首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of this study was to investigate the potential of quercetin and two of its "in vivo" metabolites, 3'-O-methyl quercetin and 4'-O-methyl quercetin, to protect H9c2 cardiomyoblasts against H(2)O(2)-induced oxidative stress. As limited data are available regarding the potential uptake and cellular effects of quercetin and its metabolites in cardiac cells, we have evaluated the cellular association/uptake of the three compounds and their involvement in the modulation of two pro-survival signalling pathways: ERK1/2 signalling cascade and PI3K/Akt pathway. The three flavonols associated with cells to differing extents. Quercetin and its two O-methylated metabolites were able to reduce intracellular ROS production but only quercetin was able to counteract H(2)O(2) cell damage, as measured by MTT reduction assay, caspase-3 activity and DNA fragmentation assays. Furthermore, only quercetin was observed to modulate pro-survival signalling through ERK1/2 and PI3K/Akt pathway. In conclusion we have demonstrated that quercetin, but not its O-methylated metabolites, exerts protective effects against H(2)O(2) cardiotoxicity and that the mechanism of its action involves the modulation of PI3K/Akt and ERK1/2 signalling pathways.  相似文献   

2.
陈旭光  唐俊明  张蕾  郭凌郧  杨建业  郑飞  王露 《生物磁学》2013,(34):6615-6618,6656
目的:活性氧介导的氧化损伤是缺血再灌注损伤的重要机制,本研究通过观察H2O2预处理对氧化损伤的H9c2心肌细胞存活率和细胞凋亡的影响,探讨其保护H9c2心肌细胞的作用机制。方法:体外培养H9c2心肌细胞,取对数生长期细胞用于实验研究。建立H2O2预处理抵抗高浓度H:O:诱导的细胞氧化损伤模型,实验分组如下:(1)正常对照组(CTL);(2)损伤组(INJURY);(3)预处理组十损伤组(PC)。应用CCK8法检测细胞存活率;试剂盒检测胞内MDA水平和T.sOD活性;Hoechst33258染色观察凋亡形态;Annexin-V/PI双染与流式细胞术检测细胞凋亡率。结果:25vLmol/L的H202预处理90rain能明显地保护H9c2心肌细胞抵抗400μmol/LH2O2诱导的氧化损伤,提高细胞存活率,下调MDA水平,上调SOD活性,抑制细胞凋亡,降低细胞凋亡率。结论:低浓度H2O2预处理能减轻H9c2心肌细胞的氧化损伤,抑制氧化损伤诱导的心肌细胞凋亡,具有很好的抗氧化损伤和抗心肌细胞凋亡的保护作用,其作用机制可能与细胞SOD活性上调有关。H2O2预处理为临床治疗心肌缺血/再灌注损伤提供了一项新策略。  相似文献   

3.

Background

Epigallocatechin-3-gallate (EGCG) has been documented for its beneficial effects protecting oxidative stress to cardiac cells. Previously, we have shown the EGCG-mediated cardiac protection by attenuating reactive oxygen species and cytosolic Ca2+ in cardiac cells during oxidative stress and myocardial ischemia. Here, we aimed to seek a deeper elucidation of the molecular anti-oxidative capabilities of EGCG in an H2O2-induced oxidative stress model of myocardial ischemia injury using H9c2 rat cardiomyoblasts.

Results

Proteomics analysis was used to determine the differential expression of proteins in H9c2 cells cultured in the conditions of control, 400 μM H2O2 exposure for 30 min with and/or without 10 to 20 μM EGCG pre-treatment. In this model, eight proteins associated with energy metabolism, mitochondrial electron transfer, redox regulation, signal transduction, and RNA binding were identified to take part in EGCG-ameliorating H2O2-induced injury in H9c2 cells. H2O2 exposure increased oxidative stress evidenced by increases in reactive oxygen species and cytosolic Ca2+ overload, increases in glycolytic protein, α-enolase, decreases in antioxidant protein, peroxiredoxin-4, as well as decreases in mitochondrial proteins, including aldehyde dehydrogenase-2, ornithine aminotransferase, and succinate dehydrogenase ubiquinone flavoprotein subunit. All of these effects were reversed by EGCG pre-treatment. In addition, EGCG attenuated the H2O2-induced increases of Type II inositol 3, 4-bisphosphate 4-phosphatase and relieved its subsequent inhibition of the downstream signalling for Akt and glycogen synthase kinase-3β (GSK-3β)/cyclin D1 in H9c2 cells. Pre-treatment with EGCG or GSK-3β inhibitor (SB 216763) significantly improved the H2O2-induced suppression on cell viability, phosphorylation of pAkt (S473) and pGSK-3β (S9), and level of cyclin D1 in cells.

Conclusions

Collectively, these findings suggest that EGCG blunts the H2O2-induced oxidative effect on the Akt activity through the modulation of PIP3 synthesis leading to the subsequent inactivation of GSK-3β mediated cardiac cell injury.  相似文献   

4.
Propofol is a widely used intravenous anesthetic agent with antioxidant properties secondary to its phenol based chemical structure. Treatment with propofol has been found to attenuate oxidative stress and prevent ischemia/reperfusion injury in rat heart. Here, we report that propofol protects cardiac H9c2 cells from hydrogen peroxide (H2O2)-induced injury by triggering the activation of Akt and a parallel up-regulation of Bcl-2. We show that pretreatment with propofol significantly protects against H2O2-induced injury. We further demonstrate that propofol activates the PI3K-Akt signaling pathway. The protective effect of propofol on H2O2-induced injury is reversed by PI3K inhibitor wortmannin, which effectively suppresses propofol-induced activation of Akt, up-regulation of Bcl-2, and protection from apoptosis. Collectively, our results reveal a new mechanism by which propofol inhibits H2O2-induced injury in cardiac H9c2 cells, supporting a potential application of propofol as a preemptive cardioprotectant in clinical settings such as coronary bypass surgery.  相似文献   

5.
目的:研究黄芪苷Ⅳ(AST)是否通过细胞外信号调节激酶1/2(ERK1/2)通路发挥对H2O2诱导的H9c2细胞氧化损伤的保护作用。方法:用200μmoL/L的H2O2处理细胞6h,采用MTT法检测细胞存活率,建立H2O2诱导的H9c2细胞氧化损伤模型;比色法测定细胞培养液中乳酸脱氢酶(LDH)活性、总超氧化物歧化酶(T—SOD)和锰超氧化物歧化酶(Mn—SOD)活力以及丙二醛(MDA)含量;Western blot检测H9c2细胞ERK1/2蛋白的磷酸化水平。结果:在H2O2浓度为200μmol/L作用6h条件下,细胞存活率降低程度适中,实验结果重复性好,确定后续实验采用200μmol/L H2O2作用6h建立模型。与H2O2组比较,10mg/L及20mg/L AST均显著提高细胞存活率(P〈0.01),使细胞培养液中LDH活性显著降低(P〈0.01),T—SOD及Mn—SOD活力显著提高(P〈0.01),MDA含量显著降低(P〈0.01)。10mg/L及20mg/L AST均显著增加H2O2损伤的H9c2细胞p—ERK1/2蛋白的表达(P〈0.01),当用PD98059(ERK1/2的抑制剂)预处理后,AST的作用则被取消。结论:黄芪苷Ⅳ可以通过ERK1/2通路发挥对H2O2诱导的H9c2细胞氧化损伤的保护作用。  相似文献   

6.
The effect of phospholipase C treatment on cardiolipin biosynthesis was investigated in intact H9c2 cardiac myoblasts. Treatment of cells with phosphatidylcholine-specific Clostridium welchii phospholipase C reduced the pool size of phosphatidylcholine compared with controls whereas the pool size of cardiolipin and phosphatidylglycerol were unaffected. Pulse labeling experiments with [1,3-3H]glycerol and pulse-chase labeling experiments with [1,3-3H]glycerol were performed in cells incubated or pre-incubated in the absence or presence of phospholipase C. In all experiments, radioactivity incorporated into cardiolipin and phosphatidylglycerol were reduced in phospholipase C-treated cells with time compared with controls indicating attenuated de novo biosynthesis of these phospholipids. Addition of 1,2-dioctanoyl-sn-glycerol, a cell permeable 1,2-diacyl-sn-glycerol analog, to cells mimicked the inhibitory effect of phospholipase C on cardiolipin and phosphatidylglycerol biosynthesis from [1,3-3H]glycerol indicating the involvement of 1,2-diacyl-sn-glycerol. The mechanism for the reduction in cardiolipin and phosphatidylglycerol biosynthesis in phospholipase C-treated cells appeared to be a decrease in the activities of phosphatidic acid:cytidine-5triphosphate cytidylyltransferase and phosphatidylglycerolphosphate synthase, mediated by elevated 1,2-diacyl-sn-glycerol levels. Upon removal of phospholipase C from the incubation medium, phosphatidylcholine biosynthesis from [methyl-3H]choline was markedly stimulated. These data suggest that de novo phosphatidylglycerol and cardiolipin biosynthesis may be regulated by 1,2-diacyl-sn-glycerol and support the notion that phosphatidylglycerol and cardiolipin biosynthesis may be coordinated with phosphatidylcholine biosynthesis in H9c2 cardiac myoblast cells.  相似文献   

7.
Retinoid X receptor (RXR) plays a central role in the regulation of intracellular receptor signaling pathways. We examined its role in regulating oxidative stress-induced apoptosis in H9c2 rat ventricular cells. We showed for the first time that functional RXR protein was downregulated by hydrogen peroxide (H2O2) in H9c2 cardiomyocytes. Natural and synthetic agonists of RXR, 9-cis-RA, and LGD1069 respectively, prevented H2O2-triggered apoptosis, and this anti-apoptotic effect was inhibited by the RXR antagonist HX531. Further investigation into the protective mechanisms of RXR demonstrated that H2O2-induced loss of mitochondrial membrane potential, mitochondrial release of cytochrome c and caspase-3 activation were all significantly attenuated by pretreatment with RXR agonists. Furthermore, this protection was associated with a reduction in intracellular reactive oxygen species and an upregulation in catalase activity. Thus, these data indicate that pharmacological activation of RXR exerts protective effects against H2O2-induced apoptosis in H9c2 rat ventricular cells through antioxidant and mitochondria-protective mechanisms.  相似文献   

8.
李涛  姜科声  阮琴  刘志强 《生物工程学报》2012,28(10):1253-1264
为研究心脏发育关键基因nkx2.5的功能及应用价值,构建Ad-Nkx2.5重组腺病毒,并检测nkx2.5过表达拮抗氧化应激损伤的效应及机制。采用AdEasy腺病毒表达系统构建Ad-Nkx2.5重组腺病毒,建立H2O2诱导H9c2心肌细胞凋亡模型,分别用Ad-Nkx2.5重组病毒或对照病毒感染细胞,采用Hoechst33342染色观察细胞形态变化、MTT法检测细胞存活率,免疫印迹检测caspase-3活化、细胞色素C的胞浆含量。并通过Real-timePCR检测凋亡相关基因bcl-2和bax表达。结果发现,nkx2.5过表达促进H9c2细胞存活,抑制H2O2诱导的caspase-3活化及线粒体细胞色素C的释放。Nkx2.5过表达上调bcl-2表达,显著下调H2O2诱导的bax表达。并发现H2O2对Nkx2.5核定位无明显影响。结果显示重组腺病毒介导的Nkx2.5过表达可通过调控凋亡相关基因表达,抑制线粒体凋亡途径,保护心肌细胞抗氧化损伤。  相似文献   

9.
Unconjugated bilirubin (UCB), the end product of heme catabolism, causes apoptosis in cells of the central nervous system, endothelial cells, and hepatotoma cells. However, the molecular mechanisms that contribute to UCB cytotoxicity remain unclear. The purpose of this study was to characterize the sequence of early events leading to UCB-mediated cytotoxicity in murine hepatoma Hepa 1c1c7 cells. In the present study, UCB (5-50 microM) was found to markedly increase the intracellular generation of reactive oxygen species (ROS) in a concentration-dependent manner, which is significantly elevated by 30 min post-treatment. This generation of ROS by UCB is not dependent on aryl hydrocarbon receptor (Ahr) signaling, as cells deficient in the Ahr (C12 cells) or the Ahr nuclear translocator protein (Arnt; C4 cells) were as efficient at generating ROS as wild type (WT) Hepa 1c1c7 cells. Mitochondrial membrane depolarization, evaluated with the lipophilic cationic dye, JC-1, occurred at least by 2 h after treatment with 50 muM UCB. Analysis of the caspase cascade demonstrated that activation of caspase-9 preceded activation of caspase-3. No conversion of procaspase-2 to active caspase-2 was detected in this study. These results demonstrate that UCB-mediated apoptosis in Hepa 1c1c7 cells is associated with increased oxidative stress and that caspase-9, and definitely not caspase-2, is the initiator caspase for apoptosis in UCB-treated Hepa 1c1c7 cells.  相似文献   

10.
11.
目的探讨硫化氢(H2S)对阿霉素(DOX)诱导的H9c2细胞损伤的影响及其作用机制。 方法H2S对DOX心肌毒性保护作用的实验分组为:对照组(Control组),5?μmol/?L DOX处理组(A组),5?μmol/L DOX和400?μmol/L NaHS共同处理组(B组),400?μmol/L NaHS单独处理组(C组),5?μmol/L DOX、400?μmol/L NaHS和15?μmol/L Sirtinol共同处理组(D组),15?μmol/L Sirtinol单独处理组(E组)。SIRT1是否参与H2S抗DOX心肌毒性作用机制的实验分组为:对照组(Control组),5?μmol/L DOX处理组(F组),5?μmol/L DOX和400?μmol/L NaHS共同处理组(G组),5?μmol/L DOX、400?μmol/L NaHS和15?μmol/L Sirtinol共同处理组(H组),15?μmol/L Sirtinol单独处理组(I组)。使用MTT法检测细胞活力;Elisa法检测细胞MDA以及SOD水平;DCFH-?DA荧光探针法检测ROS水平;采用Western Blot法检测SIRT1蛋白表达。使用单因素方差分析法进行统计学分析。 结果NaHS预处理可抑制DOX导致的H9c2细胞活力下降:Control组,A组、B组、C组细胞活力分别为100﹪、(54.58±1.58)﹪、(85.05±4.31)﹪、(100.22±4.46)﹪ (F = 134.9,P < 0.001)。NaHS预处理可减弱DOX引起的H9c2细胞ROS、MDA水平的增加以及SOD水平的降低:Control组的ROS、MDA和SOD水平分别是100﹪、(34.18±1.56) μmol/g、(53.69±1.44) U/?mg;A组的ROS、MDA和SOD水平分别是(174.90±12.65)﹪、(72.65±2.66) μmol/g、(31.80±2.05) U/?mg;B组的ROS、MDA和SOD水平分别是(126.08±6.25)﹪、(44.59±1.92) μmol/g、(48.06±1.56) U/mg;C组的ROS、MDA和SOD水平分别是(91.86±1.66)﹪、(32.93±1.56)?μmol/?g、(55.93±1.58)?U/?mg (F?= 83.26,P < 0.001;F = 271.4,P < 0.001;F = 127.0,P < 0.001)。F组(6、12、24?h)H9c2细胞SIRT1蛋白表达水平分别是(0.45±0.03)、(0.27±0.02)、(0.25±0.03),较Control组(1.00±0.00)降低(F = 611.1,P < 0.001)。本研究还发现,NaHS预处理H9c2细胞能阻止DOX引起的SIRT1蛋白表达下调:Control组、F组、G组、H组的SIRT1蛋白表达水平分别是(1.00±0.00)、(0.31±0.03)、(0.60±0.04)、(1.09±0.09)(F = 123.4,P?2S对DOX诱导的H9c2细胞活力降低的抑制作用:Control组,F组、G组、H组、I组细胞活力分别为100﹪、(54.58±1.58)﹪、(85.37±3.62)﹪、(71.11±2.11)﹪、(97.53±1.45)﹪ (F = 238.2,P < 0.001)。Sirtinol预处理可明显逆转H2S对DOX导致的H9c2细胞ROS和MDA含量增加及SOD水平降低的抑制作用:Control组的ROS、MDA和SOD水平分别是100﹪、(35.84±2.22)μmol/?g、(53.03±3.16) U/mg;F组的ROS、MDA和SOD水平分别是(184.6±11.33)﹪、(74.78±5.30)μmol/g、(29.26±0.85)U/mg;G组的ROS、MDA和SOD水平分别是(126.5±7.57)﹪、(41.95±3.43)μmol/g、(52.61±2.26)U/mg;H组的ROS、MDA和SOD水平分别是(174.7±5.50)﹪、(67.69±1.52) μmol/g、(35.33±1.95) U/mg,I组的ROS、MDA和SOD水平分别是(98.03±2.86)﹪、(37.66±2.49)μmol/g、51.14 U/mg(F = 112.0,P < 0.001;F = 93.73,P < 0.001;F = 84.92,P < 0.001)。 结论H2S通过调控SIRT1抑制DOX诱导的H9c2细胞损伤。  相似文献   

12.
MicroRNAs and autophagy play critical roles in cardiac hypoxia/reoxygenation (H/R)‐induced injury. Here, we investigated the function of miR‐21 in regulating autophagy and identified the potential molecular mechanisms involved. To determine the role of miR‐21 in regulating autophagy, H9c2 cells were divided into the following six groups: control group, H/R group, (miR‐21+ H/R) group, (miR‐21‐negative control + H/R) group, (BEZ235+ H/R) group and (miR‐21+ BEZ235+ H/R) group. The cells underwent hypoxia for 1 hr and reoxygenation for 3 hrs. Cell count kit‐8 was used to evaluate cell function and apoptosis was analysed by Western blotting. Western blotting and transmission electron microscopy were used to investigate autophagy. We found that miR‐21 expression was down‐regulated, and autophagy was remarkably increased in H9c2 cells during H/R injury. Overexpression of miR‐21 with a miR‐21 precursor significantly inhibited autophagic activity and decreased apoptosis, accompanied by the activation of the AKT/mTOR pathway. In addition, treatment with BEZ235, a novel dual Akt/mTOR inhibitor, resulted in a significant increase in autophagy and apoptosis. However, we found that miR‐21‐mediated inhibition of apoptosis and autophagy was partly independent of Akt/mTOR activation, as demonstrated in cells treated with both miR‐21 and BEZ235. We showed that miR‐21 could inhibit H/R‐induced autophagy and apoptosis, which may be at least partially mediated by the Akt/mTOR signalling pathway.  相似文献   

13.
Chloroquine is a potent lysomotropic therapeutic agent used in the treatment of malaria. The mechanism of the chloroquine-mediated modulation of new cardiolipin biosynthesis in isolated rat liver hepatocytes and H9c2 cardiac myoblast cells was addressed in this study. Hepatocytes or H9c2 cells were incubated with [1,3-3H]glycerol in the absence or presence of chloroquine and cardiolipin biosynthesis was examined. The presence of chloroquine in the incubation medium of hepatocytes resulted in a rapid accumulation of radioactivity in cardiolipin indicating an elevated de novo biosynthesis. In contrast, chloroquine caused a reduction in radioactivity incorporated into cardiolipin in H9c2 cells. The presence of brefeldin A, colchicine or 3-methyladenine did not effect radioactivity incorporated into cardiolipin nor the chloroquine-mediated stimulation of cardiolipin biosynthesis in hepatocytes indicating that vesicular transport, cytoskeletal elements or increased autophagy were not involved in de novo cardiolipin biosynthesis induced by chloroquine. The addition of chloroquine to isolated rat liver membrane fractions did not affect the activity of the enzymes of de novo cardiolipin biosynthesis but resulted in an inhibition of mitochondrial cytidine-5-diphosphate-1,2-diacyl-sn-glycerol hydrolase activity. The mechanism for the reduction in cardiolipin biosynthesis in H9c2 cells was a chloroquine-mediated inhibition of glycerol uptake and this did not involve impairment of lysosomal function. The kinetics of the chloroquine-mediated inhibition of glycerol uptake indicated the presence of a glycerol transporter in H9c2 cells. The results of this study clearly indicate that chloroquine has markedly different effects on glycerol uptake and cardiolipin biosynthesis in hepatocytes and H9c2 cardiac cells  相似文献   

14.
H9c2细胞是来源于大鼠胚胎心脏组织的成肌细胞系,B组柯萨奇病毒(group B Coxsackievirus,CVB)是心肌炎和扩张型心肌病的主要病原.本研究观察了CVB3在H9c2细胞中的感染性,探讨H9c2细胞是否可用于CVB致心肌疾病的实验研究.用整合了增强型绿色荧光蛋白(EGFP)或海肾荧光素酶(RLuc)的...  相似文献   

15.
Ghrelin is a multifunctional peptide that actively protects against cardiovascular ischemic diseases, but the underlying mechanisms are unclear. We used CoCl2 to mimic hypoxic conditions in cardiac H9c2 cells in order to study the mechanism by which ghrelin protects cardiac myocytes against hypoxic injury by regulating the content of intracellular ROS and autophagy levels. Cell apoptosis and necrosis were evaluated by the flow cytometry assay, Hoechst staining, and LDH activity. Cell viability was detected by the WST-1 assay; ROS levels were assessed using DCFH2-DA; and Nox1, catalase and Mn-SOD were assayed by real-time PCR and activity assays. LC3II was measured by Western blot analysis. We observed that CoCl2 induced apoptosis and death of H9c2 cells in a dose- and time-dependent manner. This was characterized by an increase in cell apoptosis, LDH activity, ROS content, Nox1 expression, and autophagy levels and a decrease in cell viability, catalase, and Mn-SOD activities. Ghrelin treatment significantly attenuated CoCl2-induced hypoxic injury by decreasing cell apoptosis, LDH activity, ROS content, and Nox1 expression and increasing cell viability, autophagy levels, catalase, and Mn-SOD mRNA levels and activities. Further experiments revealed that inhibiting autophagy using 3-MA or AMPK pathway with compound C almost abrogated the induction of ghrelin in autophagy. This was associated with a decrease in cell viability and an increase in LDH activity. Our results indicate that ghrelin protected cardiac myocytes against CoCl2-induced hypoxic injury by decreasing Nox1 expression, increasing the expression and activity of endogenous antioxidant enzymes, and inducing protective autophagy in an AMPK-dependent manner.  相似文献   

16.
17.
3β-Hydroxy-5,6-secocholestan-6-al (cholesterol secoaldehyde or ChSeco), an oxysterol known to be formed in ozone- and singlet oxygen-mediated oxidations of cholesterol, has been detected in the atherosclerotic plaque and in the brain of patients suffering from Alzheimer’s disease and Lewy body dementia. Previously, we have shown that, in H9c2 cardiomyoblasts, ChSeco induces oxidative stress followed by apoptosis involving both intrinsic and extrinsic signaling pathways. In the present study, we investigated the nature of reactive oxygen species (ROS) and its associated redox signaling in H9c2 cells upon treatment with ChSeco. Both catalase and deferoxamine, which lowered intracellular ROS, were found to alleviate the ChSeco-induced cytotoxicity. ChSeco-treated H9c2 cells showed a significant decrease in the intracellular catalase activity, suggesting the involvement of H2O2 in the associated cytotoxicity. Additionally, in ChSeco-exposed cells, there was a marked increase in lipid peroxidation and pre-treatment with SB 203580 (p38 MAPK inhibitor) and MEK1/2 inhibitor (ERK1/2 and JNK inhibitor) rendered protection against the cytotoxicity. An early increase in the expression of p-SAPK/JNK or delayed p38 MAPK did not alter ATF-2 but decreased c-Jun expression in these cells. Overall, these findings are consistent with MAPK signaling resulting from increased cellular H2O2 in ChSeco-induced cytotoxicity in cardiomyoblasts.  相似文献   

18.
Ischemia-reperfusion (I/R) injury is a multifactorial process triggered when an organ is subjected to transiently reduced blood supply. The result is a cascade of pathological complications and organ damage due to the production of reactive oxygen species following reperfusion. The present study aims to evaluate the role of activated calcium-sensing receptor (CaR)-cystathionine γ-lyase (CSE)/hydrogen sulfide (H2S) pathway in I/R injury. Firstly, an I/R rat model with CSE knockout was constructed. Transthoracic echocardiography, TTC and HE staining were performed to determine the cardiac function of rats following I/R Injury, followed by TUNEL staining observation on apoptosis. Besides, with the attempt to better elucidate how CaR-CSE/H2S affects I/R, in-vitro culture of human coronary artery endothelial cells (HCAECs) was conducted with gadolinium chloride (GdCl3, a CaR agonist), H2O2, siRNA against CSE (siCSE), or W7 (a CaM inhibitor). The interaction between CSE and CaM was subsequently detected. Plasma oxidative stress indexes, H2S and CSE, and apoptosis-related proteins were all analyzed following cell apoptosis. We found that H2S elevation led to the improvement whereas CSE knockdown decreased cardiac function in rats with I/R injury. Moreover, oxidative stress injury in I/R rats with CSE knockout was aggravated, while the increased expression of H2S and CSE in the aortic tissues resulted in alleviated the oxidative stress injury. Moreover, increased H2S and CSE levels were found to inhibit cell apoptotic ability in the aortic tissues after I/R injury, thus attenuating oxidative stress injury, accompanied by inhibited expression of apoptosis-related proteins. In HCAECs following oxidative stress treatment, siCSE and CaM inhibitor were observed to reverse the protection of CaR agonist. Coimmunoprecipitation assay revealed the interaction between CSE and CaM. Taken together, all above-mentioned data provides evidence that activation of the CaR-CSE/H2S pathway may confer a potent protective effect in cardiac I/R injury.  相似文献   

19.
Cardiac cell death is one of the major events implicated in doxorubicin‐induced cardiotoxicity, which leads to heart failure. We recently reported that Yes‐associated protein 1 (YAP1) regulates cell survival and apoptosis. However, it is unclear whether YAP1 regulates doxorubicin‐induced cell death in cardiomyocytes. We investigated whether YAP1 is involved in doxorubicin‐induced cell death using H9c2 cardiac cells and mouse heart. In an in vivo study, YAP1 protein expression was significantly decreased in hearts of doxorubicin‐treated mice with increased caspase‐3 activation. Doxorubicin also caused cell death by increasing caspase‐3 activation in H9c2 cells. Doxorubicin reduced YAP1 protein expression and messenger RNA expression accompanied by increased phosphorylation of YAP1 at Ser127. Doxorubicin further increased cell death with increased caspase‐3/7 activation in the absence of YAP1 when compared with doxorubicin or siYAP1 treatment alone. Overexpression of constitutively active YAP1 (YAP1–5SA) using an adenovirus gene transfer technique significantly reversed doxorubicin‐induced cell death by decreasing caspase‐3/7 activation in H9c2 cells. Akt, a potential prosurvival factor, decreased in doxorubicin‐ and YAP1 short interfering RNA (siRNA)‐treated cells. Doxorubicin further significantly decreased Akt protein expression when YAP1 was silenced. Overexpression of YAP1 canceled decreased Akt protein expression induced by doxorubicin treatment in H9c2 cells. In conclusion, these results suggest that doxorubicin‐induced cardiac cell death is mediated in part by down‐regulation of YAP1 and YAP1‐targeted gene, Akt. Modulating YAP1 and its related Hippo pathway on local cardiomyocytes may be a promising therapeutic approach for doxorubicin‐induced cardiotoxicity.  相似文献   

20.
目的:研究氯化钴(CoCl2)对大鼠胚胎心脏来源的H9c2心肌细胞中新基因Mipu1表达的影响。方法:利用不同浓度的CoCl2(0、100、200、300、400、500μmol/L)处理H9c2细胞9h,及200μmol/L CoCl2处理H9c2细胞不同的时间(0、6、9、12、24h)后,用RT-PCR和Western Blot分别观察H9c2细胞Mipu1 mRNA和蛋白的表达情况。结果:CoCl2可以诱导H9c2细胞中Mipu1 mRNA和蛋白表达升高,200μM CoCl2处理组的Mipu1的表达水平高于100μM CoCl2处理组,但是更高浓度的CoCl2(〉200μM)不能使Mipu1的表达进一步升高。随着CoCl2作用时间的延长,Mipu1的表达逐步升高,在12h达到高峰,但是在24h后下降。结论:CoCl2能够促进H9c2细胞新基因Mipu1的表达,并且具有一定的剂量和时间依赖性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号