricalcium phosphate (CP) solubilization efficiency of P. purpurogenum was evaluated at acid or alkaline pH using different C and N sources. Glucose‐ and (NH4)2SO4‐based media showed the highest P solubilization values followed by fructose. P. purpurogenum solubilizing ability was higher in cultures grown at pH 6·5 than cultures at pH 8·5. Organic acids were detected in both alkaline and neutral media, but the relative percentages of each organic acid differed. Highest P release coincided with the highest organic acids production peak, especially gluconic acid. When P. purpurogenum grew in alkaline media, the nature and concentration of organic acids changed at different N and C concentrations. A factorial categorical experimental design showed that the highest P‐solubilizing activity, coinciding with the highest organic acid production, corresponded to the highest C concentration and lowest N concentration. Conclusions: The results described in the present study show that medium pH and carbon and nitrogen concentrations modulate the P solubilization efficiency of P. purpurogenum through the production of organic acids and particularly that of gluconic acid. In the P solubilization optimization studies, glucose and (NH4)2SO4 as C and N sources allowed a higher solubilization efficiency at high pH. Significance and Impact of the Study: This organism is a potentially proficient soil inoculant, especially in P‐poor alkaline soils where other P solubilizers fail to release soluble P. Further work is necessary to elucidate whether these results can be extrapolated to natural soil ecosystems, where different pH values are present. Penicillium purpurogenum could be used to develop a bioprocess for the manufacture of phosphatic fertilizer with phosphate calcium minerals.  相似文献   

18.
More than 90% of potassium (K) in soil exists in forms of insoluble silicate minerals and cannot be directly utilized by plants. K-solubilizing bacteria (KSB) can improve soil fertility and plant growth as biofertilizers by decomposing silicate minerals and releasing insoluble K into soluble forms. The objectives of this study were to isolate and characterize KSB from rape rhizospheric soil and to evaluate their effects on ryegrass growth. In this study, 16 cultivable potential KSB were isolated from rape rhizosphere at first. Then, quantitative analysis revealed that three KSB strains, named S-15, S-17 and S-18, showed the best K mineral solubilizing ability and they were identified as Mesorhizobium sp., Paenibacillus sp. and Arthrobacter sp. Inoculating the three strains into available K limit soil increased available K content significantly. The result of the pot experiment revealed that the three strains increased ryegrass growth vigor, biomass yield and K uptake to different degrees in available K deficient soil. S-17 showed the most pronounced ryegrass growth promotion ability. Further studies are required to determine the effects of the three KSB on mobilization of K-bearing minerals under field conditions.  相似文献   

19.
Abstract

Assessing the amount of released K from minerals in bacterial liquid culture is the main process for screening and isolation of efficient potassium releasing bacteria (KRB). This study was aimed to determine the amount of released K in solution phase or supernatant (SK) as well as microbial biomass K (MBK). Therefore, 20 different bacterial isolates belonging to the 10 bacterial genera (Beijerinckia, Klebsiella, Azotobacter, Pseudomonas, Agrobacterium, Rhizobium, Sphingomonas, Citrobacter, Microbacterium, and Achromobacter) were individually used to inoculate Aleksandrov medium in presence of biotite or muscovite. Our results from in-vitro experiments revealed that the MBK (K in pellet) is more important than in SK. Although some genera such as Azotobacter and Citrobacter released more SK (16?mg/l from biotite and 12.77?mg/l from muscovite, respectively), the Klebsiella isolates with the highest MBK could release an average of 90?mg/l total K. This study indicated that the assimilated K in microbial cells is the main part of K dissolution from minerals. Due to the fast turnover of nutrients in bacterial biomass, it can be concluded that both SK and MBK could be available for plants. It seems that the finding of this research should be considered in the isolation of KRB.

Highlights

  • This study reports, assessment of soluble and biomass K in the culture medium is a reliable tool for estimation of K releasing efficiency of bacteria

  • Our results from in vitro experiments revealed that the assimilated K in microbial cells is the main part of K dissolved from minerals.

  • Although some genera such as Azotobacter released more K in solution phase, the Klebsiella isolates with the highest biomass K could release more total K

  相似文献   

20.
Twenty-three bacterial isolates were screened for their mineral phosphate–solubilizing (MPS) ability on Pikovskaya and National Botanical Research Institute’s phosphate (NBRIP) agar. The majority of the isolates exhibited a strong ability to solubilize hydroxyapatite in both solid and liquid media. The solubilization in liquid medium corresponded with a decrease in the pH of the medium. Serratia marcescens GPS-5, known for its biocontrol of late leaf spot in groundnut, emerged as the best solubilizer. S. marcescens GPS-5 was subjected to ethyl methanesulfonate (EMS) mutagenesis, and a total of 1700 mutants, resulting after 45 minutes of exposure, were screened on buffered NBRIP medium for alterations in MPS ability compared with that of the wild type. Seven mutants with increased (increased-MPS mutants) and 6 mutants with decreased (decreased-MPS mutants) MPS ability were isolated. All seven increased-MPS mutants were efficient at solubilizing phosphate in both solid and liquid NBRIP medium. Among the increased-MPS mutants, EMS XVIII Sm-35 showed the maximum (40%) increase in the amount of phosphate released in liquid medium compared with wild-type S. marcescens GPS-5, therefore, it would be a useful microbial inoculant in groundnut cultivation. EMS III Sm W, a nonpigmented mutant, showed the lowest solubilization of phosphate among the 6 decreased-MPS mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号