首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Penicillin G (2%, w/v in phosphate buffer, pH 8) was hydrolysed in a flow-through, miniature electro-membrane reactor with the penicillin G acylase immobilized in 5% (w/v) polyacrylamide (diam. 10 mm, thickness 2.6 mm, enzyme activity 24 U ml–1). The conversion of penicillin G increased from 0.15 to almost 0.5 when the electric current applied to the reactor was changed from –600 to +600 A/m2 with a substrate residency of 1 h. Symbols and abbreviations c j p & concentration of component j in product stream (M) c j s & concentration of component j in substrate stream (M) c s o & substrate concentration at reactor inlet (M) C j p=c j p/c S 0 & scaled concentration of component j in product stream C j s=c j s/c S 0 & scaled concentration of component j in substrate stream i & electric current density (A/m2) j & reaction component, j P, Q or S P & main reaction product (6-aminopenicillanic acid) PGA & penicillin G acylase Q & side reaction product (phenylacetic acid) S & substrate (penicillin G) Y s=C P s+C P p & substrate conversion & mean residence time of substrate and product streams in reactor (h) =C Q s+C Q p+C S s+C S s & check-sum of scaled concentrations =C P p/(C P s+C P p) & separation factor of 6-aminopenicillanic acid (0 1)  相似文献   

2.
3.
Phenylacetic acid, as inhibitory product, was formed from a hydrolysis of penicillin G by immobilized penicillin acylase. In this article, electrodialysis was applied to remove phenylacetic acid continuously from the reaction mixture and to enhance an efficiency of the reaction. When 268 and 537 mM of penicillin G solution were used as the substrate, the concentration of phenylacetic acid in the reaction mixture could be maintained at less than 81 and 126 mM, respectively, and eventually, 86% and 88% of phenylacetic acid produced were removed from the reaction mixture at the end of the hydrolysis, respectively. Times required to reach 96% and 94.8% conversion from 268 and 537 mM of initial penicillin G could be reduced to 65% and 64% respectively, by means of electrodialysis; while 3.0% and 4.3% of initial penicillin G of 268 and 537 mM were permeated out of the reaction chamber during the hydrolysis, respectively. However, a loss of penicillin G by permeation could be reduced from 4.3% to 3.4% by a repeated addition of penicillin G.  相似文献   

4.
5.
6.
A simple, highly sensitive, and rapid assay for high-throughput screening of penicillin G acylase-producing bacteria is presented. The method is based on the specific release of fluorescent 7-amino-4-methyl-coumarin through cleavage of phenylacetyl-4-methyl-coumaryl-7-amide by penicillin G acylase. The present method is suitable for screening pure enzymes as well as various penicillin G acylases like those from Escherichia coli, Proteus rettgeri, and Kluyvera citrophila in cell extracts. In addition, the new substrate was used for rapid assay of amidase activity in nondenaturing polyacrylamide gels.  相似文献   

7.
The folding and solution conformation of penicillin G acylase   总被引:1,自引:0,他引:1  
The solution conformation properties of penicillin G acylase (EC 3.5.1.11) have been characterised by near- and far-ultraviolet circular dichroism, steady-state and time-resolved fluorescence spectroscopy and differential sedimentation velocity. The enzyme (86 kDa) was found to be spherical and stable unfolding over a narrow range of urea concentrations in an apparently cooperative fashion with a mid-point of 4.5 M urea. Separation of its constituent alpha and beta peptides (23.8 kDa and 62.2 kDa, respectively) was accompanied by loss of enzyme activity and unfolding, the kinetics of unfolding being highly dependent upon urea concentration. Urea gradient gel electrophoresis showed that the separated beta peptide aggregates over a wide range of urea concentrations but that the alpha peptide refolds reversibly to a compact state. Physical studies showed that the refolded alpha peptide has a compact but asymmetric structure with more alpha helix than the native enzyme, but is more sensitive to denaturant. The latter is suggested to be due to a hydrophobic patch detected by 8-anilino-1-naphthalene sulfonic acid binding and which is normally covered by the beta peptide in the native enzyme. The results of these investigations indicate that the alpha peptide constitutes a folding domain and suggest that it plays a key role in folding of the precursor for penicillin acylase.  相似文献   

8.
In the course of more than 60-year history, penicillin G acylase (PGA) gained a unique position among enzymes used by pharmaceutical industry for production of β-lactam antibiotics. Kinetically controlled enzymatic syntheses of cephalosporins of novel generations in which PGA catalyzes coupling of activated acyl donor with nucleophile belong among the latest large-scale applications. Contrary to rather specific roles of other enzymes involved in β-lactam biocatalyses, the PGA seems to have the greatest potential. On the laboratory scale, other applications with industrial potential were described, e.g., directed evolution of the enzyme to meet specific demands of industrial processes or its modification into the enzyme catalyzing reactions with novel substrates. The fact that β-lactams represent the most important group of antibiotics comprising 65 % of the world antibiotic market explains such a tremendous and continuous interest in this enzyme. Indeed, the annual consumption of PGA has recently been estimated to range from 10 to 30 million tons. The application potential of the enzyme goes beyond the β-lactam biocatalysis due to its enantioselectivity and promiscuity: the PGA can be used for the production of achiral and chiral compounds convenient for the preparation of synthons and active pharmaceutical ingrediences, respectively. These biocatalyses, however, still wait for large-scale application.  相似文献   

9.
The usefulness of penicillin acylase immobilized onto butyl acrylate — ethyl glycol dimethacrylate (called in this paper acrylic carrier) in penicillin G hydrolysis performed in a stirred tank reactor is shown. The enzyme-acrylic carrier preparation does not deteriorate its own properties in the mixing condition of slurry reactor. The experiments were carried out in a batch and a continuous stirred tank reactor as well as continuous stirred tank reactors in series. It was found to be a satisfactory agreement between experimental and predicted results. It also indicated the optimal substrate concentration range which provides the most effective enzyme operation. A superiority of the three reactors in series over the batch reactor is shown.List of Symbols CE g/m3 equivalent enzyme concentration - CSO mol/m3 initial penicillin G concentration - KA mol/m3 substrate affinity constant - KiS mol/m3 substrate inhibitory constant - KiP mol/m3 PhAA inhibitory constant - KiQ mol/m3 6-APA inhibitory constant - k3 mol/g min constant rate of dissotiation of the active complex - r mol/m3 rate of reaction - t min. reaction time - tj min. maintenance time - degree of conversion - B, F dimensionless time - min. residence time - PA penicillin acylase - PG penicillin G - PhAA phenylacetic acid - 6-APA 6-aminopenicillanic acid  相似文献   

10.
We have found that penicillin G sulfoxide (pen G SO) behaves as a general stabilizing agent of two bacterial penicillin G acylases (PGAs) from E. coli and from K. citrophila), and this role is related to a strong inhibitory effect on the enzymes. The stabilizing effect has been observed during two different inactivation processes: (i) thermal inactivation of soluble enzymes at alkaline pH, and (ii) inactivation of immobilized enzymes as a consequence of covalent multiinteraction with highly activated agarose aldehyde gels. At the same time, pen G SO behaves as a strong competitive inhibitor of these two enzymes. The inhibition constant is more than 10-fold lower than the one corresponding to another smaller competitive inhibitor, phenylacetic acid (PAA), the structure of which is exactly the acyl donor moiety corresponding to pen G SO. In turn, PAA hardly exerts any stabilizing effect on PGAs. The stabilizing effect of pen G SO allowed the preparation of derivatives of these PGAs preserving full catalytic activity in spite of being 1,400- and 650-fold more stable than the corresponding soluble or one-point attached immobilized enzymes.  相似文献   

11.
本文对青霉素扩环酶(Penicillin expandase,也称Deacetoxycephalosporin C synthase,DAOCS)在高浓度青霉素G下的底物抑制现象进行初步评价与表征,筛选适合工业应用条件的高活力突变体。我们通过HPLC对已报道的几个DAOCS高活力突变体在青霉素G浓度5.6至500 mmol/L间的比活力进行定量测定,并与不同催化反应动力学模型的理论推测变化趋势比较,发现DAOCS野生型酶及高活力突变体H4、H5、H6与H7在高浓度青霉素G条件下均表现出明显的底物抑制现象,但是变化趋势不同。野生型酶与突变体H4的比活力先上升后下降,与竞争性抑制模型预测不符。突变体H5、H6与H7的比活力变化呈现更复杂的变化趋势。在所有测试的突变体中,H6的活性显著高于其他突变体酶。青霉素G对野生型DAOCS的底物抑制现象符合非竞争性抑制模型的预测。而部分突变体表现出复杂的底物抑制行为,表明其具有更复杂的作用机制。在高底物浓度下筛选具有较强催化活性的青霉素扩环酶突变体对于推动其在工业生产中的应用具有重要指导作用。  相似文献   

12.
Summary An HPLC procedure for the quantification of the precursor, intermediates, product, and degradation product of penicillin G fermentations is described. The method involves the use of an acetonitrile gradient and direct UV detection with a total run-time of 45 minutes including column regeneration. The technique can be exploited for on-line monitoring of penicillin G fermentations using defined or complex media.  相似文献   

13.
Antigenicity of penicillin G (PCG) was studied in guinea pigs. PCG 5 mg, 10 mg or 25 mg with Freund's complete adjuvant each on days 0, 7 and 21 was injected to a guinea pig: intramuscularly into both thighs and intracutaneously into four locations on the back. A remarkable antigenicity was induced in animals immunized with 25 mg although only low antigenicity in 5 mg and 10 mg. A maximum serum level of the antibody was observed about 2 weeks after last immunization and all of animals immunized with 25 mg died in active systemic anaphylaxis test. As mentioned above, it has been firstly demonstrated that a remarkable antigenicity of PCG can be produced by immunizing with a high dose of 25 mg in the guinea pig model in which PCG itself is used as immunogen.  相似文献   

14.
The immobilization of penicillin G acylase on chitosan   总被引:3,自引:0,他引:3  
  相似文献   

15.
16.
17.
18.
Summary Radioactive penicillin G production from l-[1-14C]-valine (1.75 GBq · mmol-1) by native and by calcium alginate gel immobilized mycelium of Penicillium chrysogenum PQ-96 in a medium for antibiotic production as well as by vesicles isolated from the protoplasts of the same strain in a well-defined reaction mixture was investigated. Specific radioactivity of the penicillin G produced by the native vesicles was 1.45 GBq · mmol-1 and that of the antibiotic synthesized by the calcium alginate gel immobilized vesicles was 1.48 GBq · mmol-1. By comparison, the specific radioactivity of penicillin G produced by native mycelium was 0.42 GBq · mmol-1 and of that synthesized by the immobilized mycelium was 0.96 GBq · mmol-1. Production of radioactive penicillin G by native and immobilized vesicles in repeated use was also investigated. At the beginning of the production phase, the radioactive penicillin G synthesized by the immobilized vesicles was 25 nmol · mg protein-1 · h-1 and decreased after 8 days to a level of 11 nmol · mg protein-1 · h-1. The half-life of the immobilized vesicles was 7 days. The native vesicles showed a rapid decrease in radioactive antibiotic production. In comparison, the penicillin G production in a repeated use of immobilized vesicles decreased during 40 days from 140 nmol · mg protein-1 · h-1 to 60 nmol · mg protein-1 · h-1. The half-life of the immobilized vesicles was 35 days. The native vesicles showed after 4 days a lack of activity of penicillin G production. The stability of immobilized mycelium or vesicles in the process of radioactive penicillin G production is discussed.  相似文献   

19.
20.
Summary The mature penicillin G acylase fromKluyvera citrophila was examined by circular dichroism (CD). The far-UV CD spectrum at neutral pH revealed 11% alpha-helix, 44% beta-sheet, 11% beta-turn and 34% random coil. Far-UV and near-UV CD spectra showed that the enzyme presented a high conformational stability under different conditions of pH and salt concentration. The predictive model of Chou and Fasman indicated the presence of several beta-segments that could be arranged in antiparallel beta-sheets, which might explain the structural stability. The near-UV CD spectrum in the presence of penicillin G sulfoxide showed that the binding of this inhibitor to the enzyme resulted in modification of the dichroism of several aromatic residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号