首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The rice class I chitinase OsChia1b, also referred to as RCC2 or Cht‐2, is composed of an N‐terminal chitin‐binding domain (ChBD) and a C‐terminal catalytic domain (CatD), which are connected by a proline‐ and threonine‐rich linker peptide. Because of the ability to inhibit fungal growth, the OsChia1b gene has been used to produce transgenic plants with enhanced disease resistance. As an initial step toward elucidating the mechanism of hydrolytic action and antifungal activity, the full‐length structure of OsChia1b was analyzed by X‐ray crystallography and small‐angle X‐ray scattering (SAXS). We determined the crystal structure of full‐length OsChia1b at 2.00‐Å resolution, but there are two possibilities for a biological molecule with and without interdomain contacts. The SAXS data showed an extended structure of OsChia1b in solution compared to that in the crystal form. This extension could be caused by the conformational flexibility of the linker. A docking simulation of ChBD with tri‐N‐acetylchitotriose exhibited a similar binding mode to the one observed in the crystal structure of a two‐domain plant lectin complexed with a chitooligosaccharide. A hypothetical model based on the binding mode suggested that ChBD is unsuitable for binding to crystalline α‐chitin, which is a major component of fungal cell walls because of its collisions with the chitin chains on the flat surface of α‐chitin. This model also indicates the difference in the binding specificity of plant and bacterial ChBDs of GH19 chitinases, which contribute to antifungal activity. Proteins 2010. © 2010 Wiley‐Liss,Inc.  相似文献   

3.
A family 19 chitinase (OsChia1c, class I) from rice, Oryza sativa L., and its chitin-binding domain-truncated mutant (OsChia1cCBD, class II) were produced by the Pichia expression system, and the hydrolytic mechanism toward N-acetylglucosamine hexasaccharide [(GlcNAc)6] was investigated by HPLC analysis of the reaction products. The profile of the time-course of (GlcNAc)6 degradation obtained by OsChia1c was identical to that obtained by OsChia1cCBD, indicating that the chitin-binding domain does not significantly participate in oligosaccharide hydrolysis. From the theoretical analysis of the reaction time-course of OsChia1cCBD, the free energy changes of sugar residue binding were estimated to be –0.4, –4.7, +3.4, –0.5, –2.3, and –1.0 kcal/mol for the individual subsites of (–3), (–2), (–1), (+1), (+2), and (+3), respectively. The hexasaccharide substrate appears to bind to the enzyme through interactions at the high-affinity sites, (–2) and (+2), and the sugar residues at both ends more loosely bind to the corresponding subsites, (–3) and (+3). The docking study of (GlcNAc)6 with the modeled structure of OsChia1cCBD supported the subsite structure estimated from the experimental time-course of hexasaccharide degradation. Since the class II chitinase from barley seeds was reported to possess a similar subsite structure from (–3) to (+3) and a similar free energy distribution, substrate-binding mode of plant chitinases of this class would be similar to each other.  相似文献   

4.
Sasaki C  Vårum KM  Itoh Y  Tamoi M  Fukamizo T 《Glycobiology》2006,16(12):1242-1250
Sugar recognition specificities of class III (OsChib1a) and class I (OsChia1cDeltaChBD) chitinases from rice, Oryza sativa L., were investigated by analyzing (1)H- and (13)C-nuclear magnetic resonance spectra of the enzymatic products from partially N-acetylated chitosans. The reducing end residue of the enzymatic products obtained by the class III enzyme was found to be exclusively acetylated, whereas both acetylated and deacetylated units were found at the nearest neighbor to the reducing end residue. Both acetylated and deacetylated units were also found at the nonreducing end residue and its nearest neighbor of the class III enzyme products. Thus, only subsite (-1) among the contiguous subsites (-2) to (+2) of the class III enzyme was found to be specific to an acetylated residue. For the class I enzyme, the reducing end residue was preferentially acetylated, although the specificity was not absolute. The nearest neighbor to the acetylated reducing end residue was specifically acetylated. Moreover, the nonreducing end residue produced by the class I enzyme was exclusively acetylated, although there was a low but significant preference for deacetylated units at the nearest neighbor to the nonreducing end. These results suggest that the three contiguous subsites (-2), (-1), and (+1) of the class I enzyme are specific to three consecutive GlcNAc residues of the substrate. In rice plants, the target of the class I enzyme might be a consecutive GlcNAc sequence probably in the cell wall of fungal pathogen, whereas the class III enzyme might act toward an endogenous complex carbohydrate containing GlcNAc residue.  相似文献   

5.
Characteristics and antifungal activity of chitinases in Semillon grapes were investigated. Chitinases were isolated from the juice of Semillon grapes by chitin affinity chromatography. Native and SDS-PAGE analyses of the fraction showing chitin affinity (active fraction) demonstrated only the presence of protein bands of chitinases. Three types of class IV chitinases (chi-1a, chi-1b and chi-2) were purified from the active fraction. These chitinases actively hydrolyzed chitin under acidic conditions (pH 4.0–4.5). The isoelectric points and the molecular weights of chi-1a, chi-1b and chi-2 were 4.73, 4.60, and 7.87, and 32.1 kDa, 31.6 kDa, and 29.0 kDa, respectively. The active fraction was found to inhibit Botrytis cinerea mycelial growth and the inhibitory effect was due to the activity of chitinases. The active fraction inhibited twenty strains of B. cinerea collected from the experimental vineyard. The effect of chitinases was enhanced in media containing more than 20% sugar. When the active fraction was tested on Glomerella cingulata, the growth inhibitory effect observed was markedly less than that seen on B. cinerea.  相似文献   

6.
We report here on crystallization and preliminary X-ray analysis of plant class I chitinase from rice (OsChia1b). Similar single crystals of full-length OsChia1b were obtained under two independent conditions. The crystals grown under these conditions diffracted up to 2.1 and 2.5 angstroms resolution, respectively, at a synchrotron beamline, and were found to belong to the tetragonal space group P4(3)2(1)2.  相似文献   

7.
Genomic DNA for a class IV chitinase was cloned from yam (Dioscorea opposita Thunb) leaves and sequenced. The deduced amino acid sequence shows 50 to 59% identity to class IV chitinases from other plants. The yam chitinase, however, has an additional sequence of 8 amino acids (a C-terminal extension) following the cysteine that was reported as the last amino acid for other class IV chitinases; this extension is perhaps involved in subcellular localization. A homology model based on the structure of a class II chitinase from barley was used as an aid to interpreting the available data. The analysis suggests that the class IV enzyme recognizes an even shorter segment of the substrate than class I or II enzymes. This observation might help to explain why class IV enzymes are better suited to attack against pathogen cell walls.  相似文献   

8.
Genomic DNA for a class IV chitinase was cloned from yam (Dioscorea opposita Thunb) leaves and sequenced. The deduced amino acid sequence shows 50 to 59% identity to class IV chitinases from other plants. The yam chitinase, however, has an additional sequence of 8 amino acids (a C-terminal extension) following the cysteine that was reported as the last amino acid for other class IV chitinases; this extension is perhaps involved in subcellular localization. A homology model based on the structure of a class II chitinase from barley was used as an aid to interpreting the available data. The analysis suggests that the class IV enzyme recognizes an even shorter segment of the substrate than class I or II enzymes. This observation might help to explain why class IV enzymes are better suited to attack against pathogen cell walls.  相似文献   

9.
To characterize the acidic endochitinase EP3, able to rescue somatic embryos of the carrot cell linets11, the enzyme was purified from the medium of wild-type suspension cultures. Peptide sequences, deduced amino acid sequences of corresponding PCR-generated cDNA clones, serological relation and biochemical properties showed that there were at least five closely related chitinases, four of which could be identified as class IV EP3 chitinases with an apparent size of 30 kDa. Two other proteins were identified as a serologically related class I acidic chitinase (DcChitI) of 34 kDa, and a serologically unrelated 29 kDa class II acidic chitinase (DcChitII), respectively. Additional cDNA sequences, Western and Southern analysis showed the presence of a least two, but possibly more, highly homologous class IV EP3 genes in the carrot genome. Two class IV EP3 chitinases were tested and found to be able to increase the number ofts11 globular embryos formed under non-permissive conditions. One of the class IV EP3 chitinases as well as the class I chitinase DcChitI promoted the transition from globular to heart-stagets11 embryos. The class II endochitinase and a heterologous class IV chitinase from sugar-beet were not active onts11. This suggests that there are differences in the specificity of chitinases in terms of their effect on plant somatic embryos.  相似文献   

10.
The chitinase A (ChiA)-coding gene of Pseudomonas sp. BK1, which was isolated from a marine red alga Porphyra dentata, was cloned and expressed in Escherichia coli. The structural gene consists of 1602 bp encoding a protein of 534 amino acids, with a predicted molecular weight of 55,370 Da. The deduced amino acid sequence of ChiA showed low identity (less than 32%) with other bacterial chitinases. The ChiA was composed of multiple domains, unlike the arrangement of domains in other bacterial chitinases. Recombinant ChiA overproduced as inclusion bodies was solubilized in the presence of 8 M urea, purified in a urea-denatured form and re-folded by removing urea. The purified enzyme showed maximum activity at pH 5.0 and 40 degrees C. It exhibited high activity towards glycol chitosan and glycol chitin, and lower activity towards colloidal chitin. The enzyme hydrolyzed the oligosaccharides from (GlcNAc)4 to (GlcNAc)6, but not GlcNAc to (GlcNAc)3. The results suggest that the ChiA is a novel enzyme, with different domain structure and action mode from bacterial family 18 chitinases.  相似文献   

11.
Maize ChitA chitinase is composed of a small, hevein‐like domain attached to a carboxy‐terminal chitinase domain. During fungal ear rot, the hevein‐like domain is cleaved by secreted fungal proteases to produce truncated forms of ChitA. Here, we report a structural and biochemical characterization of truncated ChitA (ChitA ΔN), which lacks the hevein‐like domain. ChitA ΔN and a mutant form (ChitA ΔN‐EQ) were expressed and purified; enzyme assays showed that ChitA ΔN activity was comparable to the full‐length enzyme. Mutation of Glu62 to Gln (ChitA ΔN‐EQ) abolished chitinase activity without disrupting substrate binding, demonstrating that Glu62 is directly involved in catalysis. A crystal structure of ChitA ΔN‐EQ provided strong support for key roles for Glu62, Arg177, and Glu165 in hydrolysis, and for Ser103 and Tyr106 in substrate binding. These findings demonstrate that the hevein‐like domain is not needed for enzyme activity. Moreover, comparison of the crystal structure of this plant class IV chitinase with structures from larger class I and II enzymes suggest that class IV chitinases have evolved to accommodate shorter substrates.  相似文献   

12.
There is emerging evidence that chitinases have additional functions beyond degrading environmental chitin, such as involvement in innate and acquired immune responses, tissue remodeling, fibrosis, and serving as virulence factors of bacterial pathogens. We have recently shown that both the human chitotriosidase and a chitinase from Salmonella enterica serovar Typhimurium hydrolyze LacNAc from Galβ1–4GlcNAcβ-tetramethylrhodamine (LacNAc-TMR (Galβ1–4GlcNAcβ(CH2)8CONH(CH2)2NHCO-TMR)), a fluorescently labeled model substrate for glycans found in mammals. In this study we have examined the binding affinities of the Salmonella chitinase by carbohydrate microarray screening and found that it binds to a range of compounds, including five that contain LacNAc structures. We have further examined the hydrolytic specificity of this enzyme and chitinases from Sodalis glossinidius and Polysphondylium pallidum, which are phylogenetically related to the Salmonella chitinase, as well as unrelated chitinases from Listeria monocytogenes using the fluorescently labeled substrate analogs LacdiNAc-TMR (GalNAcβ1–4GlcNAcβ-TMR), LacNAc-TMR, and LacNAcβ1–6LacNAcβ-TMR. We found that all chitinases examined hydrolyzed LacdiNAc from the TMR aglycone to various degrees, whereas they were less active toward LacNAc-TMR conjugates. LacdiNAc is found in the mammalian glycome and is a common motif in invertebrate glycans. This substrate specificity was evident for chitinases of different phylogenetic origins. Three of the chitinases also hydrolyzed the β1–6 bond in LacNAcβ1–6LacNAcβ-TMR, an activity that is of potential importance in relation to mammalian glycans. The enzymatic affinities for these mammalian-like structures suggest additional functional roles of chitinases beyond chitin hydrolysis.  相似文献   

13.
Glycoside hydrolase family 19 chitinases (EC 3.2.1.14) widely distributed in plants, bacteria and viruses catalyse the hydrolysis of chitin and play a major role in plant defense mechanisms and development. Rice possesses several classes of chitinase, out of which a single structure of class I has been reported in PDB to date. In the present study an attempt was made to gain more insight into the structure, function and evolution of class I, II and IV chitinases of GH family 19 from rice. The three-dimensional structures of chitinases were modelled and validated based on available X-ray crystal structures. The structural study revealed that they are highly α-helical and bilobed in nature. These enzymes are single or multi domain and multi-functional in which chitin-binding domain (CBD) and catalytic domain (CatD) are present in class I and IV whereas class II lacks CBD. The CatD possesses a catalytic triad which is thought to be involved in catalytic process. Loop III, which is common in all three classes of chitinases, reflects that it may play a significant role in their function. Our study also confirms that the absence and presence of different loops in GH family 19 of rice may be responsible for various sized products. Molecular phylogeny revealed chitinases in monocotyledons and dicotyledons differed from each other forming two different clusters and may have evolved differentially. More structural study of this enzyme from different plants is required to enhance the knowledge of catalytic mechanism and substrate binding.  相似文献   

14.
Hydrolytic mechanisms of family 18 chitinases from rice (Oryza sativa L.) and Bacillus circulans WL-12 were comparatively studied by a combination of HPLC analysis of the reaction products and theoretical calculation of reaction time-courses. All of the enzymes tested produced beta-anomers from chitin hexasaccharide [(GlcNAc)(6)], indicating that they catalyze the hydrolysis through a retaining mechanism. The rice chitinases hydrolyzed predominantly the fourth and fifth glycosidic linkages from the nonreducing end of (GlcNAc)(6), whereas B. circulans chitinase A1 hydrolyzed the second linkage from the nonreducing end. In addition, the Bacillus enzyme efficiently catalyzed transglycosylation, producing significant amounts of chitin oligomers larger than the initial substrate, but the rice chitinases did not. The time-courses of (GlcNAc)(6) degradation obtained by HPLC were analyzed by theoretical calculation, and the subsite structures of the rice chitinases were identified to be (-4)(-3)(-2)(-1)(+1)(+2). From the HPLC profile of the reaction products previously reported [Terwisscha van Scheltinga et al. (1995) Biochemistry 34, 15619-15623], family 18 chitinase from rubber tree (Hevea brasiliensis) was estimated to have the same type of subsite structure. Theoretical analysis of the reaction time-course for the Bacillus enzyme revealed that the enzyme has (-2)(-1) (+1)(+2)(+3)(+4)-type subsite structure, which is identical to that of fungal chitinase from Coccidioides immitis [Fukamizo et al. (2001) Biochemistry 40, 2448-2454]. The Bacillus enzyme also resembled the fungal chitinase in its transglycosylation activity. Minor structural differences between plant and microbial enzymes appear to result in such functional variations, even though all of these chitinases are classified into the identical family of glycosyl hydrolases.  相似文献   

15.
The primary structure of the major quail liver alcohol dehydrogenase was determined. It is a long-chain, zinc-containing alcohol dehydrogenase of the type occurring also in mammals and hence allows judgement of the gene duplications giving rise to the classes of the human alcohol dehydrogenase system. The avian form is most closely related to the class I mammalian enzyme (72-75% residue identity), least related to class II (60% identity), and intermediately related to class III (64-65% identity). This pattern distinguishes the mammalian enzyme classes and separates classes I and II in particular. In addition to the generally larger similarities with class I, the avian enzyme exhibits certain residue patterns otherwise typical of the other classes, including an extra Trp residue, present in both class II and III but not in class I, with a corresponding increase in the UV absorbance. The avian enzyme further shows that a Gly residue at position 260 previously considered strictly conserved in alcohol dehydrogenases can be exchanged with Lys. However, zinc-binding residues, coenzyme-binding residues, and to a large extent substrate-binding residues are unchanged in the avian enzyme, suggesting its functional properties to be related to those of the class I mammalian alcohol dehydrogenases. In contrast, the areas of subunit interactions in the dimers differ substantially. These results show that (a) the vertebrate enzyme classes are of distant origin, (b) the submammalian enzyme exhibits partly mixed properties in relation to the classes, and (c) the three mammalian enzyme classes are not as equidistantly related as initially apparent but suggest origins from two sublevels.  相似文献   

16.
Various chitinases have been identified in plants and categorized into several groups based on the analysis of their sequences and domains. We have isolated a tobacco gene that encodes a predicted polypeptide consisting of a 20-amino acid N-terminal signal peptide, followed by a 245-amino acid chitinolytic domain. Although the predicted mature protein is basic and shows greater sequence identity to basic class I chitinases (75%) than to acidic class II chitinases (67%), it lacks the N-terminal cysteine-rich domain and the C-terminal vacuolar targeting signal that is diagnostic for class I chitinases. Therefore, this gene appears to encode a novel, basic, class II chitinase, which we have designated NtChia2;B1. Accumulation of Chia2;B1 mRNA was induced in leaves in association with the local-lesion response to tobacco mosaic virus (TMV) infection, and in response to treatment with salicylic acid, but was only slightly induced by treatment with ethephon. Little or no Chia2;B1 mRNA was detected in roots, flowers, and cell-suspension cultures, in which class I chitinase mRNAs accumulate to high concentrations. Sequence comparisons of Chia2;B1 with known tobacco class I and class II chitinase genes suggest that Chia2;B1 might encode an ancestral prototype of the present-day class I and class II isoforms. Possible mechanisms for chitinase gene evolution are discussed.  相似文献   

17.
A class IV chitinase belonging to the glycoside hydrolase 19 family from Nepenthes alata (NaCHIT1) was expressed in Escherichia coli. The enzyme exhibited weak activity toward polymeric substrates and significant activity toward (GlcNAc)(n) [β-1,4-linked oligosaccharide of GlcNAc with a polymerization degree of n (n = 4-6)]. The enzyme hydrolyzed the third and fourth glycosidic linkages from the non-reducing end of (GlcNAc)(6). The pH optimum of the enzymatic reaction was 5.5 at 37°C. The optimal temperature for activity was 60°C in 50 mM sodium acetate buffer (pH 5.5). The anomeric form of the products indicated that it was an inverting enzyme. The k(cat)/K(m) of the (GlcNAc)(n) hydrolysis increased with an increase in the degree of polymerization. Amino acid sequence alignment analysis between NaCHIT1 and a class IV chitinase from a Picea abies (Norway spruce) suggested that the deletion of four loops likely led the enzyme to optimize the (GlcNAc)(n) hydrolytic reaction rather than the hydrolysis of polymeric substrates.  相似文献   

18.
The complete amino acid sequence of rye seed chitinase-a (RSC-a) has been analyzed. RSC-a was cleaved with cyanogen bromide and the resulting three fragments, CB1, CB2, and CB3, were separated by gel filtration. The amino acids of the N-terminal fragment CB1 were sequenced by analyzing the peptides produced by digestion with trypsin, lysylendopeptidase, or pepsin of reduced S-carboxymethyl ated or S-aminoethylated CB1. The sequences of fragments CB2 and CB3 were established by sequencing the tryptic peptides from reduced S-carboxymethylated CB2 and CB3, and by aligning them with the sequence of rye seed chitinase-c (RSC-c) to maximize sequence homology. The complete amino acid sequence of RSC-a was established by connecting these three fragments.

RSC-a consists of 302 amino acid residues including hydroxyproline residues, and has a molecular mass of 31,722 Da. RSC-a is basic protein with a cysteine-rich amino terminal domain, indicating that this enzyme belongs to class I chitinases. The amino acid sequence of RSC-a showed that the sequence from Gly60 to C-terminal Ala302 in this enzyme corresponds to that of RSC-c belonging to class II chitinases with 92% identity, and that RSC-a has high similarity to other plant class I chitinases but a longer hinge region and an extra disulfide bond.  相似文献   

19.
A high-isoelectric-point (pI), alkaline endo-1,4-beta-glucanase (Egl-257) of Bacillus circulans KSM-N257 was purified to homogeneity and crystallized. The purified enzyme hydrolyzed carboxymethyl cellulose (CMC) with optima of pH 8.5 and 55 degrees C. The molecular mass was 43 kDa, and the pI was pH 9.3. The structural gene contained a single open reading frame of 1221 bp, corresponding to 407 amino acids (aa), including a 30-aa signal peptide (377 aa and 41,680 Da for the mature enzyme). Egl-257 hydrolyzed lichenan and showed 76.3% aa identity to a lichenase from B. circulans WL-12 belonging to glycosyl hydrolase family 8 but did not hydrolyze laminarin, curdran, and xylan at all. This indicates that Egl-257 is a true endo-1,4-beta-glucanase. However, this enzyme was not active on p-nitrophenyl beta-D-cellotrioside and p-nitrophenyl beta-D-cellotetraoside. It was crystallized by the hanging-drop vapor-diffusion method with phosphate plus CdCl(2) as precipitant. Pyramid-like crystals were formed, and they diffracted X-rays beyond 2.2 A resolution. It belongs to the space group P2(1)2(1)2(1) with unit cell parameters of a=62.5 A, b=71.7 A, and c=88.6 A.  相似文献   

20.
Various chitinases have been identified in plants and categorized into several groups based on the analysis of their sequences and domains. We have isolated a tobacco gene that encodes a predicted polypeptide consisting of a 20-amino acid N-terminal signal peptide, followed by a 245-amino acid chitinolytic domain. Although the predicted mature protein is basic and shows greater sequence identity to basic class I chitinases (75%) than to acidic class II chitinases (67%), it lacks the N-terminal cysteine-rich domain and the C-terminal vacuolar targeting signal that is diagnostic for class I chitinases. Therefore, this gene appears to encode a novel, basic, class II chitinase, which we have designated NtChia2;B1. Accumulation of Chia2;B1 mRNA was induced in leaves in association with the local-lesion response to tobacco mosaic virus (TMV) infection, and in response to treatment with salicylic acid, but was only slightly induced by treatment with ethephon. Little or no Chia2;B1 mRNA was detected in roots, flowers, and cell-suspension cultures, in which class I chitinase mRNAs accumulate to high concentrations. Sequence comparisons of Chia2;B1 with known tobacco class I and class II chitinase genes suggest that Chia2;B1 might encode an ancestral prototype of the present-day class I and class II isoforms. Possible mechanisms for chitinase gene evolution are discussed. Received: 25 May 1998 / Accepted: 29 June 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号