首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of protein kinase B (PKB) by growth factors and hormones has been demonstrated to proceed via phosphatidylinositol 3-kinase (PI3-kinase). In this report, we show that PKB can also be activated by PKA (cyclic AMP [cAMP]-dependent protein kinase) through a PI3-kinase-independent pathway. Although this activation required phosphorylation of PKB, PKB is not likely to be a physiological substrate of PKA since a mutation in the sole PKA consensus phosphorylation site of PKB did not abolish PKA-induced activation of PKB. In addition, mechanistically, this activation was different from that of growth factors since it did not require phosphorylation of the S473 residue, which is essential for full PKB activation induced by insulin. These data were supported by the fact that mutation of residue S473 of PKB to alanine did not prevent it from being activated by forskolin. Moreover, phosphopeptide maps of overexpressed PKB from COS cells showed differences between insulin- and forskolin-stimulated cells that pointed to distinct activation mechanisms of PKB depending on whether insulin or cAMP was used. We looked at events downstream of PKB and found that PKA activation of PKB led to the phosphorylation and inhibition of glycogen synthase kinase-3 (GSK-3) activity, a known in vivo substrate of PKB. Overexpression of a dominant negative PKB led to the loss of inhibition of GSK-3 in both insulin- and forskolin-treated cells, demonstrating that PKB was responsible for this inhibition in both cases. Finally, we show by confocal microscopy that forskolin, similar to insulin, was able to induce translocation of PKB to the plasma membrane. This process was inhibited by high concentrations of wortmannin (300 nM), suggesting that forskolin-induced PKB movement may require phospholipids, which are probably not generated by class I or class III PI3-kinase. However, high concentrations of wortmannin did not abolish PKB activation, which demonstrates that translocation per se is not important for PKA-induced PKB activation.  相似文献   

2.
Recent studies indicate that phosphatidylinositide-3OH kinase (PI3K)-induced S6 kinase (S6K1) activation is mediated by protein kinase B (PKB). Support for this hypothesis has largely relied on results obtained with highly active, constitutively membrane-localized alleles of wild-type PKB, whose activity is independent of PI3K. Here we set out to examine the importance of PKB signaling in S6K1 activation. In parallel, glycogen synthase kinase 3beta (GSK-3beta) inactivation and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) phosphorylation were monitored as markers of the rapamycin-insensitive and -sensitive branches of the PI3K signaling pathway, respectively. The results demonstrate that two activated PKBalpha mutants, whose basal activity is equivalent to that of insulin-induced wild-type PKB, inhibit GSK-3beta to the same extent as a highly active, constitutively membrane-targeted wild-type PKB allele. However, of these two mutants, only the constitutively membrane-targeted allele of PKB induces S6K1 activation. Furthermore, an interfering mutant of PKB, which blocks insulin-induced PKB activation and GSK-3beta inactivation, has no effect on S6K1 activation. Surprisingly, all the activated PKB mutants, regardless of constitutive membrane localization, induce 4E-BP1 phosphorylation and the interfering PKB mutant blocks insulin-induced 4E-BP1 phosphorylation. The results demonstrate that PKB mediates S6K1 activation only as a function of constitutive membrane localization, whereas the activation of PKB appears both necessary and sufficient to induce 4E-BP1 phosphorylation independently of its intracellular location.  相似文献   

3.
Overexpression of the growth factor receptor subunit c-erbB2, leading to its ligand-independent homodimerization and activation, has been implicated in the pathogenesis of mammary carcinoma. Here, we have examined the effects of c-erbB2 on the adhesive properties of a mammary epithelial cell line, HB2/tnz34, in which c-erbB2 homodimerization can be induced by means of a transfected hybrid "trk-neu" construct. trk-neu consists of the extracellular domain of the trkA nerve growth factor (NGF) receptor fused to the transmembrane and cytoplasmic domains of c-erbB2, allowing NGF-induced c-erbB2 homodimer signaling. Both spreading and adhesion on collagen surfaces were impaired on c-erbB2 activation in HB2/tnz34 cells. Antibody-mediated stimulation of alpha(2)beta(1) integrin function restored adhesion, suggesting a direct role for c-erbB2 in integrin inactivation. Using pharmacological inhibitors and transient transfections, we identified signaling pathways required for suppression of integrin function by c-erbB2. Among these was the MEK-ERK pathway, previously implicated in integrin inactivation. However, we could also show that downstream of phosphoinositide-3-kinase (PI3K), protein kinase B (PKB) acted as a previously unknown, potent inhibitor of integrin function and mediator of the disruptive effects of c-erbB2 on adhesion and morphogenesis. The integrin-linked kinase, previously identified as a PKB coactivator, was also found to be required for integrin inactivation by c-erbB2. In addition, the PI3K-dependent mTOR/S6 kinase pathway was shown to mediate c-erbB2-induced inhibition of adhesion (but not spreading) independently of PKB. Overexpression of MEK1 or PKB suppressed adhesion without requirement for c-erbB2 activation, suggesting that these two pathways partake in integrin inhibition by targeting common downstream effectors. These results demonstrate a major novel role for PI3K and PKB in regulation of integrin function.  相似文献   

4.
5.
Shaw M  Cohen P 《FEBS letters》1999,461(1-2):120-124
Epidermal growth factor (EGF), insulin-like growth factor 1 (IGF1) and phorbol myristate acetate (PMA) induce the inhibition of glycogen synthase kinase 3 (GSK3) by stimulating the phosphorylation of an N-terminal serine. Here, we show that protein kinase B (PKB) plays a key role in mediating EGF-induced inhibition of GSK3alpha and that the classical MAP kinase (MAPK) cascade has two functions in this process. Firstly, it makes a transient contribution to EGF-induced inhibition of GSK3alpha. Secondly, it shortens the duration of PKB activation and GSK3alpha inhibition. In contrast, PKB alone mediates the IGF1-induced inhibition of GSK3alpha, while the MAPK cascade mediates the inhibition of GSK3alpha by PMA.  相似文献   

6.
7.
8.
Pyridinyl imidazole inhibitors, particularly SB203580, have been widely used to elucidate the roles of p38 mitogen-activated protein (MAP) kinase (p38/HOG/SAPKII) in a wide array of biological systems. Studies by this group and others have shown that SB203580 can have antiproliferative activity on cytokine-activated lymphocytes. However, we recently reported that the antiproliferative effects of SB203580 were unrelated to p38 MAP kinase activity. This present study now shows that SB203580 can inhibit the key cell cycle event of retinoblastoma protein phosphorylation in interleukin-2-stimulated T cells. Studies on the proximal regulator of this event, the phosphatidylinositol 3-kinase/protein kinase B (PKB)(Akt/Rac) kinase pathway, showed that SB203580 blocked the phosphorylation and activation of PKB by inhibiting the PKB kinase, phosphoinositide-dependent protein kinase 1. The concentrations of SB203580 required to block PKB phosphorylation (IC(50) 3-5 microM) are only approximately 10-fold higher than those required to inhibit p38 MAP kinase (IC(50) 0.3-0.5 microM). These data define a new activity for this drug and would suggest that extreme caution should be taken when interpreting data where SB203580 has been used at concentrations above 1-2 microM.  相似文献   

9.
10.
11.
12.
13.
It is known that amphibian oocytes undergo maturation through the formation and activation of maturation-promoting factor (MPF) in response to stimulation by the maturation-inducing hormone progesterone; however, the signal transduction pathway that links the hormonal stimulation on the oocyte surface to the activation of MPF in the oocyte cytoplasm remains a mystery. The aim of this study was to investigate whether the signal transduction mediated by phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB), and glycogen synthase kinase 3beta (GSK3beta) is involved in progesterone-induced oocyte maturation in the Japanese brown frog, Rana japonica. Inhibitors of PI3K, wortmannin and LY294002, inhibited progesterone-stimulated germinal vesicle breakdown (GVBD) only when the oocytes were treated at the initial phase of maturation, suggesting that PI3K is involved in the progesterone-induced maturation of Rana oocytes. However, we also obtained results suggesting that PKB and GSK3beta are not involved in Rana oocyte maturation. A constitutively active PKB expressed in the oocytes failed to induce GVBD in the absence of progesterone despite its high level of kinase activity. A Myc-tagged PKB expressed in the oocytes (used to monitor endogenous PKB activity) was not activated in the process of progesterone-induced oocyte maturation. Overexpression of GSK3beta, which is reported to retard the progress of Xenopus oocyte maturation, had no effect on Rana oocyte maturation. On the basis of these results, we propose that PI3K is involved in the initiation of Rana oocyte maturation, but that neither PKB nor GSK3beta is a component of the PI3K signal transduction pathway.  相似文献   

14.
Protein kinase B (PKB/Akt) is a serine-threonine kinase functioning downstream of phosphatidylinositol 3-kinase (PI-3 kinase) in response to mitogen or growth factor stimulation. In several cell types, it plays an important anti-apoptotic role. TPA is a potent regulator of the growth of many different cell types. Here, we detected that TPA could induce cell apoptosis in the gastric cancer cell line, BGC-823. We also found that TPA inhibited the expression of PKB/Akt in a TPA concentration- and time-dependent manner. Furthermore, TPA inhibited the phosphorylation of PKB at Ser473, but did not affect the phosphorylation of Thr308. It only attenuated the expression of PKB/Akt and the phosphorylation of Ser473 in the cell nucleus, whereas it did not change the PKB/Akt distribution in BGC-823 cells. These results suggest that PKB/Akt inhibition by TPA may be the important factor in the mechanism of effect of TPA on gastric cell lines.  相似文献   

15.
Insulin receptor substrates (IRSs) 1 and 2 are postulated to control the activation of phosphatidylinositol 3-kinase (PI3K)-dependent signaling factors, namely, atypical protein kinase C (aPKC) and protein kinase B (PKB)/Akt, which mediate metabolic effects of insulin. However, it is uncertain whether aPKC and PKB are activated together or differentially in response to IRS-1 and IRS-2 activation in insulin-sensitive tissues. Presently, we examined insulin activation of aPKC and PKB in vastus lateralis muscle, adipocytes, and liver in wild-type and IRS-1 knockout mice, and observed striking tissue-specific differences. In muscle of IRS-1 knockout mice, the activation of both aPKC and PKB was markedly diminished. In marked contrast, only aPKC activation was diminished in adipocytes, and only PKB activation was diminished in liver. These results suggest that IRS-1 is required for: 1) activation of both aPKC and PKB in muscle; 2) aPKC, but not PKB, activation in adipocytes; and 3) PKB, but not aPKC, activation in liver. Presumably, IRS-2 or other PI3K activators account for the normal activation of aPKC in liver and PKB in adipocytes of IRS-1 knockout mice. These complexities in aPKC and PKB activation may be relevant to metabolic abnormalities seen in tissues in which IRS-1 or IRS-2 is specifically or predominantly down-regulated.  相似文献   

16.
Phosphoinositide 3-kinase (PI3K) is a critical component of the signaling pathways that control the activation of platelets. Here we have examined the regulation of protein kinase B (PKB), a downstream effector of PI3K, by the platelet collagen receptor glycoprotein (GP) VI and thrombin receptors. Stimulation of platelets with collagen or convulxin (a selective GPVI agonist) resulted in PI3K-dependent, and aggregation independent, Ser(473) and Thr(308) phosphorylation of PKBalpha, which results in PKB activation. This was accompanied by translocation of PKB to cell membranes. The phosphoinositide-dependent kinase PDK1 is known to phosphorylate PKBalpha on Thr(308), although the identity of the kinase responsible for Ser(473) phosphorylation is less clear. One candidate that has been implicated as being responsible for Ser(473) phosphorylation, either directly or indirectly, is the integrin-linked kinase (ILK). In this study we have examined the interactions of PKB, PDK1, and ILK in resting and stimulated platelets. We demonstrate that in platelets PKB is physically associated with PDK1 and ILK. Furthermore, the association of PDK1 and ILK increases upon platelet stimulation. It would therefore appear that formation of a tertiary complex between PDK1, ILK, and PKB may be necessary for phosphorylation of PKB. These observations indicate that PKB participates in cell signaling downstream of the platelet collagen receptor GPVI. The role of PKB in collagen- and thrombin-stimulated platelets remains to be determined.  相似文献   

17.
Dok-R has previously been shown to associate with the epidermal growth factor receptor (EGFR) and become tyrosine phosphorylated in response to EGF stimulation. The recruitment of Dok-R to the EGFR, which is mediated through its phosphotyrosine binding (PTB) domain, results in attenuation of mitogen-activated protein kinase (MAPK) activation. Dok-R's ability to attenuate EGF-driven MAPK activation is independent of its ability to recruit rasGAP, a known attenuator of MAPK activity, suggesting an alternate Dok-R-mediated pathway. Herein, we have determined the structural determinants within Dok-R that are required for its ability to attenuate EGF signaling and to associate with c-Src and with the Src family kinase (SFK)-inhibitory kinase, Csk. We demonstrate that Dok-R associates constitutively with c-Src through an SH3-dependent interaction and that this association is essential to Dok-R's ability to attenuate c-Src activity and diminish MAPK and Akt/PKB activity. We further illustrate that EGF-dependent phosphorylation of Dok-R requires SFK activity and, more specifically, that SFK-dependent phosphorylation of tyrosine 402 on Dok-R facilitates the inducible recruitment of Csk. We propose that recruitment of Csk to Dok-R serves to bring Csk to c-Src and down-regulate its activity, resulting in a concomitant attenuation of MAPK and Akt/PKB activity. Furthermore, we demonstrate that Dok-R can abrogate c-Src's ability to protect the breast cancer cell line SKBR3 from anoikis and that an association with c-Src and Csk is required for this activity. Collectively these results demonstrate that Dok-R acts as an EGFR-recruited scaffolding molecule that processively assembles c-Src and Csk to attenuate signaling from the EGFR.  相似文献   

18.
Kim SJ  Cheon SH  Yoo SJ  Kwon J  Park JH  Kim CG  Rhee K  You S  Lee JY  Roh SI  Yoon HS 《FEBS letters》2005,579(2):534-540
Although basic fibroblast growth factor (FGF2) is generally included in the media for maintenance of human embryonic stem cells (hESCs), the action of FGF2 in these cells has not been well defined. Here, we determined the roles of FGF2 in maintaining hESC self-renewal. Withdrawal of FGF2 from the media led to acquisition of typical differentiated characteristics in hESCs. In the presence of FGF2, which is normally required for proliferation in an undifferentiated state, inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt/PKB signal stimulated differentiation and attenuated the expression of extracellular matrix (ECM) molecules. We suggest that FGF2 maintains hESC self-renewal by supporting stable expression of ECM molecules through activation of the PI3K/Akt/PKB pathway.  相似文献   

19.
20.
Protein kinase CK2 phosphorylates and upregulates Akt/PKB   总被引:3,自引:0,他引:3  
Treatment of Jurkat cells with specific inhibitors of protein kinase CK2 induces apoptosis. Here we provide evidence that the anti-apoptotic effect of CK2 can be at least partially mediated by upregulation of the Akt/PKB pathway. Such a conclusion is based on the following observations: (1) inhibition of CK2 by cell treatment with two structurally unrelated CK2 inhibitors induces downregulation of Akt/PKB, as judged from decreased phosphorylation of its physiological targets, and immunoprecipitate kinase assay; (2) similar results are observed upon reduction of CK2 catalytic subunit by the RNA-interference technique; (3) Akt/PKB Ser129 is phosphorylated by CK2 in vitro and in vivo; (4) such a phosphorylation of activated Akt/PKB correlates with a further increase in catalytic activity. These data disclose an unanticipated mechanism by which constitutive phosphorylation by CK2 may be required for maximal activation of Akt/PKB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号