首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
《Epigenetics》2013,8(5):330-338
Human embryonic stem cells (hESCs) can be maintained in culture over a large number of passages while maintaining apparently normal colony morphology. However, recent reports describe variability in epigenetic states in comparisons among different human ES cell lines. These epigenetic differences include changes in CpG methylation, expression of imprinted genes, and the status of X chromosome inactivation (XCI). We report here that the status of XCI in the female hESC line H9 (WA09) is hypervariable. We find that XIST expression can differ between individual culture isolates of H9. In addition, we find that XIST expression status can vary even between different colonies present within the same H9 culture, effectively rendering the culture mosaic. H9 cultures that lack XIST expression, but have cytological evidence of completed XCI, can also exhibit altered response to BMP4, a growth factor known to induce differentiation of hESCs to a trophectodermal lineage. In the same cultures we find biallelic expression of X-linked genes suggesting that these lines consist of mixtures of cells that retain inactivation of one of two X chromosomes following random choice. Prolonged culture of the XIST-negative isolates to high passage numbers did not result in changes in global epiproteomic signatures, demonstrating rather stable levels of post-translational nucleosome modifications within the culture-adapted hESC lines. The results show that epigenetic variants arise within human ES cell cultures after cell line derivation. In addition, the results indicate that apparently normal cultures of hESCs may contain mixtures of cells with differing epigenetic states. Assays of epigenetic integrity are warranted as quality control measures for the culture of hESCs.  相似文献   

4.
X chromosome inactivation (XCI) is a dosage compensation mechanism that silences the majority of genes on one X chromosome in each female cell via a random process. Skewed XCI is relevant to many diseases, but the mechanism leading to it remains unclear. Human embryonic stem cells (hESCs) derived from the inner cell mass (ICM) of blastocyst-stage embryos have provided an excellent model system for understanding XCI initiation and maintenance. Here, we derived hESC lines with random or skewed XCI patterns from poor-quality embryos and investigated the genome-wide copy number variation (CNV) and loss of heterozygosity (LOH) patterns at the early passages of these two groups of hESC lines. It was found that the average size of CNVs on the X chromosomes in the skewed group is twice as much as that in the random group. Moreover, the LOH regions of the skewed group covered the gene locus of either XIST or XACT, which are master long non-coding RNA (lncRNA) effectors of XCI in human pluripotent stem cells. In conclusion, our work has established an experimentally tractable hESC model for study of skewed XCI and revealed an association between X chromosome instability and skewed XCI.  相似文献   

5.
Human embryonic stem cells (hESCs) are derived from the inner cell mass (ICM) of blastocyst staged embryos. Spare blastocyst staged embryos were obtained by in vitro fertilization (IVF) and donated for research purposes. hESCs carrying specific mutations can be used as a powerful cell system in modeling human genetic disorders. We obtained preimplantation genetic diagnosed (PGD) blastocyst staged embryos with genetic mutations that cause human disorders and derived hESCs from these embryos. We applied laser assisted micromanipulation to isolate the inner cell mass from the blastocysts and plated the ICM onto the mouse embryonic fibroblast cells. Two hESC lines with lesions in FOXP3 and NF1 were established. Both lines maintain a typical undifferentiated hESCs phenotype and present a normal karyotype. The two lines express a panel of pluripotency markers and have the potential to differentiate to the three germ layers in vitro and in vivo. The hESC lines with lesions in FOXP3 and NF1 are available for the scientific community and may serve as an important resource for research into these disease states.  相似文献   

6.
Histone modifications are thought to serve as epigenetic markers that mediate dynamic changes in chromatin structure and regulation of gene expression. As a model system for understanding epigenetic silencing, X chromosome inactivation has been previously linked to a number of histone modifications including methylation and hypoacetylation. In this study, we provide evidence that supports H2A ubiquitination as a novel epigenetic marker for the inactive X chromosome (Xi) and links H2A ubiquitination to initiation of X inactivation. We found that the H2A-K119 ubiquitin E3 ligase Ring1b, a Polycomb group protein, is enriched on Xi in female trophoblast stem (TS) cells as well as differentiating embryonic stem (ES) cells. Consistent with Ring1b mediating H2A ubiquitination, ubiquitinated H2A (ubH2A) is also enriched on the Xi of both TS and ES cells. We demonstrate that the enrichment of Ring1b and ubH2A on Xi is transient during TS and ES cell differentiation, suggesting that the Ring1b and ubH2A are involved in the initiation of both imprinted and random X inactivation. Furthermore, we showed that the association of Ring1b and ubH2A with Xi is mitotically stable in non-differentiated TS cells.  相似文献   

7.
Pluripotent cells of the blastocyst inner cell mass (ICM) and their in vitro derivatives, embryonic stem (ES) cells, contain genomes in an epigenetic state that are poised for subsequent differentiation. Their chromatin is hyperdynamic in nature and relatively uncondensed. In addition, a large number of genes are expressed at low levels in both ICM and ES cells. Also, the chromatin of naturally pluripotent cells contains specialized histone modification patterns such as bivalent domains, which mark genes destined for later developmentally-regulated expression states. Female pluripotent cells contain X chromosomes that have yet to undergo the process of X chromosome inactivation. Collectively, these features of very early embyronic chromatin are required for the successful specification and production of differentiated cell lineages. Artificial reprogramming methods such as somatic nuclear transfer (SCNT), ES cell fusion-mediated reprogramming (FMR), and induced pluripotency (iPS) yield pluripotent cells that recapitulate many features of naturally pluripotent cells, including many of their epigenetic features. However, the route to pluripotent epigenomic states in artificial pluripotent cells differs drastically from that of their natural counterparts. Here, we compare and contrast the differing routes to pluripotency under natural and artificial conditions. In addition, we discuss the intrinsically metastable nature of the pluripotent epigenome and consider epigenetic aspects of reprogramming that may lead to incomplete or inaccurate reprogrammed states. Artificial methods of reprogramming hold immense promise for the development of autologous cell graft sources and for the development of cell culture models for human genetic disorders. However, the utility of artificially reprogrammed cells is highly dependent on the fidelity of the reprogramming process and it is therefore critically important to assess the epigenetic similarities between embryonic and induced pluripotent stem cells.  相似文献   

8.
Recently it has been demonstrated that CD30 expression was rather specific for transformed than for normal human ES cells and therefore CD30 maybe suggested as a potential marker for human ES cells bearing chromosomal abnormalities. Using immunohistochemistry and RT-PCR analysis we examined СD30 expression in 10 hESCs lines with normal and abberant karyotypes. All hESC lines expressed CD30 antigen and RNA in undifferentiated state whether cell line beared chromosomal abnormalities or not. In contrast to previous notions our data demonstrate that CD30 could be considered as marker of undifferentiated hESCs without respect to karyotype changes.  相似文献   

9.
Human embryonic stem (ES) cells are pluripotent cell lines that have been derived from the inner cell mass (ICM) of blastocyst stage embryos [1--3]. They are characterized by their ability to be propagated indefinitely in culture as undifferentiated cells with a normal karyotype and can be induced to differentiate in vitro into various cell types [1, 2, 4-- 6]. Thus, human ES cells promise to serve as an unlimited cell source for transplantation. However, these unique cell lines tend to spontaneously differentiate in culture and therefore are difficult to maintain. Furthermore, colonies may contain several cell types and may be composed of cells other than pluripotent cells [1, 2, 6]. In order to overcome these difficulties and establish lines of cells with an undifferentiated phenotype, we have introduced a reporter gene that is regulated by a promoter of an ES cell-enriched gene into the cells. For the introduction of DNA into human ES cells, we have established a specific transfection protocol that is different from the one used for murine ES cells. Human ES cells were transfected with enhanced green fluorescence protein (EGFP), under the control of murine Rex1 promoter. The transfected cells show high levels of GFP expression when in an undifferentiated state. As the cells differentiate, this expression is dramatically reduced in monolayer cultures as well as in the primitive endoderm of early stage (simple) embryoid bodies (EBs) and in mature EBs. The undifferentiated cells expressing GFP can be analyzed and sorted by using a Fluorescence Activated Cell Sorter (FACS). Thus, we have established lines of human ES cells in which only undifferentiated cells are fluorescent, and these cells can be followed and selected for in culture. We also propose that the pluripotent nature of the culture is made evident by the ability of the homogeneous cell population to form EBs. The ability to efficiently transfect human ES cells will provide the means to study and manipulate these cells for the purpose of basic and applied research.  相似文献   

10.
11.
Human embryonic stem cell (hESC) lines are derived from the inner cell mass (ICM) of preimplantation human blastocysts obtained on days 5–6 following fertilization. Based on their derivation, they were once thought to be the equivalent of the ICM. Recently, however, studies in mice reported the derivation of mouse embryonic stem cell lines from the epiblast; these epiblast lines bear significant resemblance to human embryonic stem cell lines in terms of culture, differentiation potential and gene expression. In this study, we compared gene expression in human ICM cells isolated from the blastocyst and embryonic stem cells. We demonstrate that expression profiles of ICM clusters from single embryos and hESC populations were highly reproducible. Moreover, comparison of global gene expression between individual ICM clusters and human embryonic stem cells indicated that these two cell types are significantly different in regards to gene expression, with fewer than one half of all genes expressed in both cell types. Genes of the isolated human inner cell mass that are upregulated and downregulated are involved in numerous cellular pathways and processes; a subset of these genes may impart unique characteristics to hESCs such as proliferative and self-renewal properties.  相似文献   

12.

Background

The large number (30) of permanent human embryonic stem cell (hESC) lines and additional 29 which did not continue growing, in our laboratory at Karolinska Institutet have given us a possibility to analyse the relationship between embryo morphology and the success of derivation of hESC lines. The derivation method has been improved during the period 2002–2009, towards fewer xeno-components. Embryo quality is important as regards the likelihood of pregnancy, but there is little information regarding likelihood of stem cell derivation.

Methods

We evaluated the relationship of pronuclear zygote stage, the score based on embryo morphology and developmental rate at cleavage state, and the morphology of the blastocyst at the time of donation to stem cell research, to see how they correlated to successful establishment of new hESC lines.

Results

Derivation of hESC lines succeeded from poor quality and good quality embryos in the same extent. In several blastocysts, no real inner cell mass (ICM) was seen, but permanent well growing hESC lines could be established. One tripronuclear (3PN) zygote, which developed to blastocyst stage, gave origin to a karyotypically normal hESC line.

Conclusion

Even very poor quality embryos with few cells in the ICM can give origin to hESC lines.  相似文献   

13.
Dosage compensation in mammals involves silencing of one X chromosome in XX females and requires expression, in cis, of Xist RNA. The X to be inactivated is randomly chosen in cells of the inner cell mass (ICM) at the blastocyst stage of development. Embryonic stem (ES) cells derived from the ICM of female mice have two active X chromosomes, one of which is inactivated as the cells differentiate in culture, providing a powerful model system to study the dynamics of X inactivation. Using microarrays to assay expression of X-linked genes in undifferentiated female and male mouse ES cells, we detect global up-regulation of expression (1.4- to 1.6-fold) from the active X chromosomes, relative to autosomes. We show a similar up-regulation in ICM from male blastocysts grown in culture. In male ES cells, up-regulation reaches 2-fold after 2–3 weeks of differentiation, thereby balancing expression between the single X and the diploid autosomes. We show that silencing of X-linked genes in female ES cells occurs on a gene-by-gene basis throughout differentiation, with some genes inactivating early, others late, and some escaping altogether. Surprisingly, by allele-specific analysis in hybrid ES cells, we also identified a subgroup of genes that are silenced in undifferentiated cells. We propose that X-linked genes are silenced in female ES cells by spreading of Xist RNA through the X chromosome territory as the cells differentiate, with silencing times for individual genes dependent on their proximity to the Xist locus.  相似文献   

14.
Embryonic stem (ES) cells with the capacity for germ line transmission have only been verified in mouse and rat. Methods for derivation, propagation, and differentiation of ES cells from domestic animals have not been fully established. Here, we describe derivation of ES cells from goat embryos. In vivo-derived embryos were cultured on goat fetal fibroblast feeders. Embryos either attached to the feeder layer or remained floating and expanded in culture. Embryos that attached showed a prominent inner cell mass (ICM) and those that remained floating formed structures resembling ICM disks surrounded by trophectodermal cells. ICM cells and embryonic disks were isolated mechanically, cultured on feeder cells in the presence of hLIF, and outgrown into ES-like colonies. Two cell lines were cultured for 25 passages and stained positive for alkaline phosphatase, POU5F1, NANOG, SOX2, SSEA-1, and SSEA-4. Embryoid bodies formed in suspension culture without hLIF. One cell line was cultured for 2 years (over 120 passages). This cell line differentiated in vitro into epithelia and neuronal cells, and could be stably transfected and selected for expression of a fluorescent marker. When cells were injected into SCID mice, teratomas were identified 5-6 weeks after transplantation. Expression of known ES cell markers, maintenance in vitro for 2 years in an undifferentiated state, differentiation in vitro, and formation of teratomas in immunodeficient mice provide evidence that the established cell line represents goat ES cells. This also is the first report of teratoma formation from large animal ES cells.  相似文献   

15.
HLA-G expression in human embryonic stem cells and preimplantation embryos   总被引:1,自引:0,他引:1  
Human leukocyte Ag-G, a tolerogenic molecule that acts on cells of both innate and adaptive immunity, plays an important role in tumor progression, transplantation, placentation, as well as the protection of the allogeneic fetus from the maternal immune system. We investigated HLA-G mRNA and protein expression in human embryonic stem cells (hESC) derived from the inner cell mass (ICM) of blastocysts. hESC self-renew indefinitely in culture while maintaining pluripotency, providing an unlimited source of cells for therapy. HLA-G mRNA was present in early and late passage hESC, as assessed by real time RT-PCR. Protein expression was demonstrated by flow cytometry, immunocytochemistry, and ELISA on an hESC extract. Binding of HLA-G with its ILT2 receptor demonstrated the functional active status. To verify this finding in a physiologically relevant setting, HLA-G protein expression was investigated during preimplantation development. We demonstrated HLA-G protein expression in oocytes, cleavage stage embryos, and blastocysts, where we find it in trophectoderms but also in ICM cells. During blastocyst development, a downregulation of HLA-G in the ICM cells was present. This data might be important for cell therapy and transplantation because undifferentiated hESC can contaminate the transplant of differentiated stem cells and develop into malignant cancer cells.  相似文献   

16.
17.
目的:建立一种从废弃胚胎中提高囊胚形成率和质量的培养体系,寻找多种促进内细胞团(ICM)数目增多、贴壁、增值的方法,提高人胚胎干细胞(human embryonic stem cell,hESC)建系效率,建立人胚胎干细胞库。方法:将179枚IVFDay3废弃的胚胎放入优选培养体系中培养(G2.5培养液中添加10%人血清蛋白,人白细胞抑制生长因子(hLIF),碱性成纤维细胞生长因子(bFGF))。到Day7将形成的囊胚全部用机械法分离ICM,接种于丝裂霉素C灭活处理的原代小鼠胚胎成纤维细胞(MEF)上,培养8-9天,每4-5天传代1次。结果:优选培养体系的囊胚形成率为29.1%(52/179),其中A级囊胚形成率为11.2%(20/179),50个ICM贴壁生长,20个出现克隆形态,成功建立11株hESC(FY-hES-11至FY-hES-21)。11株hESC均具有共同的多能性生物学特性。结论:优选培养体系可以明显提高囊胚形成的质量,促进ICM的增值,纯熟的机械切割法可以避免损伤ICM并提高其贴壁率,原代灭活的MEF饲养层可以明显促进细胞增殖。  相似文献   

18.
AIM: To investigate the epigenetic states and expression of imprinted genes in five human embryonic stem cell (hESC) lines derived in Taiwan.METHODS: The heterozygous alleles of single nucleotide polymorphisms (SNPs) at imprinted genes were analyzed by sequencing genomic DNAs of hESC lines and the monoallelic expression of the imprinted genes were confirmed by sequencing the cDNAs. The expression profiles of 32 known imprinted genes of five hESC lines were determined using Affymetrix human genome U133 plus 2.0 DNA microarray.RESULTS: The heterozygous alleles of SNPs at seven imprinted genes, IPW, PEG10, NESP55, KCNQ1, ATP10A, TCEB3C and IGF2, were identified and the monoallelic expression of these imprinted genes except IGF2 were confirmed. The IGF2 gene was found to be imprinted in hESC line T2 but partially imprinted in line T3 and not imprinted in line T4 embryoid bodies. Ten imprinted genes, namely GRB10, PEG10, SGCE, MEST, SDHD, SNRPN, SNURF, NDN, IPW and NESP55, were found to be highly expressed in the undifferentiated hESC lines and down-regulated in differentiated derivatives. The UBE3A gene abundantly expressed in undifferentiated hESC lines and further up-regulated in differentiated tissues. The expression levels of other 21 imprinted genes were relatively low in undifferentiated hESC lines and five of these genes (TP73, COPG2, OSBPL5, IGF2 and ATP10A) were found to be up-regulated in differentiated tissues.CONCLUSION: The epigenetic states and expression of imprinted genes in hESC lines should be thoroughly studied after extended culture and upon differentiation in order to understand epigenetic stability in hESC lines before their clinical applications.  相似文献   

19.
维持胚胎干细胞不分化状态的分子机制   总被引:4,自引:2,他引:2  
杜娟  卢光琇 《遗传》2005,27(5):828-832
胚胎干细胞(embryonic stem cell,ESC)是指从早期胚胎的囊胚内细胞团(inner cell mass,ICM)分离出来的具有自我更新和多向分化潜能的细胞,目前被广泛地应用于基础研究和临床应用研究等生命科学领域。ESC在体外培养过程中维持不分化状态是其应用的前提与基础,阐明这个分子机制非常必要。文章总结了维持hESC未分化状态机制的最新进展,主要介绍在维持ESC不分化过程中,分化抑制因子LIF、Oct-3/4及Nanog等的重要作用。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号