首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Eukaryotic translation initiation factors (eIFs) play a central role in potyviral infection. Accordingly, mutations in the gene encoding eIF4E have been identified as a source of recessive resistance in several plant species. In common bean, Phaseolus vulgaris , four recessive genes, bc-1 , bc-2 , bc-3 and bc-u , have been proposed to control resistance to the potyviruses Bean common mosaic virus (BCMV) and Bean common mosaic necrosis virus . In order to identify molecular entities for these genes, we cloned and sequenced P. vulgaris homologues of genes encoding the eIF proteins eIF4E, eIF(iso)4E and nCBP. Bean genotypes reported to carry bc-3 resistance were found specifically to carry non-silent mutations at codons 53, 65, 76 and 111 in eIF4E . This set of mutations closely resembled a pattern of eIF4E mutations determining potyvirus resistance in other plant species. The segregation of BCMV resistance and eIF4E genotype was subsequently analysed in an F2 population derived from the P. vulgaris all-susceptible genotype and a genotype carrying bc-3 . F2 plants homozygous for the eIF4E mutant allele were found to display at least the same level of resistance to BCMV as the parental resistant genotype. At 6 weeks after inoculation, all F2 plants found to be BCMV negative by enzyme-linked immunosorbent assay were found to be homozygous for the mutant eIF4E allele. In F3 plants homozygous for the mutated allele, virus resistance was subsequently found to be stably maintained. In conclusion, allelic eIF4E appears to be associated with a major component of potyvirus resistance present in bc-3 genotypes of bean.  相似文献   

2.
The resistance to the potyvirus Bean common mosaic virus (BCMV) conferred by the I allele in cultivars of Phaseolus vulgaris has been characterized as dominant, and it has been associated with both immunity and a systemic vascular necrosis in infected bean plants under field, as well as controlled, conditions. In our attempts to understand more fully the nature of the interaction between bean with the I resistance allele and the pathogen BCMV, we carefully varied both I allele dosage and temperature and observed the resulting, varying resistance responses. We report here that the I allele in the bean cultivars we studied is not dominant, but rather incompletely dominant, and that the system can be manipulated to show in plants a continuum of response to BCMV that ranges from immunity or extreme resistance, to hypersensitive resistance, to systemic phloem necrosis (and subsequent plant death). We propose that the particular phenotypic outcome in bean results from a quantitative interaction between viral pathogen and plant host that can be altered to favor one or the other by manipulating I allele dosage, temperature, viral pathogen, or plant cultivar.  相似文献   

3.

Background

Common bean was one of the first crops that benefited from the development and utilization of molecular marker-assisted selection (MAS) for major disease resistance genes. Efficiency of MAS for breeding common bean is still hampered, however, due to the dominance, linkage phase, and loose linkage of previously developed markers. Here we applied in silico bulked segregant analysis (BSA) to the BeanCAP diversity panel, composed of over 500 lines and genotyped with the BARCBEAN_3 6K SNP BeadChip, to develop codominant and tightly linked markers to the I gene controlling resistance to Bean common mosaic virus (BCMV).

Results

We physically mapped the genomic region underlying the I gene. This locus, in the distal arm of chromosome Pv02, contains seven putative NBS-LRR-type disease resistance genes. Two contrasting bulks, containing BCMV host differentials and ten BeanCAP lines with known disease reaction to BCMV, were subjected to in silico BSA for targeting the I gene and flanking sequences. Two distinct haplotypes, containing a cluster of six single nucleotide polymorphisms (SNP), were associated with resistance or susceptibility to BCMV. One-hundred and twenty-two lines, including 115 of the BeanCAP panel, were screened for BCMV resistance in the greenhouse, and all of the resistant or susceptible plants displayed distinct SNP haplotypes as those found in the two bulks. The resistant/susceptible haplotypes were validated in 98 recombinant inbred lines segregating for BCMV resistance. The closest SNP (~25-32 kb) to the distal NBS-LRR gene model for the I gene locus was targeted for conversion to codominant KASP (Kompetitive Allele Specific PCR) and CAPS (Cleaved Amplified Polymorphic Sequence) markers. Both marker systems accurately predicted the disease reaction to BCMV conferred by the I gene in all screened lines of this study.

Conclusions

We demonstrated the utility of the in silico BSA approach using genetically diverse germplasm, genotyped with a high-density SNP chip array, to discover SNP variation at a specific targeted genomic region. In common bean, many disease resistance genes are mapped and their physical genomic position can now be determined, thus the application of this approach will facilitate further development of codominant and tightly linked markers for use in MAS.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-903) contains supplementary material, which is available to authorized users.  相似文献   

4.
Bean common mosaic virus (BCMV) was isolated from the naturally infected bean plants collected from the Kafr El-Sheikh and El-Gharbia Governorates. BCMV induced sever mosaic, vein banding, malformation, leaf curling and stunting on bean plants cv. Giza 6. The isolated virus was propagated in bean plants cv. Giza 6. The identification of BCMV was carried out serologically by an indirect enzyme-linked immunosorbent assay using BCMV antiserum. Positive reaction indicated that the virus under study was related serologically to Potyvirus. The molecular biology techniques were used to identify and characterise the coat protein gene of BCMV. Oligonucleotide primers were designed for BCMV according to the published nucleotide sequences of BCMV and were successfully amplified with a DNA fragment (300 bp) from BCMV CP gene by RT-PCR. The total RNA was extracted from bean leaves and was reverse-transcribed and amplified using the oligonucleotide primer. The amplified product was analysed by gel electrophoresis. Also, Southern and dot blot hybridisations were used to establish the authenticity and specificity to the RT-PCR-amplified products of BCMV. The nucleotide sequences of the Egyptian isolate of BCMV/CP showed similarity with an isolate (BCMV-NY 15) which belongs to Puerto Rico.  相似文献   

5.
The I locus of the common bean, Phaseolus vulgaris, controls the development of four different phenotypes in response to inoculation with Bean common mosaic virus, Bean common mosaic necrosis virus, several other related potyviruses, and one comovirus. We have generated a high-resolution linkage map around this locus and have aligned it with a physical map constructed with BAC clones. These clones were obtained from a library of the cultivar "Sprite," which carries the dominant allele at the I locus. We have identified a large cluster of TIR-NBS-LRR sequences associated within this locus, which extends over a distance >425 kb. Bean cultivars from the Andean or Mesoamerican gene pool that contain the dominant allele share the same haplotypes as revealed by gel blot hybridizations with a TIR probe. In contrast, beans with a recessive allele display simpler and variable haplotypes. A survey of wild accessions from Argentina to Mexico showed that this multigene family has expanded significantly during evolution and domestication. RNA gel blot analysis indicated that the TIR family of genes plays a role in the response to inoculations with BCMV or BCMNV.  相似文献   

6.
The I locus of Phaseolus vulgaris is genetically and phenotypically well described, conferring incompletely dominant, temperature‐dependent resistance against viruses currently assigned to at least four Potyvirus species. Despite the fact that the resistance allele at this locus, the I gene, has been incorporated into nearly all bean germplasm worldwide, little is known regarding its resistance mechanism. In the present study, P. vulgaris lines nearly isogenic for I were challenged with Bean common mosaic virus (BCMV; genus Potyvirus) in order to investigate at the cellular level the temperature‐dependent resistance reaction. Immunolocalisation and confocal laser scanning microscopy were employed to visualise the virus and to identify patterns of BCMV accumulation in resistant, susceptible and heterozygous genotypes. Virus was detected in all three genotypes regardless of temperature, supporting previous findings that BCMV accumulates in protoplasts containing the I allele. Genotype‐specific and temperature‐specific patterns of virus accumulation suggested a resistance mechanism that depends on host recognition of viral replication and/or local movement.  相似文献   

7.
以西瓜尖镰孢菌诱导、提纯的豇豆抗真菌 I类几丁质酶 N端前 1 0个氨基酸序列测定的基础上 ,设计合成了引物 ,运用 PCR等分子生物学技术 ,从豇豆基因组中分离克隆了该特异几丁质酶成熟蛋白基因 ,测定分析了其全序列。该新基因全长 894bp,无内含子 ;具 Aat I、Aat II、Bgl I、Dpn I、Dpn II、Eco R II、Hae I、Hae II、Hae III、Hinf I、Hpa II、Mae II、Mae III、Nba I、Oxa I和 Sst IV酶切位点 43个 ;豇豆、Vigna unguiculata、菜豆、豌豆、烟草、小麦、水稻的同源性依次递减。扩增克隆了菜豆几丁质酶信号肽基因 ,并将其与豇豆几丁质酶成熟蛋白基因连接 ,再与 p BI1 2 1重组 ,成功构建了特异几丁质酶基因的植物表达载体 ,为进一步培育抗真菌病转基因西瓜新品种打下了坚实基础。  相似文献   

8.
Common bean ( Phaseolus vulgaris L.) cultivar (cv.) Othello develops a hypersensitive response-associated vascular resistance to infection by Bean dwarf mosaic virus (BDMV), a single-stranded DNA virus (genus Begomovirus , family Geminiviridae ). A PCR-based cDNA subtraction approach was used to identify genes involved in this resistance response. Eighteen clones, potentially involved with BDMV resistance, were identified based upon being up-regulated in BDMV-infected tissues and/or having sequence similarity with known resistance-associated genes. Analysis of these clones revealed potential genes involved in pathogen defence, including pathogenesis-related protein genes and resistance gene analogues (RGAs). Further characterization of one RGA, F1-10 , revealed that it encodes a predicted protein with a double Toll/interleukin-1 receptor (TIR) motif. Full-length ( F1-10 ) and spliced ( F1-10sp ) forms of the RGA were strongly up-regulated in BDMV-infected cv. Othello hypocotyl tissues by 4 days post-inoculation, but not in equivalent mock-inoculated tissues. In agroinfiltration experiments, F1-10 , but not F1-10sp , mediated resistance to BDMV in the susceptible common bean cv. Topcrop. By contrast, transgenic Nicotiana benthamiana lines expressing F1-10 or F1-10sp were not resistant to BDMV. Interestingly, when these transgenic lines were inoculated with the potyvirus Bean yellow mosaic virus, some F1-10 lines showed a more severe symptom phenotype compared with non-transgenic control plants. Based on these findings, F1-10 was named: Phaseolus vulgaris VIRUS response TIR-TIR GENE 1 ( PvVTT1 ).  相似文献   

9.
A yellow strain of cucumber mosaic virus (CMV) [CMV(Y)] induces a resistance response characterized by inhibition of virus systemic movement with development of necrotic local lesions in the virus-inoculated leaves of Arabidopsis thaliana ecotype C24. In this report, the avirulence determinant in the virus genome was defined and the resistance gene (RCY1) of C24 was genetically mapped. The response of C24 to CMV containing the chimeric RNA3 between CMV(Y) and a virulent strain of CMV indicated that the coat protein gene of CMV(Y) determined the localization of the virus in the inoculated leaves of C24. The RCY1 locus was mapped between two CAPS markers, DFR and T43968, which were located in the region containing genetically defined disease resistance genes and their homologues. These results indicate that the resistance response to CMV(Y) in C24 is determined by the combination of the coat protein gene and RCY1 on chromosome 5.  相似文献   

10.
Recombinant retroviruses containing the trans activator genes of human T-cell leukemia virus (HTLV) type II and human T-cell lymphotropic virus type III were constructed. The trans activator genes tat II and tat III were inserted into the murine retroviral vector pZIPNEOSV(X)1. Recombinant plasmids were transfected into the psi 2 and psi AM packaging cell lines that produce murine leukemia virions containing no retroviral RNA. Functional tat II and tat III gene products were expressed as demonstrated by trans activation of HTLV type I and II and human T-cell lymphotropic virus type III long terminal repeat-directed gene expression in the respective infected cells. Use of these recombinant vectors permits high-efficiency gene transfer into a wide variety of cells, thereby providing the opportunity to study the biochemical effects associated with tat II and tat III gene expression.  相似文献   

11.
Null mutants and attenuated mutants of herpes simplex virus (HSV) have been shown to induce immunity against challenge from wild-type virus. Null viruses with a defect in late gene products would be expected to express more viral genes than viruses with defects in essential early gene products and thus induce a better immune response. Herpesviruses encode a late gene product (serine protease) that is autocatalytic and cleaves the capsid assembly protein during viral replication. To determine whether a virus with a mutation in this gene could induce immunity, we constructed a recombinant virus containing the gusA reporter gene in the protease domain of the HSV type 1 UL26 open reading frame (ORF). Consistent with previous results (M. Gao, L. Matusick-Kumar, W. Hurlburt, S. F. DiTusa, W. W. Newcomb, J. C. Brown, P. J. McCann, I. Deckman, and R. J. Colonno, J. Virol. 68:3702-3712, 1994), recombinant virus could be isolated only from helper cell lines expressing the product of the UL26 ORF. Mice inoculated with the recombinant virus were unaffected by doses of virus that were lethal to mice infected with wild-type virus. Mice which were previously inoculated with the recombinant virus were also protected by a subsequent challenge with wild-type virus in a dose-dependent manner. These results indicate that recombinant viruses lacking the protease gene are avirulent but render protection from subsequent challenge.  相似文献   

12.
The tobacco N gene confers resistance to tobacco mosaic virus (TMV) and encodes a Toll-interleukin-1 receptor/nucleotide binding site/leucine-rich repeat (TIR-NBS-LRR) class protein. We have developed and used a tobacco rattle virus (TRV) based virus induced gene silencing (VIGS) system to investigate the role of tobacco candidate genes in the N-mediated signalling pathway. To accomplish this we generated transgenic Nicotiana benthamiana containing the tobacco N gene. The transgenic lines exhibit hypersensitive response (HR) to TMV and restrict virus spread to the inoculated site. This demonstrates that the tobacco N gene can confer resistance to TMV in heterologous N. benthamiana. We have used this line to study the role of tobacco Rar1-, EDS1-, and NPR1/NIM1- like genes in N-mediated resistance to TMV using a TRV based VIGS approach. Our VIGS analysis suggests that these genes are required for N function. EDS1-like gene requirement for the N function suggests that EDS1 could be a common component of bacterial, fungal and viral resistance signalling mediated by the TIR-NBS-LRR class of resistance proteins. Requirement of Rar1- like gene for N-mediated resistance to TMV and some powdery mildew resistance genes in barley provide the first example of converging points in the disease resistance signalling pathways mediated by TIR-NBS-LRR and CC-NBS-LRR proteins. The TRV based VIGS approach as described here to study N-mediated resistance signalling will be useful for the analysis of not only disease resistance signalling pathways but also of other signalling pathways in genetically intractable plant systems.  相似文献   

13.
14.
The paper presents data of investigation on the physico‐chemical and antigenic properties of capsid proteins of the Bean common mosaic virus isolated from Phaseolus plants in the Russian Far East (BCMV‐R) and from China (BCMV‐C). A method for isolation of the virus preparation was selected. The purified preparations of two isolates BCMV have been obtained. The presence of one polypeptide in structural proteins of virions was established and their molecular masses determined (BCMV‐R ‐ 31,6 kD; BCMV‐C ‐ 32,1 kD). Polyclonal antiserum was obtained with titre 1:12800 and the indirect and “sandwich"‐variants of ELISA were developed to detect this virus. The allied relationships were established with the bean yellow mosaic virus and with the type representative of the genus Potyvirus ‐ PVY. Based on the data of physico‐chemical and antigenic properties it was concluded that isolates BCMV‐R and BCMV‐C are two independent strains of this virus. The presence of strain‐, virus‐ and genusspecific epitopes of capsid proteine was revealed as a result of comparison of antigenic characteristics of the Russian Far Eastern and Chinese strains of BCMV. A high antigenic activity of capsid protein of the Russian Far Eastern strain was observed.  相似文献   

15.
Abstract The gene encoding flavodoxin from Desulfovibrio vulgaris Hildenborough (148 amino acid residues), the first flavoprotein for which a three-dimensional structure has been determined, was cloned with the use of two synthetic oligonucleotides, designed to recognize the coding sequence for amino acid residues 11–19 and 98–103, respectively. The two oligonucleotides were used to screen a library of 900 λ-clones of the D. vulgaris chromosome. A single clone, λFL1, reacting with both probes was isolated. The entire structural gene for flavodoxin is contained in the 15 kb insert of λFL1 as found by nucleic acid sequencing. The codon usage in the flavodoxin gene is strongly biased towards G or C in the third codon position. A table in which codon usage information from all genes of D. vulgaris sequenced to date is combined is presented and should facilitate further gene cloning with oligonucleotide probes.  相似文献   

16.
Tobacco plants expressing a transgene encoding the coat protein (CP) of a subgroup I strain of cucumber mosaic cucumovirus (CMV), I17F, were not resistant to strains of either subgroup I or II. In contrast, the expression of the CP of a subgroup II strain, R, conferred substantial resistance, but only towards strains of the same subgroup. When protection was observed, the levels of resistance were similar when plants were inoculated with either virions or viral RNA, but resistance was more effective when plants were inoculated with viruliferous aphids. Resistance was not dependent on inoculum strength and was expressed as a recovery phenotype not yet described for plants expressing a CMV CP gene. Recovery could be observed either early in infection (less than one week after inoculation) or later (4 to 5 weeks after inoculation). In plants showing early recovery, mild symptoms were observed on the inoculated leaves, and in some cases symptoms developed on certain lower systemically infected leaves, but the upper leaves were symptomless and virus-free. Late recovery corresponded to the absence of both symptoms and virus in the upper leaves of plants that were previously fully infected. Northern blot analyses of resistant plants suggested that a gene silencing mechanism was not involved in the resistance observed.  相似文献   

17.
We describe a novel genetic screen that is performed by transfecting every individual clone of an expression library into a separate population of cells in a high-throughput mode. The screen allows one to achieve a hitherto unattained sensitivity in expression cloning which was exploited in a first read-out to clone apoptosis-inducing genes. This led to the isolation of several genes whose proteins induce distinct phenotypes of apoptosis in 293T cells. One of the isolated genes is the tumor suppressor cytochrome b(L) (cybL), a component of the respiratory chain complex II, that diminishes the activity of this complex for apoptosis induction. This gene is more efficient and specific for causing cell death than a drug with the same activity. These results suggest further applications, both of the isolated genes and the screen.  相似文献   

18.
Ribonucleoproteins (RNPs) isolated from infectious and defective interfering (DI) influenza virus (WSN) contained three major RNP peaks when analyzed in a glycerol gradient. Peak I RNP was predominant in infectious virus but was greatly reduced in DI virus preparations. Conversely, peak III RNP was elevated in DI virus, suggesting a large increase in DI RNA in this fraction. Labeled [(32)P]RNA was isolated from each RNP region and analyzed by electrophoresis on polyacrylamide gels. Peak I RNP contained primarily the polymerase and some HA genes, peak II contained some HA gene but mostly the NP and NA genes, and peak III contained the M and NS genes. In addition, peak III RNP from DI virus also contained the characteristic DI RNA segments. Interference activity of RNP fractions isolated from infectious and DI virus was tested using infectious center reduction assay. RNP peaks (I, II, and III) from infectious virus did not show any interference activity, whereas the peak III DI RNP caused a reduction in the number of infectious centers as compared to controls. Similar interference was not demonstrable with peak I RNP of DI virus nor with any RNP fractions from infectious virus alone. The interference activity of RNP fractions was RNase sensitive, suggesting that the DI RNA contained in DI RNPs was the interfering agent, and dilution experiments supported the conclusion that a single DI RNP could cause interference. The interfering RNPs were heterogeneous, and the majority migrated slower than viral RNPs containing M and NS genes. These results suggest that DI RNP (or DI RNA) is also responsible for interference in segmented, negative-stranded viruses.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号