首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
γ-Glutamyl arylamidase of Bacillus sp. strain No. 12, composed of two heavy (Mr 56 000) and two light (Mr 46 000) subunits, was dissociated and inactivated by mild SDS treatment. The activity was restored in the isolated heavy subunit but not in the light subunit when SDS was removed by dialysis. The restored activity of the heavy subunit was similar to that of the native enzyme with regard to substrate specificity and inhibition and activation by α- and γ-glutamyl compounds, free amino acids, peptides, enzyme inhibitors, and anti-native enzyme antibody.  相似文献   

2.
gamma-Glutamyl transpeptidase, which is composed of two unequal subunits, exhibits proteinase activity when treated with agents such as urea and sodium dodecyl sulfate. The heavy subunit is preferentially and rapidly degraded. The enzyme also degraded bovine serum albumin in the presence of urea; however, several other proteins and model proteinase substrates were not cleaved. Treatment of the enzyme with 6-diazo-5-oxo-L-norleucine, a gamma-glutamyl analog, results in parallel loss of transpeptidase and proteinase activities indicating that the site at which gamma-glutamylation of the enzyme occurs (presumably a hydroxyl group on the light subunit) is also involved in proteinase activity. The purified light subunit, but not the heavy subunit, exhibits proteinase activity even in the absence of urea. Results suggest that dissociation of the enzyme unmasks the proteinase activity of the light subunit involving the site at which gamma-glutamylation of the enzyme occurs, and that the heavy subunit may impose transpeptidase reaction specificity by contributing the binding domains for gamma-glutamyl substrates.  相似文献   

3.
Rat kidney gamma-glutamyl transpeptidase is an amphipathic heterodimer, anchored to the lumenal surface of brush-border membranes via the NH2-terminal portion of its heavy subunit. The Mr values of the two subunits of detergent-solubilized enzyme are approximately 51,000 (heavy) and 22,000 (light), respectively. Biosynthesis of transpeptidase was studied in renal slices incubated with L-[35S]methionine. Transpeptidase-related proteins were isolated by immunoprecipitation with anti-transpeptidase antibodies. The major species seen after relatively short pulse times is a 78,000-dalton protein. Immunological characterization, kinetic, and pulse-chase studies indicate that the Mr = 78,000 species is the precursor of the two subunits of the enzyme. Like the dimeric enzyme, the Mr = 78,000 species contains both the core and the peripheral sugar, fucose, on its oligosaccharide moieties. Since, only the labeled dimeric enzyme appears in the brush-border membranes, conversion of the Mr = 78,000 species to the two subunits presumably occurs after its arrival at the Golgi but before its transport to the brush-border surface.  相似文献   

4.
The primary structure of human gamma-glutamyl transpeptidase   总被引:9,自引:0,他引:9  
A cDNA hybridizable to that of rat gamma-glutamyl transpeptidase (GGT) was cloned from a cDNA library of human fetal liver. The insert of the cDNA clone contained 1866 bp consisting of an open reading frame (ORF) of 1709 bp (569 amino acids (aa), N-terminal portion truncated) and a 135-bp 3'-untranslated region followed by a polyadenylated tail. In parallel, amino acid sequences of N-terminal portions of heavy and light chains of a purified human GGT were determined. Two stretches of amino acid sequences identical to the N-terminal sequences of heavy and light chains were found in the ORF. We therefore concluded that the clone is a cDNA for human GGT. From the amino acid sequence deduced from cDNA, the heavy and the light chains of the purified enzyme are estimated to be composed of 351 aa (Mr 38,336) and of 189 aa (Mr 20,000), respectively. The heavy chain is preceded by a signal peptide of at least 29 aa presumed to be cleaved by bromelain treatment. Six putative N-glycosylation sites are present in the heavy subunit region and one in the light subunit region. Primary structure and hydrophobicity profile are closely similar to those of rat GGT.  相似文献   

5.
Gamma-glutamyl transpeptidase, an enzyme of importance in glutathione metabolism, consists of two subunits, one of which (the light subunit, Mr 22,000; residues 380-568; rat kidney) contains residue Thr-523, which selectively interacts with the substrate analog acivicin to form an adduct that is apparently analogous to the gamma-glutamyl enzyme intermediate formed in the normal reaction (Stole, E., Seddon, A. P., Wellner, D., and Meister, A. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 1706-1709). The present studies indicate that specific arginine and lysine residues of the heavy subunit (Mr 51,000; residues 31-379) participate in catalysis by binding the substrates. Selective labeling studies of the enzyme with [14C]phenylglyoxal showed that Lys-99 and Arg-111 were modified. This appears to be the first instance in which phenylglyoxal was found to react with an enzyme lysine residue. Incorporation of [14C]phenylglyoxal into Lys-99 was decreased in the presence of acceptor site selective compounds. Incorporation into both Lys-99 and Arg-111 was decreased in the presence of glutathione. The findings suggest that Lys-99 and Arg-111 interact, respectively, with the omega- and alpha-carboxyl groups of glutathione. That these putative electrostatic binding sites are on the heavy subunit indicates that both subunits contribute to the active center. Two additional heavy subunit arginine residues become accessible to modification by phenylglyoxal when acivicin is bound, suggesting that interaction with acivicin is associated with a conformational change.  相似文献   

6.
Amino acid sequence of rat kidney gamma-glutamylcysteine synthetase   总被引:8,自引:0,他引:8  
gamma-Glutamylcysteine synthetase catalyzes the first step in the synthesis of glutathione. The enzyme isolated from rat kidney has two subunits (heavy, Mr 73,000; and light, Mr 27,700) which may be dissociated by treatment with dithiothreitol. The heavy subunit exhibits all of the catalytic activity of the isolated enzyme and also feedback inhibition by glutathione. The light subunit has no known function and may not be an integral part of the enzyme. cDNA clones encoding rat kidney gamma-glutamylcysteine synthetase were isolated from a lambda gt11 cDNA library by immunoscreening with antibody against the isolated enzyme and further screening with oligonucleotide probes derived from several peptides whose sequences were determined by the Edman method. The nucleotide sequence of the mRNA for the heavy subunit was deduced from the sequences of the cDNA of three such clones. The sequence, which codes for 637 residues (Mr 72,614), contains all four of the independently determined peptide sequences (approximately 100 residues). This amino acid sequence shows extremely low overall similarity to that of gamma-glutamylcysteine synthetase isolated from Escherichia coli.  相似文献   

7.
Two kinds of subunits, light subunit (Mr =1300) and heavy subunit (Mr=40 000), were isolated from a methylamine dehydrogenase (Mr=105 000) of Pseudomonas sp. J. The isolation of the subunits was carried out by gel chromatography after the enzyme had been treated with 3M guanidine-HCl. Coexistence of both of the subunit exhibited an absorption maximum only at 278 nm but in addition to the peak at 278 nm. The results indicate that the prosthetic group, assumed to be a derivative of pyridoxal, was bound to the light subunit. The spectral changes of the light subunit were observed by addition of methylamine. Various physical and biochemical parameters of the subunits are reported.  相似文献   

8.
Approximately half the carbonic anhydrase activity of sheep parotid-gland homogenate is derived from a high-Mr protein [Fernley, Wright & Coghlan (1979) FEBS Lett. 105, 299-302]. This enzyme has now been purified to homogeneity, and its properties were compared with those of the well-characterized sheep carbonic anhydrase II. The protein has an apparent Mr of 540,000 as measured by gel filtration under non-denaturing conditions and an apparent subunit Mr of 45,000 as measured by SDS/polyacrylamide-gel electrophoresis. After deglycosylation with the enzyme N-glycanase the protein migrates with an apparent Mr of 36,000 on SDS/polyacrylamide-gel electrophoresis. The CO2-hydrating activity was 340 units/mg compared with 488 units/mg for sheep carbonic anhydrase II measured under identical conditions. This enzyme does not, however, hydrolyse p-nitrophenyl acetate. The enzyme contains 0.8 g-atom of zinc/mol of protein subunit. The peptide maps of the two carbonic anhydrases differ significantly from one another, indicating they are not related closely structurally. Unlike the carbonic anhydrase II isoenzyme, which has a blocked N-terminus, the high-Mr enzyme has a free glycine residue at its N-terminus.  相似文献   

9.
The subunit structure of rat liver acetyl-coenzyme-A carboxylase has been studied by polyacrylamide gel electrophoresis in the presence of dodecylsulfate. A number of individual preparations of the enzyme purified by the same procedures exhibited three different types of electrophoretic patterns as follows: first, a single slow-moving protein bands (Mr 230000); secondly, two adjacent fast-moving protein band (M4 124000 and 118 000); finally, all three protein bands. With the use of the [14C]biotin-labelled enzyme, the biotinyl prosthetic group was shown to be associated with the polypeptide of 230000 Mr as well as with that of 124000 Mr, but not with the polypeptide of 118000 Mr. Studies were next made with the labelled enzyme to examine the possibility that the two light polypeptides might have been formed by proteolytic modification of the heavy polypeptide during the procedures used for the purification of the enzyme. Treatment of the enzyme with trypsin or chymotrypsin resulted in cleavage of the heavy polypeptide into two nonidentical polypeptides with molecular weights of approximately 120000. Incubation of the enzyme with proteases derived from rat liver converted the heavy polypeptide into lighter polypeptides of 80000-130000 Mr. Acetyl-CoA carboxylase isolated from crude rat liver extracts by means of immunoprecipitation with specific antibody invariably showed only the heavy polypeptide. The biotin content of the enzyme was found to be 1 mol per 237000 g protein. These results indicate that rat liver acetyl-CoA carboxylase, unlike bacterial and plant biotin enzymes, has only one kind of subunit, which has a molecular weight of 230000 and contains one molecular of biotin. Thus, the mammalian enzyme exhibits a highly integrated subunit structure.  相似文献   

10.
The heterodimeric enzyme gamma-glutamyl transpeptidase (EC 2.3.2.2) was isolated from adult rat kidney and purified to homogeneity for structural studies using papain solubilization and multiple chromatographies. Two-dimensional gel electrophoresis was found to resolve the active papain-purified enzyme into at least 18 components. Seven components with apparent molecular masses of 23,000-26,000 and isoelectric point range of 5.4-7.0 constitute the light subunit, and 11 components with apparent molecular mass of 51,000-53,000 and isoelectric point range of 5.8-7.1 constitute the heavy subunit. Immunoblot analysis of two-dimensional gels showed that all of these components are immunoreactive with a mixture of the two antibodies generated separately against the light and heavy subunits. Preparative subunit separation was achieved using reverse-phase HPLC under acidic but nonreducing conditions. N-Terminal amino acid sequencing of the separated subunits of the papain-purified enzyme yielded sequence information for the first 32 residues of the heavy chain with the N-terminal starting sequence Gly-Lys-Pro-Asp-His-Val-Tyr-Ser-Arg-Ala, and for the first 36 residues of the light subunit with the N-terminal starting sequence Thr-Ala-His-Leu-Ser-Val-Val-Ser-Glu-Asp.  相似文献   

11.
Reversible dissociation of gamma-glutamylcysteine synthetase into two subunits   总被引:15,自引:0,他引:15  
gamma-Glutamylcysteine synthetase (rat kidney; Mr approximately 104,000) is composed of 2 nonidentical subunits. In the present work, a procedure was developed for the reversible dissociation of the enzyme into its subunits (Mr = 73,000 and 27,700) under nondenaturing conditions. Students in which gel electrophoresis was used, in conjunction with an enzyme activity stain and elution and re-electrophoresis of protein bands, showed that the heavy subunit contains all of the structural requirements for enzymatic activity and also for feedback inhibition of the enzyme activity by glutathione. The light subunit, which may be formed from a precursor protein, has a significantly lower content of Trp, Phe, Tyr, Val, and Ala residues than the heavy subunit, while its content of Lys, His, Met, and Asx residues is higher.  相似文献   

12.
The 18 S dynein from the outer arm of Chlamydomonas flagella is composed of an alpha subunit containing an alpha heavy chain (Mr = approximately 340,000) and an Mr = 16,000 light chain, and a beta subunit containing a beta heavy chain (Mr = approximately 340,000), two intermediate chains (Mr = 78,000 and 69,000), and seven light chains (Mr = 8,000-20,000). Both subunits contain ATPase activity. We have used 8-azidoadenosine 5'-triphosphate (8-N3 ATP), a photoaffinity analog of ATP, to investigate the ATP-binding sites of intact 18 S dynein. 8-N3ATP is a competitive inhibitor of 18 S dynein's ATPase activity and is itself hydrolyzed by 18 S dynein; moreover, 18 S dynein's hydrolysis of ATP and 8-N3ATP is inhibited by vanadate to the same extent. 8-N3ATP therefore appears to interact with at least one of 18 S dynein's ATP hydrolytic sites in the same way as does ATP. When [alpha- or gamma-32P]8-N3ATP is incubated with 18 S dynein in the presence of UV irradiation, label is incorporated primarily into the alpha, beta, and Mr = 78,000 chains; a much smaller amount is incorporated into the Mr = 69,000 chain. The light chains are not labeled. The incorporation is UV-dependent, ATP-sensitive, and blocked by preincubation of the enzyme with vanadate plus low concentrations of ATP or ADP. These results suggest that the alpha heavy chain contains the site of ATP binding and hydrolysis in the alpha subunit. In the beta subunit, the beta heavy chain and one or both intermediate chains may contain ATP-binding sites.  相似文献   

13.
Human kidney gamma-glutamyl transpeptidase has been purified by a procedure involving Lubrol extraction, acetone precipitation, treatment with bromelain, and column chromatography on DEAE-cellulose and Sephadex G-150. The final preparation is a glycoprotein (molecular weight of approximately 84,000) composed of two nonidentical glycopeptides (molecular weights of 62,000 and 22,000). The isozymic forms, separable by isoelectric focusing, have different contents of sialic acid. The utilization of L-glutamine (which is both a gamma-glutamyl donor and acceptor) is stimulated about 3-fold by maleate in contrast to 10-fold stimulation of glutamine utilization by the rat kidney enzyme. The gamma-glutamyl analogs, 6-diazo-5-oxo-L-norleucine (DON) and L-azaserine inactivate the human kidney enzyme with respect to its transpeptidase and hydrolase activities. Inactivation is prevented by gamma-glutamyl substrates (but not by acceptor substrates) and is accelerated by maleate. [14C]DON reacts covalently and stoichiometrically at the gamma-glutamyl site, which was localized to the light subunit of the enzyme. The light subunit of human transpeptidase closely resembles that of rat kidney enzyme in having the gamma-glutamyl binding site, and similar molecular weight and amino acid composition. The heavy subunits of the two enzymes are markedly different in both molecular weight and amino acid content; this may account for differences observed in acceptor amino acid specificity and in the magnitude of the maleate effect.  相似文献   

14.
gamma-Glutamyl transpeptidase consists of two polypeptide chains anchored to the kidney brush-border membrane only through a short hydrophobic domain near the NH2-terminal end of the heavy subunit. The two subunits were reported to derive from a single polypeptide precursor by tissue labeling experiments. We have investigated the first steps of GGT biosynthesis and processing in a cell-free system. mRNA was prepared from kidney and enriched in specific sequences by a preparative gel electrophoresis. In vitro translation resulted in the synthesis of a single polypeptide (Mr = 63,000) specifically immunoprecipitated by antibodies raised against the mature dimeric enzyme. Incubation with microsomal membranes resulted in the appearance of a glycosylated form of the propeptide (Mr = 78,000). This latter form was cotranslationally segregated into microsomes and was sensitive to endoglycosidase H. Purified Escherichia coli leader peptidase did not process the primary gamma-glutamyl transpeptidase chain. This ectoprotein therefore appears to be inserted in the phospholipid bilayer without cleavage of a signal peptide, similar to most integral membrane proteins so far studied.  相似文献   

15.
The enzyme myeloperoxidase (MPO) is a functionally important glycoprotein of neutrophilic granulocytes and occurs in three major isoforms (forms 1, 2, and 3) that are dimeric structures composed of two heavy subunit-light subunit protomers, each of which is associated with a chlorine-like prosthetic group. In the present study, highly purified MPO isoforms were obtained from the cells of a single normal donor, and each protein was subjected to reductive alkylation under nondenaturing conditions. The resulting enzymatically active protomers were separated from unreacted dimer using gel filtration chromatography. Use of a fast protein liquid chromatography cation exchange system with a Mono S matrix revealed heterogeneity of the protomers, and allowed essentially complete resolution of the protomers of MPO form 2. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the two resolved protomeric species under reducing conditions revealed small but reproducible differences in the Mr of their heavy subunits (59,000 and 57,000). Treatment with either endo-beta-N-acetylglucosaminidase or peptide N-glycohydrolase F reduced the Mr of each heavy subunit by approximately 3000 but did not change their relative electrophoretic mobilities. Heavy and light subunits were prepared from each of the MPO isoforms by reductive alkylation under conditions that allowed full retention of the prosthetic group with the heavy subunit. Reverse-phase chromatography and amino-terminal sequencing showed that each MPO isoform contained one major species of light subunit and several minor species. No differences in peroxidatic activity or inhibition by salicylhydroxamic acid were observed among any of the MPO isoforms or resolved protomers, but the latter were considerably more heat labile than dimeric forms of the enzyme and a monomeric form isolated from HL-60 cells. This is the first report of the isolation and partial characterization of distinct protomers from a single isoform of human MPO and suggests that the structure of MPO is more complex than considered previously.  相似文献   

16.
Trypsin digestion of phosphorylated and 3H-labeled dinitrophenylated chicken gizzard myosin released major fragments of Mr 29,000, 50,000 and 66,000 in a ratio of close to one to one. They contained 58% of the label bound to thiols of the heavy chains; 28% of the label was bound to the light chains. The heavy chain fragments of Mr 29,000 and Mr 66,000 were dinitrophenylated when the enzyme activity was inhibited. The 3H-labeled dinitrophenylated myosin alone followed a somewhat different pattern in that the label was bound to the light chains predominantly. Thiolysis of the phosphorylated and dinitrophenylated myosin with 2-mercaptoethanol restored the K+ -ATPase (ATP phosphohydrolase, EC 3.6.1.32) activity and the dinitrophenyl group was removed from the N-terminal fragment of Mr 29,000 of the heavy chain, predominantly. In contrast, restoration of the enzymic activity occurred in thiolyzed dinitrophenylated myosin alone when the label was removed from the light chains rather than the tryptic fragments of the heavy chain. Phosphorylation induced conformational changes in gizzard myosin that altered the reactivity of the thiols in fragments of the globular heavy chain region.  相似文献   

17.
Smooth muscle phosphatase-I (SMP-I), a protein phosphatase purified from turkey gizzard smooth muscle, is composed of 2 regulatory subunits (Mr = 60,000 and 55,000) and a catalytic subunit (Mr = 38,000). Two other forms of this enzyme have been prepared and characterized. The free catalytic subunit, termed SMP-Ic, was prepared by ethanol treatment of SMP-I, and a form devoid of the 55,000-Da subunit, termed SMP-I2, was prepared by limited tryptic digestion. Exposure of SMP-I to proteases like trypsin and chymotrypsin results in a rapid degradation of the 55,000-Da polypeptide. Degradation of the catalytic subunit is observed only upon prolonged digestion. The 60,000-Da polypeptide appears to be resistant to the action of trypsin and chymotrypsin. SMP-I dephosphorylates myosin light chains but is not active toward intact myosin or heavy meromyosin. However, when the catalytic subunit is dissociated from both regulatory subunits or from the 55,000-Da polypeptide, the enzyme becomes active toward myosin suggesting that the 55,000-Da polypeptide inhibits the activity of the catalytic subunit toward myosin. In addition to alteration of the substrate specificity, the regulatory subunits also modulate the effect of divalent cations, like Mn2+, on the activity of the enzyme.  相似文献   

18.
Acrosin purified from an acidic extract of ejaculated goat spermatozoa migrated as a single 42,000-Mr band in SDS/polyacrylamide-gel electrophoresis. Reduction and alkylation of caprine acrosin produced two polypeptides, one of Mr 40,000 (heavy chain) and the other of Mr 3700 (light chain). The light chain purified by reversed-phase h.p.l.c. was a glycosylated octadecapeptide with an amino acid sequence similar to that of the N-terminal 18 residues of porcine acrosin light chain (78% positional identity). The sequence of the N-terminal 37 amino acids of purified caprine acrosin heavy chain is similar to that of porcine acrosin heavy chain (70% positional identity through 37 residues). Studies with synthetic substrates and synthetic and natural proteinase inhibitors confirmed both the specificity of the purified proteinase for Arg-Xaa and Lys-Xaa bonds and a serine-proteinase mechanism. Purified caprine acrosin hydrolysed the 90 kDa and 65 kDa components, but did not hydrolyse the 55 kDa component of the porcine zona pellucida. The action of the enzyme on the porcine zona pellucida was indistinguishable from that previously reported for porcine acrosin.  相似文献   

19.
Neutral alpha-D-mannosidase from monkey brain was purified by Co2+-chelate affinity chromatography and immunoadsorbent affinity chromatography. The purified enzyme, with subunit Mr 45,000, was essentially homogeneous with only traces of two contaminant proteins as revealed by SDS/polyacrylamide-gel electrophoresis and AgNO3 staining. The purified enzyme, on preincubation with Co2+ at 37 degrees C or 60 degrees C followed by assay, showed a time-dependent enhancement in activity. The enhanced activity of the enzyme persisted even after removal of the Co2+. Bacitracin could partially prevent the activation. An aminopeptidase activity that was stimulated by Co2+ both at 37 degrees C and at 60 degrees C was present in the purified enzyme. After preincubation of the enzyme with Co2+ there was evidence for the release of amino acids, as revealed by t.l.c., but the Mr determined by SDS/polyacrylamide-gel electrophoresis was not appreciably altered. It is suggested that a Co2+-stimulated thermostable aminopeptidase, inseparable from the neutral mannosidase, may be involved in the stimulation of neutral mannosidase activity during its preincubation with Co2+.  相似文献   

20.
The molecular weights (Mr) of mammalian renal gamma-glutamyl transpeptidase light subunits vary from 21 to 25 K; a much broader range is seen for the large subunit (51 to 72 K). However, chemical deglycosylation of these enzymes (rat, human, and bovine) yields subunits each of which exhibits identical Mr (41 and 19 K for the heavy and light subunits, respectively), suggesting strong similarity between the peptide backbones of these glycoproteins. Immunological data also indicate homologies between these enzymes. The difference observed in the Mr of native subunits thus seem to be related to the extent and nature of glycosylation of these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号