首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thirty new Bdellovibrio strains were isolated from an agricultural soil and from the rhizosphere of plants grown in that soil. Using a combined molecular and culture-based approach, we found that the soil bdellovibrios included subpopulations of organisms that differed from rhizosphere bdellovibrios. Thirteen soil and seven common bean rhizosphere Bdellovibrio strains were isolated when Pseudomonas corrugata was used as prey; seven and two soil strains were isolated when Erwinia carotovora subsp. carotovora and Agrobacterium tumefaciens, respectively, were used as prey; and one tomato rhizosphere strain was isolated when A. tumefaciens was used as prey. In soil and in the rhizosphere, depending on the prey cells used, the concentrations of bdellovibrios were between 3 × 102 to 6 × 103 and 2.8 × 102 to 2.3 × 104 PFU g−1. A prey range analysis of five soil and rhizosphere Bdellovibrio isolates performed with 22 substrate species, most of which were plant-pathogenic and plant growth-enhancing bacteria, revealed unique utilization patterns and differences between closely related prey cells. An approximately 830-bp fragment of the 16S rRNA genes of all of the Bdellovibrio strains used was obtained by PCR amplification by using a Bdellovibrio-specific primer combination. Soil and common bean rhizosphere strains produced two and one restriction patterns for this PCR product, respectively. The 16S rRNA genes of three soil isolates and three root-associated isolates were sequenced. One soil isolate belonged to the Bdellovibrio stolpii-Bdellovibrio starrii clade, while all of the other isolates clustered with Bdellovibrio bacteriovorus and formed two distantly related, heterogeneous groups.  相似文献   

2.
Aims: To characterize freshwater Bdellovibrio‐and‐like organisms (BALO) isolated in China and examine their potential in controlling growth of Salmonella enterica ssp. enterica serovar Typhimurium on tilapia fillets. Methods and Results: Four BALO isolates were recovered from a pond in Yanzhou of Shandong province, China, with Salm. Typhimurium as prey using double‐layer agar method. Partial 16S rDNA sequencing analysis identified BD2GL, BD5GL and BDXGL as Bdellovibrio bacteriovorus and BD2GS as a Peredibacter sp. Lysis experiments on 32 potentially pathogenic strains revealed that BALO lysis rates are in the range of 56·3–65·6%. On the five Salmonella strains tested, only BD2GS achieved 100% lysis rate. When applied on tilapia fillets against Salm. Typhimurium, BD2GS showed its growth control potential. Cell increments of Salm. Typhimurium were significantly lower (P < 0·05) in two BD2GS‐treated groups compared to control and low‐dose group (BD2GS to prey ratio, 1 : 1) was more effective than high‐dose group (BD2GS to prey ratio, 10 : 1) in controlling Salm. Typhimurium growth. Conclusions: Results of this study indicated that BD2GS could control Salm. Typhimurium growth on tilapia fillets. Significance and Impact of the Study: BALO could be used as a live protective culture in controlling bacterial growth and ensure food safety.  相似文献   

3.
Bdellovibrio bacteriovorus, gen. et sp. n., a predatory and ectoparasitic microorganism with lytic activity against susceptible bacteria, is described, as are techniques for isolation and cultivation. These unusual bacteria cause reactions that are similar in their outward manifestations to bacteriophage-induced lysis. Upon plating a mixture of host bacteria and parasites, confluent lysis or single plaque formation occurs, just as in titration experiments with bacteriophage. However, the parasite plaques develop more slowly than phage plaques. Lysis of host bacteria in liquid culture is accompanied by a decrease in optical density; actually, a population of infected host bacteria is replaced by a population of the tiny parasite.Individual cells of the presently known strains ofBdellovibrio bacteriovorus are typically about 0.3 µ in width and, thus, are considerably narrower than ordinary bacteria. Therefore, they can pass Millipore filters of 0.45 µ pore size diameter. Their shape is often vibrio-like. They possess one unusually thick polar flagellum of about 50 mµ diameter, and they show a distinctive type of motility.The interaction betweenBdellovibrio and the attacked host bacterium can be followed in the phase-contrast microscope; it is characterized by a physical attack of the highly motile parasite, attachment to the bacterial cell surface, and lysis of the host cell.It has not yet been possible to cultivateBdellovibrio in its parasitic form on any artificial substrate. All parasitic strains require living host cells for their propagation. However, saprophytic mutants can be selected from a population of the parasite. These saprophytic derivatives are unable to lyse living bacteria as does the wild-type parasite. On the basis of morphological and physiological properties, a saprophyte strain which has been examined in some detail shows no close relationship to any of the already known categories of bacteria.A study of the kinetics of growth ofBdellovibrio in mixed culture with a susceptible host has disclosed that the number of parasites produced is not proportional to the number of host bacteria killed during the same period. After the majority of the host cells has been destroyed, there is still a considerable increase in parasites, indicating that they grow at the expense of material released from the lysed bacteria. Under the conditions of this trial, the generation time is about 100 minutes.All presently known isolates ofBdellovibrio possess lytic activity only against gram-negative bacteria. The individual strains, however, show certain differences in their host activity spectra; some have a restricted host range, while others are able to attack a broad spectrum of host bacteria.  相似文献   

4.
Bdellovibrio bacteriovorus HD100 is an obligate predator that invades and grows within the periplasm of Gram‐negative bacteria, including mcl‐polyhydroxyalkanoate (PHA) producers such as Pseudomonas putida. We investigated the impact of prey PHA content on the predator fitness and the potential advantages for preying on a PHA producer. Using a new procedure to control P. putida KT2442 cell size we demonstrated that the number of Bdellovibrio progeny depends on the prey biomass and not on the viable prey cell number or PHA content. The presence of mcl‐PHA hydrolysed products in the culture supernatant after predation on P. putida KT42Z, a PHA producing strain lacking PhaZ depolymerase, confirmed the ability of Bdellovibrio to degrade the prey's PHA. Predator motility was higher when growing on PHA accumulating prey. External addition of PHA polymer (latex suspension) to Bdellovibrio preying on the PHA minus mutant P. putida KT42C1 restored predator movement, suggesting that PHA is a key prey component to sustain predator swimming speed. High velocities observed in Bdellovibrio preying on the PHA producing strain were correlated to high intracellular ATP levels of the predator. These effects brought Bdellovibrio fitness benefits as predation on PHA producers was more efficient than predation on non‐producing bacteria.  相似文献   

5.
Thirty new Bdellovibrio strains were isolated from an agricultural soil and from the rhizosphere of plants grown in that soil. Using a combined molecular and culture-based approach, we found that the soil bdellovibrios included subpopulations of organisms that differed from rhizosphere bdellovibrios. Thirteen soil and seven common bean rhizosphere Bdellovibrio strains were isolated when Pseudomonas corrugata was used as prey; seven and two soil strains were isolated when Erwinia carotovora subsp. carotovora and Agrobacterium tumefaciens, respectively, were used as prey; and one tomato rhizosphere strain was isolated when A. tumefaciens was used as prey. In soil and in the rhizosphere, depending on the prey cells used, the concentrations of bdellovibrios were between 3 x 10(2) to 6 x 10(3) and 2.8 x 10(2) to 2.3 x 10(4) PFU g(-1). A prey range analysis of five soil and rhizosphere Bdellovibrio isolates performed with 22 substrate species, most of which were plant-pathogenic and plant growth-enhancing bacteria, revealed unique utilization patterns and differences between closely related prey cells. An approximately 830-bp fragment of the 16S rRNA genes of all of the Bdellovibrio strains used was obtained by PCR amplification by using a Bdellovibrio-specific primer combination. Soil and common bean rhizosphere strains produced two and one restriction patterns for this PCR product, respectively. The 16S rRNA genes of three soil isolates and three root-associated isolates were sequenced. One soil isolate belonged to the Bdellovibrio stolpii-Bdellovibrio starrii clade, while all of the other isolates clustered with Bdellovibrio bacteriovorus and formed two distantly related, heterogeneous groups.  相似文献   

6.
Differential Predation by Bdellovibrio bacteriovorus 109J   总被引:1,自引:0,他引:1  
Bdellovibrio bacteriovorus is a predatory bacterium that can replicate only inside Gram-negative bacteria. We incubated B. bacteriovorus 109J in a mixture of two prey cells present in equal numbers and enumerated prey cells after 3 h of predation. In multiple prey pairings, B. bacteriovorus preferentially lysed on one prey over the other. When prey were individually incubated with B. bacteriovorus, they were preyed on with different efficiencies. Three prey had only 5–8% of cells remaining after Bdellovibrio predation and the other three prey had 37–43% of cells remaining. Timing of attachment of B. bacteriovorus to prey cells also varied with Bdellovibrio attachment to more preferred prey occurring the fastest. These results suggest that B. bacteriovorus 109J does not randomly infect prey cells but infects and kills some prey more readily than others.  相似文献   

7.
Bacteriovorax marinus SJ is a predatory delta-proteobacterium isolated from a marine environment. The genome sequence of this strain provides an interesting contrast to that of the terrestrial predatory bacterium Bdellovibrio bacteriovorus HD100. Based on their predatory lifestyle, Bacteriovorax were originally designated as members of the genus Bdellovibrio but subsequently were re-assigned to a new genus and family based on genetic and phenotypic differences. B. marinus attaches to Gram-negative bacteria, penetrates through the cell wall to form a bdelloplast, in which it replicates, as shown using microscopy. Bacteriovorax is distinct, as it shares only 30% of its gene products with its closest sequenced relatives. Remarkably, 34% of predicted genes over 500 nt in length were completely unique with no significant matches in the databases. As expected, Bacteriovorax shares several characteristic loci with the other delta-proteobacteria. A geneset shared between Bacteriovorax and Bdellovibrio that is not conserved among other delta-proteobacteria such as Myxobacteria (which destroy prey bacteria externally via lysis), or the non-predatory Desulfo-bacteria and Geobacter species was identified. These 291 gene orthologues common to both Bacteriovorax and Bdellovibrio may be the key indicators of host-interaction predatory-specific processes required for prey entry. The locus from Bdellovibrio bacteriovorus is implicated in the switch from predatory to prey/host-independent growth. Although the locus is conserved in B. marinus, the sequence has only limited similarity. The results of this study advance understanding of both the similarities and differences between Bdellovibrio and Bacteriovorax and confirm the distant relationship between the two and their separation into different families.  相似文献   

8.
9.
Bdellovibrio bacteriovorus is a Gram-negative bacterium that is a pathogen of other Gram-negative bacteria, including many bacteria which are pathogens of humans, animals and plants. As such Bdellovibrio has potential as a biocontrol agent, or living antibiotic. B. bacteriovorus HD100 has a large genome and it is not yet known which of it encodes the molecular machinery and genetic control of predatory processes. We have tried to fill this knowledge-gap using mixtures of predator and prey mRNAs to monitor changes in Bdellovibrio gene expression at a timepoint of early-stage prey infection and prey killing in comparison to control cultures of predator and prey alone and also in comparison to Bdellovibrio growing axenically (in a prey-or host independent “HI” manner) on artificial media containing peptone and tryptone. From this we have highlighted genes of the early predatosome with predicted roles in prey killing and digestion and have gained insights into possible regulatory mechanisms as Bdellovibrio enter and establish within the prey bdelloplast. Approximately seven percent of all Bdellovibrio genes were significantly up-regulated at 30 minutes of infection- but not in HI growth- implicating the role of these genes in prey digestion. Five percent were down-regulated significantly, implicating their role in free-swimming, attack-phase physiology. This study gives the first post- genomic insight into the predatory process and reveals some of the important genes that Bdellovibrio expresses inside the prey bacterium during the initial attack.  相似文献   

10.
Bdellovibrio bacteriovorus is a small, gram-negative, motile bacterium that preys upon other gram-negative bacteria, including several known human pathogens. Its predation efficiency is usually studied in pure cultures containing solely B. bacteriovorus and a suitable prey. However, in natural environments, as well as in any possible biomedical uses as an antimicrobial, Bdellovibrio is predatory in the presence of diverse decoys, including live nonsusceptible bacteria, eukaryotic cells, and cell debris. Here we gathered and mathematically modeled data from three-member cultures containing predator, prey, and nonsusceptible bacterial decoys. Specifically, we studied the rate of predation of planktonic late-log-phase Escherichia coli S17-1 prey by B. bacteriovorus HD100, both in the presence and in the absence of Bacillus subtilis nonsporulating strain 671, which acted as a live bacterial decoy. Interestingly, we found that although addition of the live Bacillus decoy did decrease the rate of Bdellovibrio predation in liquid cultures, this addition also resulted in a partially compensatory enhancement of the availability of prey for predation. This effect resulted in a higher final yield of Bdellovibrio than would be predicted for a simple inert decoy. Our mathematical model accounts for both negative and positive effects of predator-prey-decoy interactions in the closed batch environment. In addition, it informs considerations for predator dosing in any future therapeutic applications and sheds some light on considerations for modeling the massively complex interactions of real mixed bacterial populations in nature.  相似文献   

11.
Bdellovibrio and like organisms (BALOs) are largely distributed in soils and in water bodies obligate predators of gram-negative bacteria that can affect bacterial communities. Potential applications of BALOs include biomass reduction, their use against pathogenic bacteria in agriculture, and in medicine as an alternative against antibiotic-resistant pathogens. Such different environments and uses mean that BALOs should be active under a range of viscosities. In this study, the predatory behaviour of two strains of the periplasmic predator B. bacteriovorus and of the epibiotic predator Micavibrio aeruginosavorus was examined in viscous polyvinylpyrrolidone (PVP) solutions at 28 and at 37°C, using fluorescent markers and plate counts to track predator growth and prey decay. We found that at high viscosities, although swimming speed was largely decreased, the three predators reduced prey to levels similar to those of non-viscous suspensions, albeit with short delays. Prey motility and clumping did not affect the outcome. Strikingly, under low initial predator concentrations, predation dynamics were faster with increasing viscosity, an effect that dissipated with increasing predator concentrations. Changes in swimming patterns and in futile predator–predator encounters with viscosity, as revealed by path analysis under changing viscosities, along with possible PVP-mediated crowding effects, may explain the observed phenomena.  相似文献   

12.
Characterization of Bdellovibrio- and like organisms (BALOs) from environmental samples involves growing them in the presence of Gram-negative prey bacteria and isolation of BALO plaques. This labor-intensive enrichment and isolation procedure may impede the detection and phylogenetic characterization of uncultivable BALOs. In this article, we describe a simple slide biofilm assay to improve detection and characterization of BALO microbiota. Agar spiked with biostimulants such as yeast extract (YE), casamino acids (CA), or concentrated cells of Vibrio parahaemolyticus P5 (most widely used prey bacteria for isolation of halophilic BALOs) was plated onto buffed glass slides and exposed to water samples collected from Apalachicola Bay, Florida. After incubating for a week, diversity of the biofilm bacterial community was studied by culture-dependent and culture-independent molecular methods. The results revealed that most probable numbers (MPNs) of BALOs and total culturable bacteria recovered from YE agar slide were significantly higher than the numbers on CA- or P5-spiked agar slides. Polymerase chain reaction–restriction fragment length polymorphism followed by 16S rDNA sequencing of clones from different biostimulants resulted in identification of a plethora of Gram-negative bacteria predominantly from the alpha, gamma, delta-proteobacteria, and the Cytophaga–Flavobacterium–Bacteroides group. Corresponding to the higher biomass on the YE agar slide, the BALO clone library from YE was most diverse, consisting of Bacteriovorax spp. and a novel clade representing Peredibacter spp. Microbiota from all three biostimulated biofilms were exclusively Gram-negative, and each bacterial guild represented potential prey for BALOs. We propose the use of this simple yet novel slide biofilm assay to study oligotrophic aquatic bacterial diversity which could also potentially be utilized to isolate marine bacteria with novel traits.  相似文献   

13.
Bdellovibrio and like organisms (BALOs) form the group of predatory bacteria which require Gram-negative bacteria as prey. Genetic studies with Bdellovibrio bacteriovorus can be performed with vectors which are introduced into the predator via conjugation. The usefulness of the two vectors pSUP202 and pSUP404.2 as genetic tools were assessed. Both vectors were transferable into B. bacteriovorus by conjugative matings with an Escherichia coli K12 strain as donor. The transfer frequency was higher for vector pSUP404.2 (approx. 10−1–10−4) as for pSUP202 (approx. 10−5–10−6). Vector pSUP202 with a pMB1 origin is unstable in the predatory bacterium, whereas pSUP404.2 is stably maintained in the absence of selective antibiotics. pSUP404.2 harbors two plasmid replicons, the p15A ori and the RSF1010 replication region The copy number of pSUP404.2 was determined by quantitative PCR in B. bacteriovorus and averages seven copies per genome. pSUP404.2 harbors two resistance genes (chloramphenicol and kanamycin) which can be used for cloning either by selection for transconjugants or by insertional inactivation.  相似文献   

14.
Elastase ofVibrio cholerae caused the lysis of freshly grown cells of Gram-negative (Pseudomonas aeruginosa, Proteus vulgaris, Salmonella paratyphi A andKlebsiella pneumoniae) bacteria. Gram-positive (Staphylococcus aureus andS. epidermidis) organisms were resistant to this enzyme. Heat killed and lyophilized Gram-positive and-negative bacteria (exceptS. aureus andS. epidermidis) showed higher sensitivity to elastase. Both Gram-negative and-positive bacteria were lyzed maximally by elastase at pH 8.0. At this pH, lytic activity of elastase was maximum in Tris-HCl and glycine-NaOH buffers followed by Tris-maleate and cacodylate buffers.  相似文献   

15.
Bdellovibrio and like organisms are obligate predators of bacteria that are ubiquitously found in the environment. Most exhibit a peculiar dimorphic life cycle during which free-swimming attack-phase (AP) cells search for and invade bacterial prey cells. The invader develops in the prey as a filamentous polynucleoid-containing cell that finally splits into progeny cells. Therapeutic and biocontrol applications of Bdellovibrio in human and animal health and plant health, respectively, have been proposed, but more knowledge of this peculiar cell cycle is needed to develop such applications. A proteomic approach was applied to study cell cycle-dependent expression of the Bdellovibrio bacteriovorus proteome in synchronous cultures of a facultative host-independent (HI) strain able to grow in the absence of prey. Results from two-dimensional gel electrophoresis, mass spectrometry, and temporal expression of selected genes in predicted operons were analyzed. In total, about 21% of the in silico predicted proteome was covered. One hundred ninety-six proteins were identified, including 63 hitherto unknown proteins and 140 life stage-dependent spots. Of those, 47 were differentially expressed, including chemotaxis, attachment, growth- and replication-related, cell wall, and regulatory proteins. Novel cell cycle-dependent adhesion, gliding, mechanosensing, signaling, and hydrolytic functions were assigned. The HI model was further studied by comparing HI and wild-type AP cells, revealing that proteins involved in DNA replication and signaling were deregulated in the former. A complementary analysis of the secreted proteome identified 59 polypeptides, including cell contact proteins and hydrolytic enzymes specific to predatory bacteria.  相似文献   

16.
Predation by Bdellovibrio-like organisms (BLOs) results in bacterial community succession in aquatic ecosystems. The effects of nutrient loading on the distribution and phylogeny of BLOs remain largely unknown. To this end, we present our findings on BLO diversity from four north-Indian lakes that are variable in their trophic status; Nainital is eutrophic, both, Bhimtal and Naukuchiatal are mesotrophic and Sattal remains oligotrophic, respectively. Initially, total heterotrophic bacteria and BLOs were quantified by most probable number (MPN) analyses using Pseudomonas putida and Escherichia coli as prey bacteria. Total bacterial numbers were at least two-logs higher in the eutrophic lake samples compared with oligotrophic lake. Similarly, BLO numbers were approximately 39-fold higher using Pseudomonas sp., which is likely the preferred prey within these lakes. Conversely, significant differences were not observed between mesotrophic and oligotrophic BLO numbers when E. coli was used as the prey. PCR-RFLP of small subunit rDNA (SSU rDNA) of BLOs, followed by cloning, sequencing, and taxonomic categorization revealed distinct differences such that, eutrophic lake consisted of higher BLO diversity compared with mesotrophic and oligotrophic lake, most likely due to both, higher numbers and availability of a diverse population of prey bacteria resulting from nutrient loading in this ecosystem.  相似文献   

17.

Background  

Typhoid and paratyphoid fever are endemic in China. The objective of this investigation was to determine the molecular features of nalidixic acid-resistant Salmonella enteric serovar Typhi (S. typhi) and Paratyphi (S. paratyphi) from blood isolates in Shenzhen, China.  相似文献   

18.
The Bdellovibrionaceae are predatory, intraperiplasmic bacteria that prey upon a variety of Gram-negative bacteria. The prey susceptibility pattern is frequently used to characterize new isolates. The objective in this study was to isolate and characterize predators from the Great Salt Lake (GSL) by prey susceptibility testing. To recover the predators, water samples were inoculated into an enrichment medium with Vibrio parahaemolyticus as prey. After several days of incubation, the predators were isolated, pure DNA was extracted, and partial 16S rDNA gene was sequenced. Water samples were also plated for isolation of heterotrophic bacteria. The susceptibility of bacterial isolates from the lake and other sources to each predator isolate was determined. The results revealed that there are predators in the GSL, and they preferentially prey on bacteria from the lake. This is the first report of the isolation of Bdellovibrionaceae from GSL and the predators showing preferences for bacteria from the same habitat.  相似文献   

19.
Polluted water samples collected from the River Tigris in the vicinity of a raw sewage outfall were examined for the incidence of antibiotic resistance among coli-form bacteria on three occasions during 1983. Eighty percent or more of the coli-form bacteria were resistant to one or more antibiotics. At the same time, raw sewage samples were examined for the incidence of antibiotic-resistant bacteria, and Escherchia coli, Pseudomonas spp. and Staphylococcus spp. were selected for sensitivity testing. Collectively, more than 90% of the 480 strains of the three organisms were resistant to one or more antibiotics. The minimal inhibitory concentration (MIC) of ampicillin for twenty-nine strains including coliforms, E. coli, Klebsiella sp., Serratia sp., Ps. aeruginosa, Pseudomonas sp., Micrococcus sp., Staph. aureus, Streptococcus faecalis and Bacillus sp. from raw sewage and polluted River Tigris water was determined and that for Ps. aeruginosa was 250 μg/ml. The high incidence of antibiotic-resistant bacteria in natural waters could be related to the widespread use of antibiotics in this locality.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号