首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
自然生态系统中植物物种多样性是否随功能多样性变化而影响初级生产力的问题存在很大争议。在高寒矮嵩草草甸,对不同放牧强度、不同利用格局和土壤资源水平的4种生境(Ⅰ.畜圈:重度放牧、资源丰富;Ⅱ.牧道:中度放牧、资源适中;Ⅲ.人工草地:轻-中度放牧、资源贫乏;Ⅳ.封育草地:不放牧、资源贫乏)中物种多样性与功能多样性的变化及其对初级生产力的影响进行了研究。结果表明:物种多样性在牧道生境最高,符合中度干扰理论的预测;人工草地物种多样性低但功能多样性却最高;封育草地物种多样性和功能多样性均较高;物种多样性与地上生物量呈正相关,而功能多样性则与地上生物量呈负相关。表明功能多样性不随物种多样性而变化,二者可能在一定程度上是相互独立地作用于生产力的。群落生产力和生物多样性受生境资源、物种特征、放牧历史和放牧强度等因素的综合影响。  相似文献   

2.
Complementary soil exploration by the root systems of coexisting tree species has been hypothesised to result in a higher root biomass of mixed forests than of monocultures but the existing evidence for a belowground diversity effect in forests is scarce and not conclusive. In a species‐rich temperate broad‐leaved forest, we analysed the fine root biomass (roots ≤ 2 mm) and necromass in 100 plots differing in tree species diversity (one to three species) and species composition (all possible combinations of five species of the genera Acer, Carpinus, Fagus, Fraxinus and Tilia) which allowed us to separate possible species diversity and species identity effects on fine root biomass. We found no evidence of a positive diversity effect on standing fine root biomass and thus of overyielding in terms of root biomass. Root necromass decreased with increasing species diversity at marginal significance. Various lines of evidence indicate significant species identity effects on fine root biomass (10–20% higher fine root biomass in plots with presence of maple and beech than in plots with hornbeam; 100% higher fine root biomass in monospecific beech and ash plots than in hornbeam plots; differences significant). Ash fine roots tended to be over‐represented in the 2‐ and 3‐species mixed plots compared to monospecific ash plots pointing at apparent belowground competitive superiority of Fraxinus in this mixed forest. Our results indicate that belowground overyielding and spatial complementarity of root systems may be the exception rather than the rule in temperate mixed forests.  相似文献   

3.
A key challenge in ecology is to understand the relationships between organismal traits and ecosystem processes. Here, with a novel dataset of leaf length and width for 10 480 woody dicots in China and 2374 in North America, we show that the variation in community mean leaf size is highly correlated with the variation in climate and ecosystem primary productivity, independent of plant life form. These relationships likely reflect how natural selection modifies leaf size across varying climates in conjunction with how climate influences canopy total leaf area. We find that the leaf size?primary productivity functions based on the Chinese dataset can predict productivity in North America and vice‐versa. In addition to advancing understanding of the relationship between a climate‐driven trait and ecosystem functioning, our findings suggest that leaf size can also be a promising tool in palaeoecology for scaling from fossil leaves to palaeo‐primary productivity of woody ecosystems.  相似文献   

4.
AimAnticipating and mitigating the impacts of climate change on species diversity in montane ecosystems requires a mechanistic understanding of drivers of current patterns of diversity. We documented the shape of elevational gradients in avian species richness in North America and tested a suite of a priori predictions for each of five mechanistic hypotheses to explain those patterns.LocationUnited StatesMethodsWe used predicted occupancy maps generated from species distribution models for each of 646 breeding birds to document elevational patterns in avian species richness across the six largest U.S. mountain ranges. We used spatially explicit biotic and abiotic data to test five mechanistic hypotheses proposed to explain geographic variation in species richness.ResultsElevational gradients in avian species richness followed a consistent pattern of low elevation plateau‐mid‐elevation peak (as per McCain, 2009). We found support for three of the five hypotheses to explain the underlying cause of this pattern: the habitat heterogeneity, temperature, and primary productivity hypotheses.Main ConclusionsSpecies richness typically decreases with elevation, but the primary cause and precise shape of the relationship remain topics of debate. We used a novel approach to study the richness‐elevation relationship and our results are unique in that they show a consistent relationship between species richness and elevation among 6 mountain ranges, and universal support for three hypotheses proposed to explain the underlying cause of the observed relationship. Taken together, these results suggest that elevational variation in food availability may be the ecological process that best explains elevational gradients in avian species richness in North America. Although much attention has focused on the role of abiotic factors, particularly temperature, in limiting species’ ranges, our results offer compelling evidence that other processes also influence (and may better explain) elevational gradients in species richness.  相似文献   

5.
为了测度一年生和多年生豆禾混播草地的超产效应与植物多样性效应的关系, 明确一年生和多年生混播草地的高产优势, 探索豆禾混播草地多样性效应和超产效应对其生态功能的响应机制, 于2013-2015年在新疆伊犁地区昭苏盆地开展了3年的牧草产量观测试验。该试验设置3种牧草混播种类和混播比例, 分别为一年生豆禾混播草地(2种牧草混播, AM2)和多年生豆禾混播草地(2种牧草混播, PM2; 4种牧草混播, PM4; 6种牧草混播, PM6), 豆禾混播比例分别为6:4、5:5和4:6。结果表明: 1) 2013、2014年和3年平均值AM2的超产幅度小于PM2和PM6, 2015年AM2的超产幅度大于PM2、PM4和PM6; 混播群落生产力与群落组分中生产力最高产物种单产以及各组分种平均单产的差值表现出相似的规律。2) 2013、2014年和3年平均值AM2的互补效应大于PM2、PM4和PM6, AM2的选择效应则远小于互补效应, PM2、PM4和PM6的互补效应则比较稳定。3)物种丰富度和物种均匀度与牧草产量(群落生产力)大部分情况下呈单峰的“饱和上升型”模式, 分别在4种牧草混播和豆禾混播比例为5:5时, 具有较高生产力。4)多年生豆禾混播草地的互补效应、选择效应和多样性净效应均随生长年限的延长而呈下降趋势, 也导致了超产幅度、超产效应及其稳定性的下降。由此可见, 在建植初期, 互补效应和选择效应共同主导了多年生豆禾混播草地的超产效应, 而随着生长年限的延长, 选择效应则成为主要影响因素; 一年生豆禾混播草地的超产效应则一直受互补效应的影响。  相似文献   

6.
李茜  王晖  栾军伟  高丙  王一  刘世荣 《生态学报》2023,43(12):4984-4994
林分生产力通常会随着树种多样性增加而增加,但不同营养级生物多样性以及树种和土壤微生物多样性之间的相互作用如何影响生产力目前尚不清楚。以亚热带不同丰富度和树种组成的人工林为研究对象,从物种、功能性状、遗传三个维度的树种多样性以及土壤真菌和细菌系统发育多样性,探究了中国亚热带人工林树种多样性和土壤微生物多样性对林分生产力的影响。研究发现,林分生产力随树种功能多样性(FD)(P<0.001)、比叶面积群落加权均值(CWM-SLA)(P<0.01)、树种系统发育多样性(PD)(P<0.05)和土壤真菌多样性(PDF)(P<0.01)的增加而显著增加,分别解释了林分生产力总变异的12.86%、6.80%、3.67%和3.08%。FD和CWM-SLA可分别通过增加土壤真菌、细菌多样性而间接提高林分生产力。研究结果表明多营养级生物多样性是维持高水平林分生产力的基础,树种多样性和土壤微生物多样性之间的自上而下的级联效应在调节生态系统生产力方面发挥着重要作用。  相似文献   

7.
In an old field grassland dominated byMiscanthus sinensis Anderss. the community structures, phytomass, dominance ofM. sinensis and species diversity were measured. Species and life form composition of the stand were characterized by higher percentages of therophytes, woody and shrubby species, liana and alien species. From May so September in 1982, all the aboveground parts were harvested from each of the four quadrats (2 m×2 m) once a month. Seasonal peak of aboveground phytomass, in September, was 1027 g d.w.m−2 to whichM. sinensis contributed as much as 96.5%. With the progress of the growing season,M. sinensis became increasingly important both in stand phytomass and in dominance, whereas species diversity based on the dry weight contributions of constituent species decreased. Our analysis of these seasonal trends showed that the diversity was largely a function of dominance of the most important species, rather than that of stand phytomass or productivity. The simultaneous measurements of 20 quadrats in late August 1983, also supported the above conclusion.  相似文献   

8.
Understanding the interplay between land-use change, species diversity and ecosystem function is critical for the prediction of global change impacts on ecosystem services. Biodiversity experiments with artificial species assemblages have shown that community-scale species richness may affect ecosystem productivity and spatial stability. However, the use of synthetic communities with controlled levels of species density for biodiversity experiments has been criticised and their relevance for natural communities has been questioned. Here, we use a land-use change experiment to investigate the biodiversity effects on production within managed, upland grasslands. We examine species diversity and productivity at both the small plant-neighbourhood scale (14×14 cm) and the field scale (15 m×25 m) for two land-use trajectories under field conditions: intensification through fertilisation, and extensification through the cessation of mowing. Both intensification and extensification were associated with a decrease in species number, but the magnitude of this decrease was greater at the small scale. Extensification was associated with a decrease in small-scale productivity whereas intensification had no significant effect on small-scale productivity. Effects of land-use treatments on biomass production were mediated by variation in small-scale species number; species number showed a significant positive relationship with small-scale productivity within each land-use treatment. Furthermore, species number was associated with a decrease in the variance of small-scale green biomass. In contrast, no species diversity effects were found on productivity at the field scale. Instead, field-scale species diversity decreased with increase in the total above-ground biomass (green biomass+litter). This study demonstrates that biodiversity effects can be observed under field conditions at the small scale and may play an important role for ecosystem functioning and stability even in low-diversity plant communities.  相似文献   

9.
10.
Plant community functional structure may drive ecosystem functions in relation with (i) the trait values characterizing dominant species, according to the “biomass ratio hypothesis” proposed by Grime, and (ii) thanks to trait dissimilarity among species, according to the “diversity hypothesis” proposed by Tilman. Both propositions have already yielded support but their relative importance and how they impact biomass production in field situations is still not well known. This study therefore tested (i) whether or not there was a close relationship between biomass production and the community-weighted mean trait values (CWM), as expected from the “biomass ratio hypothesis”, and (ii) the impact of the functional diversity (FDQ) on biomass production, which is expected to be positive according to the “diversity-hypothesis”. The study considered a range of plant assemblages occurring in a wet grassland and five above-ground and four below-ground plant traits were measured to characterize their functional structure. The effects of species diversity, soil water content, soil nitrogen availability and grazing intensity on biomass production were also determined.We showed that biomass production was not related either to species richness and diversity or to any of the resource and disturbance parameters considered. Conversely, the functional structure was found to explain up to 55% of the variability of the biomass production. The results obtained clearly supported the “biomass-ratio hypothesis”. Functional diversity was mainly found to negatively impact biomass production with only poor support to the “diversity hypothesis”. We suggest that such a dilution effect of increasing FDQ on community primary production may be typical of fertile habitats.In order to significantly improve our understanding of the relationship between functional diversity and ecosystem processes, further studies should consider plant assemblages that have been shaped over the long term and habitats across a wide range of productivity.  相似文献   

11.
Bacterial diversity patterns along a gradient of primary productivity   总被引:6,自引:1,他引:5  
Primary productivity is a key determinant of biodiversity patterns in plants and animals but has not previously been shown to affect bacterial diversity. We examined the relationship between productivity and bacterial richness in aquatic mesocosms designed to mimic small ponds. We observed that productivity could influence the composition and richness of bacterial communities. We showed that, even within the same system, different bacterial taxonomic groups could exhibit different responses to changes in productivity. The richness of members of the Cytophaga‐Flavobacteria‐Bacteroides group exhibited a significant hump‐shaped relationship with productivity, as is often observed for plant and animal richness in aquatic systems. In contrast, we observed a significant U‐shaped relationship between richness and productivity for α‐proteobacteria and no discernable relationship for β‐proteobacteria. We show, for the first time, that bacterial diversity varies along a gradient of primary productivity and thus make an important step towards understanding processes responsible for the maintenance of bacterial biodiversity.  相似文献   

12.
生物多样性与生态系统生产力之间的关系是当前生态学领域的热点问题。短花针茅(Stipa breviflora)草原是内蒙古荒漠草原的主要类型, 生态系统脆弱, 气候波动剧烈, 研究内蒙古短花针茅草原生物多样性与生产力的关系具有十分重要的意义。该研究在内蒙古短花针茅草原区设置了202个样地进行群落调查, 在干旱区及半干旱区两种资源供给下, 分析了物种丰富度、功能群丰富度与生产力的关系, 旨在解决两个科学问题: 1)物种多样性和功能群多样性中, 哪一种与生产力关系更为密切?2)资源供给对多样性和生产力关系的影响。结果表明: 1)物种丰富度、群落生产力与年降水量呈正相关关系, 而功能群丰富度与年降水量之间不存在显著相关性; 2)群落生产力随物种丰富度的增加而增加, 且两者间呈正线性关系, 功能群丰富度与生产力之间不存在显著相关关系; 3)资源供给会影响多样性与生产力之间的关系, 资源供给低时, 多样性对生产力贡献较低, 资源供给高时, 多样性对生产力的贡献较高。该研究丰富了多样性与生产力关系的研究, 同时, 考虑到植物功能性状的研究在近几年受到生态学家的重视, 且多数研究集中于小尺度的人工控制实验, 因此, 在大尺度自然生态系统中开展功能性状多样性与生态系统功能关系的研究将十分必要。  相似文献   

13.
One of the major goals in ecology is to determine the mechanisms that drive the asymptotic increase in ecosystem productivity with plant species diversity. Niche complementarity, the current paradigm for the asymptotic diversity-productivity pattern, posits that the addition of species to a community increases productivity because each species specializes on different resources and thus can more thoroughly utilize the available resources. At higher diversity the increase in productivity decreases because resources become limiting, resulting in the classic asymptotic diversity-productivity pattern. An alternative but less tested explanation is that density-dependent disease from species-specific soil microbes drive the diversity-productivity relationship by increasing disease and thus decreasing productivity at low diversity. At higher diversity, productivity asymptotes because disease decreases with increasing diversity until it reaches a uniformly low level. Using a series of field experiments, we found that the classic asymptotic diversity-productivity pattern existed only when soil microbes were present. Soil microbes created the well-known pattern by depressing plant growth at low productivity though negative density dependent disease. In contrast, niche complementarity played only a weak role in explaining the diversity-productivity relationship because productivity remained high at low abundance in the absence of soil microbes. Based on our findings, the ongoing loss of species in natural ecosystems will likely increase per capita plant disease and lower ecosystem productivity. Furthermore, recent evidence suggests that negative density dependent disease maintains plant species diversity, and thus this single mechanism appears to link diversity maintenance to the diversity-productivity curve—two important ecological processes.Key words: density dependence, diversity-productivity, negative feedback, pathogens, species richness, soil microbesThe asymptotically saturating increase in ecosystem productivity with increasing diversity is a well know pattern in nature14 (Fig. 1). The pattern has been used as an argument for the importance of species diversity,5 and understanding the mechanisms that drive the pattern is critical to determine the potential loss in productivity with ongoing and accelerating species loss in many ecosystems. The cause of the diversity-productivity pattern can be explained by either bottom-up control, such as plant resource competition, or top-down control from plant herbivores or pathogens. Most contemporary explanations for the pattern are centered on the bottom-up concept of niche-based resource competition, in which different species utilize different resources. The commonly accepted explanation, the niche complementarity hypothesis, states that the increase in species diversity increases productivity because each additional species uses a differ set of resources (e.g., nutrients) and thus more thoroughly utilizes whole-ecosystem resources.3,4,6 At high diversity, however, the resource requirements of additional species overlap with existing ones and thus productivity no longer increases with diversity, resulting in the asymptotic diversity-productivity pattern (Fig. 1).Open in a separate windowFigure 1Theoretical relationship between species number and biomass. As diversity increases, total biomass increases asymptotically.Top-down control from plant enemies may also produce the asymptotic diversity-productivity pattern if the enemies are species-specific and have a strong negative density-dependent effect at low diversity. One general group of enemies is plant pathogens and parasites (bacterial, fungal, viral) that live in the soil and infect plant roots (hereafter referred to as soil pathogens). The specificity of soil pathogens has been shown in various studies and is now generally accepted.1,7,8 The negative density dependent effect of plant pathogens at low diversity is likely because when diversity is low the relative abundance of each remaining species is high,911 which leads to most individuals growing in close proximity of conspecifics and thus a greater probability of species-specific disease transmission. Unlike other plant enemies, such as foliar pathogens or insect and mammalian herbivores, which can be broadly dispersed, soil-borne pathogens may be a particularly effective driver of negative density dependent effects because they have low mobility and thus are more likely to infect nearby conspecifics, which causes increased disease at low diversity.911 As diversity increases, the effect of soil-borne pathogens decreases because there is a lower likelihood of growing near a conspecific and there are lower concentrations of host-specific soil enemies.10 Consequently, soil-borne, species-specific disease may limit ecosystem productivity through top-down density-dependent regulation, even in the absence of niche-based explanations. Few studies, however, have considered the role of plant soil pathogens in driving the classic diversity-productivity relationship1 (see also ref. 2) and, until now, no study has compared the two potential drivers simultaneously.1We used a modeling approach to first demonstrate that both niche complementarity and species-specific soil pathogens can both theoretically drive the well-known diversity-productivity pattern.1 We then used a series of complementary field experiments in grasslands in North America (Ontario, Canada and Minnesota, USA) to determine how plant disease and productivity change over a gradient of plant species richness in the presence and absence of soil microbes, and whether feedback between plants and their species-specific soil biota influenced the diversity-productivity pattern.1 We first tested whether the asymptotic diversity-ecosystem productivity relationship arose in the presence of soil pathogens (a test of the negative density dependence hypothesis) or in the absence of soil pathogens (a test of the niche complementarity hypothesis). We then confirmed that soil biota were species specific and examined the decrease in plant disease and increase in productivity with increasing plant diversity.  相似文献   

14.
通过在高寒矮嵩草(Kobresia humilis)草甸为期4年的刈割(留茬1 cm、3 cm及不刈割)、施肥(尿素7.5 g·m-2·a-1+磷酸二铵1.8 g·m-2·a-1、不施肥)和浇水(20.1 kg·m-2·a-1、不浇水)控制实验, 对该生态系统中功能多样性与物种多样性的变化及其与初级生产力关系进行了研究。结果表明: 刈割和施肥显著影响植物性状和生产力, 而浇水作用微弱。刈割对物种多样性无影响, 但对不同功能多样性指数的影响不同; 施肥降低了物种多样性和以所有性状(除植株高度外)量化的功能多样性; 浇水仅对物种丰富度有微弱影响。各功能多样性的平均值能更好地反映群落物种间的功能差异。功能多样性和物种多样性呈正相关或不相关, 且二者与初级生产力的关系可表现为正相关、负相关和不相关, 说明三者间的关系是性状依赖的, 并受生境资源状况和刈割扰动的影响。植物功能性状对群落初级生产力有更加直接的影响。在考虑生物多样性对生态系统功能的影响时, 应更加注重对植物功能属性变化的研究。  相似文献   

15.
物种多样性和系统发育多样性对阔叶红松林生产力的影响   总被引:3,自引:0,他引:3  
车盈  金光泽 《应用生态学报》2019,30(7):2241-2248
生物多样性与生态系统功能间的关系已成为生态学研究的热点问题之一,其中植物多样性对森林生产力的驱动作用受到广泛关注,而其潜在驱动机制还存在很大争议.本研究依托黑龙江凉水国家级自然保护区典型阔叶红松林9 hm^2森林动态监测样地,利用2005年和2015年的调查数据,采用线性回归和结构方程模型探究不同空间尺度下物种多样性和系统发育多样性对森林生产力的影响.结果表明:物种多样性和系统发育多样性与生产力均呈正相关,随着空间尺度的增大,物种多样性对生产力的作用强度逐渐增强,而系统发育多样性对生产力的作用逐渐减弱;小尺度下系统发育多样性对生产力的影响大于物种多样性.生产力还受到非生物因素影响,在不同尺度下土壤因子与生产力均呈显著正相关,并且随着尺度的增大,土壤因子对生产力的作用逐渐占据主导地位.在今后研究中应将进化信息与生态系统功能相联系,可为其他多样性度量提供额外的解释力,同时还应考虑空间尺度及非生物因素的影响,为深入了解森林生产力的驱动机制提供科学依据.  相似文献   

16.
Plant diversity experiments generally find that increased diversity causes increased productivity; however, primary productivity is typically measured in the presence of a diverse food web, including pathogens, mutualists and herbivores. If food web impacts on productivity vary with plant diversity, as predicted by both theoretical and empirical studies, estimates of the effect of plant diversity on productivity may be biased. We experimentally removed arthropods, foliar fungi and soil fungi from the longest‐running plant diversity experiment. We found that fungi and arthropods removed a constant, large proportion of biomass leading to a greater reduction of total biomass in high diversity plots. As a result, the effect of diversity on measured plant productivity was much higher in the absence of fungi and arthropods. Thus, diversity increases productivity more than reported in previous studies that did not control for the effects of heterotrophic consumption.  相似文献   

17.
Functional benefits of predator species diversity depend on prey identity   总被引:3,自引:0,他引:3  
Abstract.  1. Determining the functional significance of species diversity in natural enemy assemblages is a key step towards prediction of the likely impact of biodiversity loss on natural pest control processes. While the biological control literature contains examples in which increased natural enemy diversity hinders pest control, other studies have highlighted mechanisms where pest suppression is promoted by increased enemy diversity.
2. This study aimed to test whether increased predator species diversity results in higher rates of predation on two key, but contrasting, insect pest species commonly found in the rice ecosystems of south-east Asia.
3. Glasshouse experiments were undertaken in which four life stages of a planthopper ( Nilaparvata lugens ) and a moth ( Marasmia patnalis ) were caged with single or three-species combinations of generalist predators.
4. Generally, predation rates of the three-species assemblages exceeded expectation when attacking M. patnalis , but not when attacking N. lugens. In addition, a positive effect of increased predator species richness on overall predation rate was found with M. patnalis but not with N. lugens .
5. The results are consistent with theoretical predictions that morphological and behavioural differentiation among prey life stages promotes functional complementarity among predator species. This indicates that emergent species diversity effects in natural enemy assemblages are context dependent; they depend not only on the characteristics of the predators species, but on the identity of the species on which they prey.  相似文献   

18.
Background: There is a lack of consensus about the productivity–richness relationship, with several recent studies suggesting that it is not productivity but other factors that are the important drivers that determine species richness.

Aims: Here, we examine the relationship between productivity, functional group dominance and plant species richness at the plot scale in Tibetan Plateau meadows. These alpine meadows are ideal to examine the species productivity-richness relationship because they have a very high species richness, a large gradient in productivity, and can be dominated by either graminoids (grasses and sedges) or forbs.

Methods: We measured plant species richness and above-ground biomass along a natural gradient of functional group abundance in 44 plots distributed across five natural, winter-grazed but otherwise undisturbed sites in the eastern part of the Qing-Hai Tibetan Plateau, in Gansu province, China in 2008.

Results: Graminoid abundance (i.e. graminoid biomass as percent of the total above-ground biomass) explained 39% of plot differences in species richness while neither productivity nor the biomass of the three most abundant plant species, either individually or combined, were a significant predictor of species richness.

Conclusions: Our results show that within these alpine meadows, a shift from graminoid to forb dominance, rather than the individual dominant species or productivity itself, is strongly correlated with species richness. Thus, differences in functional group abundance can be a strong driver of observed plant species richness patterns.  相似文献   


19.
We investigated the effect of species richness on productivity in randomly assembled grassland communities without legumes. Aboveground biomass increased with increasing species richness and different measures of complementarity showed strong increases with plant species richness. Increasing productivity could not be attributed to a relative increase of highly productive species. Instead, the increase appeared to be caused by the increased performance of several low‐productive species. Our results provide evidence that niche complementarity can strongly increase productivity in grasslands, although the communities contained only grasses and forbs.  相似文献   

20.
科尔沁地区植物种多样性对沙地草场生产力影响的研究   总被引:10,自引:4,他引:10  
对科尔沁沙地草场不同物种多样性指数与草地生产力关系的研究表明 ,依据植物种多样性指数和生产力的关系可分为两类 ,其中功能多样性和组成多样性为一类 ,最高生物量变化于 2 99~ 3 3 6g·m-2 ,为简单的一元线性关系 ,相关性显著 .种丰富度和S W指数为一类 ,最高生物量变化于 42 6~ 43 3 g·m-2 ,与沙地草场生产力关系较复杂 ,曲线类型为抛物线型 ,相关性较显著 .同时 ,种丰富度、S W指数、功能多样性和组成组样性与沙地草场生产力的灰色关联分析表明 ,组成多样性指数对沙地草场生产力影响最大 ,S W指数最小 ,依据灰色关联度排序依次为组成多样性 ( 0 .74) ;功能多样性 ( 0 .72 ) ;种丰富度 ( 0 .66)和S W指数 ( 0 .14 ) .可以认为沙地草场改良应建立在种的引进 (增加种丰富度 )和引进种所产生的组成 (生活型 )多样性上 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号