首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Measurements of the net methane exchange over a range of forest, moorland, and agricultural soils in Scotland were made during the period April to June 1994 and 1995. Fluxes of CH4 ranged from oxidation –12.3 to an emission of 6.8 ng m–2 s–1. The balance between CH4 oxidation and emission depended on the physical conditions of the soil, primarily soil moisture. The largest oxidation rates were found in the mineral forest soils, and CH4 emission was observed in several peat soils. The smallest oxidation rate was observed in an agricultural soil. The relationship between CH4 flux and soil moisture observed in peats (FluxCH 4 = 0.023 × %H2O (dry weight) – 7.44, p > 0.05) was such that CH4 oxidation was observed at soil moistures less than 325%( ± 80%). CH4 emission was found at soil moistures exceeding this value. A large range of CH4 oxidation rates were observed over a small soil moisture range in the mineral soils. CH4 oxidation in mineral soils was negatively correlated with soil bulk density (FluxCH 4 = –37.35 × bulk density (g cm–3) + 48.83, p > 0.05). Increased nitrogen loading of the soil due to N fixation, atmospheric deposition of N, and fertilisation, were consistently associated with decreases in the soil sink for CH4, typically in the range 50 to 80%, on a range of soil types and land uses.  相似文献   

2.
土壤生物多样性与微量气体(CO2、CH4、N2O)代谢   总被引:12,自引:2,他引:12  
土壤生物是重要的基因库 ,土壤生物多样性是全球生物多样性的重要组成部分。土壤生物是C、N地球化学过程 (土壤库 )的驱动者 ,调控微量气体代谢。在微量气体代谢中 ,土壤微生物具有直接的作用。真菌、CH4 生成菌、CH4 氧化菌、硝化菌以及反硝化菌等是调控微量气体代谢的关键生态功能类群。由于相对大的体积和强大的酶化学分解作用 ,真菌通常主导枯枝落叶的分解活动。“通气—厌气”界面是微生物群落的活跃区域 ,易发生微量气体代谢。“有机—无机”过渡层、水生植物根际区、土壤动物肠道系统是典型的微量气体代谢界面。土壤动物对微量气体代谢的作用通常为前期的和间接的 ,并且又是重要的。节肢动物 (白蚁 )和环节动物 (蚯蚓 )是分别代谢CH4 和N2 O的两个关键性生态功能类群。在研究土壤生物多样性及其对微量气体代谢的作用方面 ,由于土壤生态系统的复杂性 ,需综合传统微生物实验技术与现代同位素技术和分子生物学技术。我国缺乏研究土壤生物多样性及其对微量气体代谢影响的实质性工作 ,有必要开展这方面的研究。  相似文献   

3.
森林土壤甲烷吸收的主控因子及其对增氮的响应研究进展   总被引:3,自引:0,他引:3  
森林土壤甲烷(CH4)吸收在生态系统碳、氮循环和碳平衡研究中具有重要作用。论述了森林土壤CH4的产生和消耗过程及其主控因子,有效氮不同的森林土壤CH4吸收对氮素输入的响应差异及其驱动机制,并且明确了现有研究的不足和未来研究的重点。研究表明:大气氮沉降输入倾向于抑制富氮森林土壤的CH4吸收,而对贫氮森林土壤CH4吸收具有显著的促进作用,其内在的氮素调控机制至今尚不明确。主要的原因是过去通过高剂量施氮试验所得出的理论难以准确地解释低水平氮沉降情景下森林土壤CH4吸收过程,有关森林土壤CH4吸收对大气氮沉降响应的微生物学机理也缺乏系统性研究。未来研究的重点是探讨森林土壤CH4物理扩散和净吸收过程对施氮类型、剂量的短期与长期响应,量化深层土壤CH4累积和消耗对表层土壤CH4吸收的贡献,揭示森林土壤CH4吸收对增氮响应的物理学与生物化学机制。另外,研究森林土壤甲烷氧化菌群落活性、结构对施氮类型和剂量的响应,阐明土壤CH4吸收与甲烷氧化菌群落组成的内在联系,有助于深入揭示森林土壤CH4吸收对增氮响应的微生物学机制。  相似文献   

4.
In rice microcosms (Oryza sativa, var. Roma, type japonica),CH4 emission, CH4 production, CH4oxidation and CH4 accumulation were measured over an entirevegetation period. Diffusive CH4 emission was measured inclosed chambers, CH4 production was measured in soil samples,CH4 oxidation was determined from the difference between oxicand anoxic emissions, and CH4 accumulation was measured byanalysis of porewater and gas bubbles. The sum of diffusiveCH4 emission, CH4 oxidation, andCH4 accumulation was only 60% of the cumulativeCH4 production. The two values diverged during the first 50days (vegetative phase) and then again during the last 50 days (latereproductive phase and senescence) of the 150 day vegetation period. Duringthe period of day 50–100 (early reproductive phase/flowering), theprocesses were balanced. Most likely, gas bubbles and diffusion limitationare responsible for the divergence in the early and late phases. The effectof rice on CH4 production rates and CH4concentrations was studied by measuring these processes also in unplantedmicrocosms. Presence of rice plants lowered the CH4concentrations, but had no net effect on the CH4 productionrates.  相似文献   

5.
Bioenergy with carbon capture and storage (BECCS) is recognized as a potential negative emission technology, needed to keep global warming within safe limits. With current technologies, large-scale implementation of BECCS would compromise food production. Bioenergy derived from phototrophic microorganisms, with direct capture of CO2 from air, could overcome this challenge and become a sustainable way to realize BECCS. Here we present an alkaline capture and conversion system that combines high atmospheric CO2 transfer rates with high and robust phototrophic biomass productivity (15.2 ± 1.0 g/m 2/d). The system is based on a cyanobacterial consortium, that grows at high alkalinity (0.5 mol/L) and a pH swing between 10.4 and 11.2 during growth and harvest cycles.  相似文献   

6.
We studied the distribution of dissolved O2, CO2, CH4, and N2O in a coastal swamp system in Thailand with the goal to characterize the dynamics of these gases within the system. The gas concentrations varied spatially and seasonally in both surface and ground waters. The entire system was a strong sourcefor CO2 and CH4, and a possible sink for atmospheric N2O. Seasonal variation in precipitation primarily regulated the redox conditions in the system. However, distributions of CO2, CH4, and N2O in the river that received swamp waters were not always in agreement with redox conditions indicated by dissolvedO2 concentrations. Sulfate production through pyriteoxidation occurred in the swamp with thin peat layerunder aerobic conditions and was reflected by elevatedSO 4 2– /Cl in the river water. When SO 4 2– /Cl was high, CO2 and CH4 concentrations decreased, whereas the N2O concentration increased. The excess SO 4 2– in the river water was thus identified as a potential indicator for gas dynamics in this coastal swamp system.  相似文献   

7.
Ineson  P.  Coward  P.A.  Hartwig  U.A. 《Plant and Soil》1998,198(1):89-95
Fluxes of nitrous oxide, methane and carbon dioxide were measured from soils under ambient (350 µL L-1) and enhanced (600 µL L-1) carbon dioxide partial pressures (pCO2) at the Free Air Carbon Dioxide Enrichment (FACE) experiment, Eidgenössische Technische Hochschule (ETH), Eschikon, Switzerland in July 1995, using a GC housed in a mobile laboratory. Measurements were made in plots of Lolium perenne maintained under high N input. During the data collection period N fertiliser was applied at a rate of 14 g m-2 of N. Elevated pCO2 appeared to result in an increased (27%) output of N2O, thought to be the consequence of enhanced root-derived available soil C, acting as an energy source for denitrification. The climate, agricultural practices and soils at the FACE experiment combined to give rise to some of the largest N2O emissions recorded for any terrestrial ecosystem. The amount of CO2–C being lost from the control plot was higher (10%) than for the enhanced CO2 plot, and is the reverse of that predicted. The control plot oxidised consistently more CH4 than the enhanced plot, oxidising 25.5 ± 0.8 µg m-2 hr-1 of CH4 for the control plot, with an average of 8.5 ± 0.4 µg m-2 hr-1 of CH4 for the enhanced CO2 plot. This suggests that elevated pCO2 may lead to a feedback whereby less CH4 is removed from the atmosphere. Despite the limited nature of the current study (in time and space), the observations made here on the interactions of elevated pCO2 and soil trace gas release suggest that significant interactions are occurring. The feedbacks involved could have importance at the global scale.  相似文献   

8.
A closed‐dynamic‐chamber system (CDCS) was used to measure the spatial and seasonal variability of the soil CO2 efflux (Fs) in beech and in Douglas fir patches of the Vielsalm forest (Belgium). First the difference between natural and measured soil CO2 efflux induced by the presence of the CDCS was studied. The impact on the measurements of the pressure difference between the outside (natural condition) and the inside of the chamber was found to be small (0.4%). The influence of wind disturbance in the closed chamber was tested by comparison with an open‐chamber system characterized by a different wind distribution. A very good correlation between the two systems was found (r2 = 0.99) but the open system yielded slightly lower fluxes than the closed one (slope = 0.88 ± 0.05). A measurement procedure has been developed to minimize the effect of the other sources of perturbation. The spatial and seasonal evolution of the soil CO2 efflux was obtained by performing regular measurements on 29 spots in the beech patch over a period of 12 months and on 24 spots in the Douglas fir patch over 8 months. For each spot, the experimental relationship between Fs and soil temperature was compared with the fitted line for an Arrhenius relationship with a soil temperature‐dependent activation energy. Soil temperature explains 73% of the seasonal variation for all the data. The spatial average of the soil CO2 efflux at 10 °C (Fs10) in the beech patch is 2.57 ± 0.41 μmol m?2 s?1, approximately twice the average in the Douglas fir patch recorded at 1.42 ± 0.22 μmol m?2 s?1. The litter fall analysis seems to indicate that soil organic matter quality and quantity may be one the reasons for this difference. Finally the annual soil CO2 efflux was calculated for the beech and Douglas fir patches (870 ± 140 and 438 ± 68 gC m?2 y?1, respectively). The beech value would represent 92 ± 15% of the annual ecosystem respiration estimated from the eddy covariance measurements.  相似文献   

9.
Microbial methane oxidation is a key process in the global methane cycle. In the context of global warming, it is important to understand the responses of the methane-oxidizing microbial community to temperature changes in terms of community structure and activity. We studied microbial methane oxidation in a laboratory-column system in which a diffusive CH4/O2 counter gradient was maintained in an unsaturated porous medium at temperatures between 4 and 20 °C. Methane oxidation was highly efficient at all temperatures, as on average 99 ± 0.5% of methane supplied to the system was oxidized. The methanotrophic community that established in the model system after initial inoculation appeared to be able to adapt quickly to different temperatures, as methane emissions remained low even after the system was subjected to abrupt temperature changes. FISH showed that Type I as well as Type II methanotrophs were probably responsible for the observed activity in the column system, with a dominance of Type I methanotrophs. Cloning and sequencing suggested that Type I methanotrophs were represented by the genus Methylobacter while Type II were represented by Methylocystis . The results suggest that in an unsaturated system with diffusive substrate supply, direct effects of temperature on apparent methanotrophic activity and community may be of minor importance. However, this remains to be verified in the field.  相似文献   

10.
Low seawater pH can be harmful to many calcifying marine organisms, but the calcifying macroalgae Padina spp. flourish at natural submarine carbon dioxide seeps where seawater pH is low. We show that the microenvironment created by the rolled thallus margin of Padina australis facilitates supersaturation of CaCO3 and calcifi‐cation via photosynthesis‐induced elevated pH. Using microsensors to investigate oxygen and pH dynamics in the microenvironment of P. australis at a shallow CO2 seep, we found that, under saturating light, the pH inside the microenvironment (pHME) was higher than the external seawater (pHSW) at all pHSW levels investigated, and the difference (i.e., pHME ? pHSW) increased with decreasing pHSW (0.9 units at pHSW 7.0). Gross photosynthesis (Pg) inside the microenvironment increased with decreasing pHSW, but algae from the control site reached a threshold at pH 6.5. Seep algae showed no pH threshold with respect to Pg within the pHSW range investigated. The external carbonic anhydrase (CA) inhibitor, acetazolamide, strongly inhibited Pg of P. australis at pHSW 8.2, but the effect was diminished under low pHSW (6.4–7.5), suggesting a greater dependence on membrane‐bound CA for the dehydration of HCO3? ions during dissolved inorganic carbon uptake at the higher pHSW. In comparison, a calcifying green alga, Halimeda cuneata f. digitata, was not inhibited by AZ, suggesting efficient bicarbonate transport. The ability of P. australis to elevate pHME at the site of calcification and its strong dependence on CA may explain why it can thrive at low pHSW.  相似文献   

11.
The mineralization of organic carbon to CH4 and CO2 inSphagnum-derived peat from Big Run Bog, West Virginia, was measured at 4 times in the year (February, May, September, and November) using anaerobic, peat-slurry incubations. Rates of both CH4 production and CO2 production changed seasonally in surface peat (0–25 cm depth), but were the same on each collection date in deep peat (30–45 cm depth). Methane production in surface peat ranged from 0.2 to 18.8 mol mol(C)–1 hr–1 (or 0.07 to 10.4 g(CH4) g–1 hr–1) between the February and September collections, respectively, and was approximately 1 mol mol(C)–1 hr–1 in deep peat. Carbon dioxide production in surface peat ranged from 3.2 to 20 mol mol(C)–1 hr–1 (or 4.8 to 30.3 g(CO2) g–1 hr–1) between the February and September collections, respectively, and was about 4 mol mol(C)–1 hr–1 in deep peat. In surface peat, temperature the master variable controlling the seasonal pattern in CO2 production, but the rate of CH4 production still had the lowest values in the February collection even when the peat was incubated at 19°C. The addition of glucose, acetate, and H2 to the peat-slurry did not stimulate CH4 production in surface peat, indicating that CH4 production in the winter was limited by factors other than glucose degradation products. The low rate of carbon mineralization in deep peat was due, in part, to poor chemical quality of the peat, because adding glucose and hydrogen directly stimulated CH4 production, and CO2 production to a lesser extent. Acetate was utilized in the peat by methanogens, but became a toxin at low pH values. The addition of SO4 2– to the peat-slurry inhibited CH4 production in surface peat, as expected, but surprisingly increased carbon mineralization through CH4 production in deep peat. Carbon mineralization under anaerobic conditions is of sufficient magnitude to have a major influence on peat accumulation and helps to explain the thin (< 2 m deep), old (> 13,000 yr) peat deposit found in Big Run Bog.  相似文献   

12.
应用遥感技术评估了印度北部Pali Gad山地流域过去几十年里土地利用/土地覆盖变化及其造成的土壤侵蚀程度,并基于摩根参数模型(Morgan Parametric Model)的方法来测定土壤的侵蚀程度;结果表明,由于不同的坡向受到太阳光照的不同可以引起土地覆盖的变迁;海拔和坡度已不再是阻碍人们获取自然资源的因素,人们的活动范围正转移到更高的海拔和更陡峭的坡度;揭示了土地利用/土地覆盖变化对土壤侵蚀进程有着直接的影响。  相似文献   

13.
The effects of elevated concentrations of atmospheric CO2 on CH4 and N2O emissions from rice soil were investigated in controlled-environment chambers using rice plants growing in pots. Elevated CO2 significantly increased CH4 emission by 58% compared with ambient CO2. The CH4 emitted by plant-mediated transport and ebullition–diffusion accounted for 86.7 and 13.3% of total emissions during the flooding period under ambient level, respectively; and for 88.1 and 11.9% of total emissions during the flooding period under elevated CO2 level, respectively. No CH4 was emitted from plant-free pots, suggesting that the main source of emitted CH4 was root exudates or autolysis products. Most N2O was emitted during the first 3 weeks after flooding and rice transplanting, probably through denitrification of NO3 contained in the experimental soil, and was not affected by the CO2 concentration. Pre-harvest drainage suppressed CH4 emission but did not cause much N2O emission (< 10 μg N m−2 h−1) from the rice-plant pots at both CO2 concentrations.  相似文献   

14.
The projected increase in global mean temperature could accelerate the turnover of soil organic matter (SOM). Enhanced soil CO2 emissions could feedback on the climate system, depending on the balance between the sensitivity to temperature of net carbon fixation by vegetation and SOM decomposition. Most of the SOM is stabilised by several physico-chemical mechanisms within the soil architecture, but the response of this quantitatively important fraction to increasing temperature is largely unknown. The aim of this study was to relate the temperature sensitivity of decomposition of physical and chemical soil fractions (size fractions, hydrolysis residues), and of bulk soil, to their quality and turnover time. Soil samples were taken from arable and grassland soils from the Swiss Central Plateau, and CO2 production was measured under strictly controlled conditions at 5, 15, 25, and 35 °C by using sequential incubation. Physico-chemical properties of the samples were characterised by measuring elemental composition, surface area, 14C age, and by using DRIFT spectroscopy. CO2 production rates per unit (g) organic carbon (OC) strongly varied between samples, in relation to the difference in the biochemical quality of the substrates. The temperature response of all samples was exponential up to 25 °C, with the largest variability at lower temperatures. Q10 values were negatively related to CO2 production over the whole temperature range, indicating higher temperature sensitivity of SOM of lower quality. In particular, hydrolysis residues, representing a more stabilised SOM pool containing older C, produced less CO2 g−1 OC than non-hydrolysed fractions or bulk samples at lower temperatures, but similar rates at ≥25 °C, leading to higher Q10 values than in other samples. Based on these results and provided that they apply also to other soils it is suggested that because of the higher sensitivity of passive SOM the overall response of SOM to increasing temperatures might be higher than previously expected from SOM models. Finally, surface area measurements revealed that micro-aggregation rather than organo-mineral association mainly contributes to the longer turnover time of SOM isolated by acid hydrolysis.  相似文献   

15.
Field studies of atmospheric CO2 effects on ecosystems usually include few levels of CO2 and a single soil type, making it difficult to ascertain the shape of responses to increasing CO2 or to generalize across soil types. The Lysimeter CO2 Gradient (LYCOG) chambers were constructed to maintain a linear gradient of atmospheric CO2 (~250 to 500 μl l−1) on grassland vegetation established on intact soil monoliths from three soil series. The chambers maintained a linear daytime CO2 gradient from 263 μl l−1 at the subambient end of the gradient to 502 μl l−1 at the superambient end, as well as a linear nighttime CO2 gradient. Temperature variation within the chambers affected aboveground biomass and evapotranspiration, but the effects of temperature were small compared to the expected effects of CO2. Aboveground biomass on Austin soils was 40% less than on Bastrop and Houston soils. Biomass differences between soils resulted from variation in biomass of Sorghastrum nutans, Bouteloua curtipendula, Schizachyrium scoparium (C4 grasses), and Solidago canadensis (C3 forb), suggesting the CO2 sensitivity of these species may differ among soils. Evapotranspiration did not differ among the soils, but the CO2 sensitivity of leaf-level photosynthesis and water use efficiency in S. canadensis was greater on Houston and Bastrop than on Austin soils, whereas the CO2 sensitivity of soil CO2 efflux was greater on Bastrop soils than on Austin or Houston soils. The effects of soil type on CO2 sensitivity may be smaller for some processes that are tightly coupled to microclimate. LYCOG is useful for discerning the effects of soil type on the CO2 sensitivity of ecosystem function in grasslands. Author Contributions: PF conceived study, analyzed data, and wrote the paper. AK, AP analyzed data. DH, VJ, RJ, HJ, and WP conceived study, and conducted research.  相似文献   

16.
1 In a glasshouse experiment we studied the effect of raised CO2 concentration (720 p.p.m.) on CH4 emission at natural boreal peat temperatures using intact cores of boreal peat with living vascular plants and Sphagnum mosses. After the end of the growing season half of the cores were kept unnaturally warm (17–20 °C). The potential for CH4 production and oxidation was measured at the end of the emission experiment.
2 The vascular cores ('Sedge') consisted of a moss layer with sedges, and the moss cores (' Sphagnum ') of Sphagnum mosses (some sedge seedlings were removed by cutting). Methane efflux was 6–12 times higher from the Sedge cores than from the Sphagnum cores. The release of CH 4 from Sedge cores increased with increasing temperature of the peat and decreased with decreasing temperature. Methane efflux from Sphagnum cores was quite stable independent of the peat temperatures.
3 In both Sedge and Sphagnum samples, CO2 treatment doubled the potential CH4 production but had no effect on the potential CH4 oxidation. A raised concentration of CO2 increased CH4 efflux weakly and only at the highest peat temperatures (17–20 °C).
4 The results suggest that in cool regions, such as boreal wetlands, temperature would restrict decomposition of the extra substrates probably derived from enhanced primary production of mire vegetation under raised CO2 concentrations, and would thus retard any consequent increase in CH4 emission.  相似文献   

17.
Conversion of tropical rainforests to pastures and plantations is associated with changes in soil properties and biogeochemical cycling, with implications for carbon cycling and trace gas fluxes. The stable isotopic composition of ecosystem respiration (δ13CR and δ18OR) is used in inversion models to quantify regional patterns of CO2 sources and sinks, but models are limited by sparse measurements in tropical regions. We measured soil respiration rates, concentrations of CO2, CH4, CO, N2O and H2 and the isotopic composition of CO2, CH4 and H2 at four heights in the nocturnal boundary layer (NBL) above three common land‐use types in central Panama, during dry and rainy seasons. Soil respiration rates were lowest in Plantation (average 3.4 μmol m?2 s?1), highest in Pasture (8.3 μmol m?2 s?1) and intermediate in Rainforest (5.2 μmol m?2 s?1). δ13CR closely reflected land use and increased during the dry season where C3 vegetation was present. δ18OR did not differ by land use but was lower during the rainy than the dry season. CO2 was correlated with other species in approximately half of the NBL profiles, allowing us to estimate trace gas fluxes that were generally within the range of literature values. The Rainforest soil was a sink for CH4 but emissions were observed in Pasture and Plantation, especially during the wet season. N2O emissions were higher in Pasture and Plantation than Rainforest, contrary to expectations. Soil H2 uptake was highest in Rainforest and was not observable in Pasture and Plantation during the wet season. We observed soil CO uptake during the dry season and emissions during the wet season across land‐use types. This study demonstrated that strong impacts of land‐use change on soil–atmosphere trace gas exchange can be detected in the NBL, and provides useful observational constraints for top‐down and bottom‐up biogeochemistry models.  相似文献   

18.
19.
Fluxes of CO2 and N2O were measured from both natural and experimentally augmented snowpacks during the winters of 1993 and 1994 on Niwot Ridge in the Colorado Front Range. Consistent snow cover insulated the soil surface from extreme air temperatures and allowed heterotrophic activity to continue through much of the winter. In contrast, soil remained frozen at sites with inconsistent snow cover and production did not begin until snowmelt. Fluxes were measured when soil temperatures under the snow ranged from –5°C to 0°C, but there was no significant relationship between flux for either gas and temperature within this range. While early developing snowpacks resulted in warmer minimum soil temperatures allowing production to continue for most of the winter, the highest CO2 fluxes were recorded at sites which experienced a hard freeze before a consistent snowpack developed. Consequently, the seasonal flux of CO2 C from snow covered soils was related both to the severity of freeze and the duration of snow cover. Over-winter CO2 C loss ranged from 0.3 g C m−2 season−1 at sites characterized by inconsistent snow cover to 25.7 g C m−2 season−1 at sites that experienced a hard freeze followed by an extended period of snow cover. In contrast to the pattern observed with C loss, a hard freeze early in the winter did not result in greater N2ON loss. Both mean daily N2O fluxes and the total over-winter N2ON loss were related to the length of time soils were covered by a consistent snowpack. Over-winter N2ON loss ranged from less 0.23 mg N m−2 from the latest developing, short duration snowpacks to 16.90 mg N m−2 from sites with early snow cover. These data suggest that over-winter heterotrophic activity in snow-covered soil has the potential to mineralize from less than 1% to greater than 25% of the carbon fixed in ANPP, while over-winter N2O fluxes range from less than half to an order of magnitude higher than growing season fluxes. The variability in these fluxes suggests that small changes in climate which affect the timing of seasonal snow cover may have a large effect on C and N cycling in these environments. Received: 5 April 1996 / Accepted: 25 November 1996  相似文献   

20.
To evaluate the impact of N placement depth and no-till (NT) practice on the emissions of NO, N2O, CH4 and CO2 from soils, we conducted two N placement experiments in a long-term tillage experiment site in northeastern Colorado in 2004. Trace gas flux measurements were made 2–3 times per week, in zero-N fertilizer plots that were cropped continuously to corn (Zea mays L.) under conventional-till (CT) and NT. Three N placement depths, replicated four times (5, 10 and 15 cm in Exp. 1 and 0, 5 and 10 cm in Exp. 2, respectively) were used. Liquid urea–ammonium nitrate (UAN, 224 kg N ha−1) was injected to the desired depth in the CT- or NT-soils in each experiment. Mean flux rates of NO, N2O, CH4 and CO2 ranged from 3.9 to 5.2 μg N m−2 h−1, 60.5 to 92.4 μg N m−2 h−1, −0.8 to 0.5 μg C m−2 h−1, and 42.1 to 81.7 mg C m−2 h−1 in both experiments, respectively. Deep N placement (10 and 15 cm) resulted in lower NO and N2O emissions compared with shallow N placement (0 and 5 cm) while CH4 and CO2 emissions were not affected by N placement in either experiment. Compared with N placement at 5 cm, for instance, averaged N2O emissions from N placement at 10 cm were reduced by more than 50% in both experiments. Generally, NT decreased NO emission and CH4 oxidation but increased N2O emissions compared with CT irrespective of N placement depths. Total net global warming potential (GWP) for N2O, CH4 and CO2 was reduced by deep N placement only in Exp. 1 but was increased by NT in both experiments. The study results suggest that deep N placement (e.g., 10 cm) will be an effective option for reducing N oxide emissions and GWP from both fertilized CT- and NT-soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号