首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The increase in passive permeability of bilayer membranes near the phase transition temperature is usually explained as caused by either the increase in the amount of ‘boundary lipid’ present in the membrane, or by the increase in lateral compressibility of the membrane. Since both the amount of ‘boundary lipid’ and the lateral compressibility show a similar anomaly near the transition temperature, it is difficult to distinguish experimentally between the two proposed mechanisms.We have examined some details of both of the proposed pictures. The fluid-solid boundary energy, neglected in previous work, has been computed as a function of the domain size. For a single component uncharged lipid bilayer, the results rule out the existence of even loosely defined solid domains in a fluid phase, or vice versa. Thermodynamic fluctuations, which are responsible for anomalous behaviour near the phase transition temperature, are not intense enough to approximate the formation of a domain of the opposite phase.Turning next to lateral compressibility of bilayer membranes we have considered two-component mixtures in the phase separation region. We present the first calculation of lateral compressibility for such systems. The behaviour shows interesting anomalies, which should correlate with existing and future data on transport across membranes.  相似文献   

2.
Changes in the thermal phase transition temperature of membrane lipids were studied by X-ray wide-angle diffraction during adaptation of Tetrahymena pyriformis to a lower growth temperature. After a shift in growth temperature from 39 to 15 degrees C, the phase transition temperature was lowered gradually in microsomal and pellicular phospholipids, whereas that in mitochondrial phospholipids was unchanged for 10 h after the temperature shift. Only a small decrease in the transition temperature of mitochondrial phospholipids was observed, even after 24 h following the shift. Transition temperatures of microsomal, pellicular and mitochondrial phospholipids reached the growth temperature (15 degrees C) about 6, 10 and 24 h after the temperature shift. The temperature dependence of the solid phase in membrane phospholipids was estimated from the 4.2 A peak of the X-ray diffraction pattern. In the case of the phospholipids extracted from cells grown at 39 degrees C, the solid phase was increased upon lowering temperature in a similar manner in all three membrane fractions: mitochondria, pellicles and microsomes. However, in the case of the phospholipids from cells exposed to a lower growth temperature (15 degrees C) for 10 h, the increase in the solid phase was significantly smaller in mitochondrial phospholipids than in two other membrane fractions. The difference in the thermal behaviour of mitochondrial lipid from pellicular and microsomal lipids is discussed in terms of phase transition and phase separation.  相似文献   

3.
4.
5.
Changes in the fluorescence of partially self-quenched 5(6)-carboxyfluorescein trapped within the internal aqueous compartment of small unilamellar dipalmitoylphosphatidylcholine vesicles indicate that the trapped volume of these vesicles decreases when the phospholipid undergoes the liquid crystalline to gel state transition. This volume change is completely reversible and is not caused by vesicle-vesicle fusion. Furthermore, this decrease in volume of the internal aqueous compartment may be attributed to a change in vesicle shape upon undergoing the phase transition.  相似文献   

6.
We studied the interaction of GM3 ganglioside with sphingomyelin (SM) and palmitoyl-oleoyl-phosphatidylcholine (POPC) in Langmuir monolayers mimicking, respectively, raft and fluid phase of a cellular membrane, by surface pressure measurements and fluorescence microscopy. No difference was observed in the behavior of SM-GM3 and POPC-GM3 monolayers. In both cases, a GM3 threshold concentration has been underlined between 20 and 40 mol%. Below this threshold, SM-GM3 and POPC-GM3 monolayers behave ideally, suggesting that GM3 and host lipid would form separated domains. On the contrary, above the threshold, a condensation of monolayers is observed. This could be due to a partial solubilisation of GM3 in host lipid, leading to a change in orientation of GM3 molecules at the air-water interface.  相似文献   

7.
Seven singleton 120-day fetal lambs were prepared with a shunt from the lung to the gastric end of the esophagus, a bladder catheter, and multiple amniotic fluid and vascular catheters. The urachus was ligated. Beginning 7 days later, amniotic fluid volumes were determined by drainage, followed by replacement with 1 liter of lactated Ringer (LR) solution. Urine flow into the amnion was measured continuously. In 14 of 27 experiments, amniotic fluid volumes were determined again 2 days after the inflow into the amnion had consisted of urine only and in 13 experiments after the inflow of urine had been supplemented by an intraamniotic infusion of LR solution. Intramembranous absorption was calculated from the inflows and the changes in volume between the beginning and end of each experiment. The relations between absorption rate and amniotic fluid volume, the "function curves," were highly individual. Urine production during the infusion of LR solution did not decrease, fetal plasma renin activity decreased (P < 0.001), and amniotic fluid volume increased by 140% [SE (27%), P < 0.005], but the increase in the amniochorionic absorption rate of 411% [SE (48%), P < 0.001] was greater (P < 0.005) than the increase in volume. Each of the seven fetuses was proven capable of an average intramembranous absorption rate that exceeded 4.5 liters of amniotic fluid per day. During the infusion of LR solution, the increase in the rate of absorption matched the rate of infusion (both in ml/h), with a regression coefficient of 0.75 (P < 0.001). Thus, even for large amniotic fluid volumes, volume is not limited by the absorptive capacity of the amniochorion, and, at least in these preparations, the position of the function curve and not the natural rate of inflow was the major determinant of resting amniotic fluid volume.  相似文献   

8.
Ceramides have been implied in intracellular signal transduction systems regulating cellular differentiation, activation, survival and apoptosis and thus appear capable of changing the life style of virtually any cell type. Ceramide belongs to the group of sphingosine-based lipid second messenger molecules that are critically involved in the regulation of diverse cellular responses to exogenous stimuli. The emerging picture suggests that coupling of ceramide to specific signaling cascades is both stimulus and cell-type specific and depends on the subcellular topology of its production. However, little is understood about the molecular mode of ceramide action. In particular, in lieu of a defined ceramide binding motif it is not clear how ceramide would directly interact with putative target signaling proteins. This article proposes two modes of ceramide action. First, a protruding alkyl chain of ceramide may interact with a hydrophobic cavity of a signaling protein providing a lipid anchor to attach proteins to membranes. Second, the generation of ceramide generally increases the volume of hydrocarbon chains within the lipid bilayer thereby enhancing its propensity of to form a hexagonal II phase (Hex II). Besides the generation of a hydrophobic interaction site for proteins local hexagonal phase II formation can also change the membrane fluidity and permeability, which may impinge on membrane fusion processes, solubilization of detergent-resistant signaling rafts, or membrane receptor internalization. Thus, ceramide production by sphingomyelinases (SMase) can play a pivotal signaling role through direct interaction with signaling proteins or through facilitating the formation and trafficking of signal transduction complexes.  相似文献   

9.
The molar partition coefficients of amphiphilic additives, e.g. local anesthetics, between the aqueous phase, the liquid crystal and the gel phase of lipid membrane can be determined based on a combination of phase transition data obtained at high and low concentrations of the lipid in aqueous phase. The data obtained at high lipid concentration allow to find the phase diagram lipid-additive in the aqueous environment. The combination of this diagram with data obtained at low lipid and additive concentrations provides direct information on the concentration of anesthetics in the lipid and thus allows the calculation of the partition coefficient.  相似文献   

10.
The transbilayer movement of fluorescent phospholipid analogs in liposomes was studied at the lipid phase transition of phospholipid membranes. Two NBD-labeled analogs were used, one bearing the fluorescent moiety at a short fatty acid chain in the sn-2 position (C(6)-NBD-PC) and one headgroup-labeled analog having two long fatty acyl chains (N-NBD-PE). The transbilayer redistribution of the analogs was assessed by a dithionite-based assay. We observed a drastic increase of the transbilayer movement of both analogs at the lipid phase transition of DPPC (T(c) = 41 degrees C) and DMPC (T(c) = 23 degrees C). The flip-flop of analogs was fast at the T(c) of DPPC with a half-time (t(1/2)) of ~6-10 min and even faster at the T(c) of DMPC with t(1/2) on the order of <2 min, as shown for C(6)-NBD-PC. Suppressing the phase transition by the addition of cholesterol, the rapid transbilayer movement was abolished. Molecular packing defects at the phase transition are assumed to be responsible for the rapid transbilayer movement. The relevance of those defects for understanding of the activity of flippases is discussed.  相似文献   

11.
12.
Dynamic properties of phosphatidylcholine-cholesterol membranes in the fluid phase and water accessibility to the membranes have been studied as a function of phospholipid alkyl chain length, saturation, mole fraction of cholesterol, and temperature by using spin and fluorescence labelling methods. The results are the following: (1) The effect of cholesterol on motional freedom of 5-doxyl stearic acid spin label (5-SASL) and 16-doxyl stearic acid spin label (16-SASL) in saturated phosphatidylcholine membrane is significantly larger than the effects of alkyl chain length and introduction of unsaturation in the alkyl chain. (2) Variation of alkyl chain length of saturated phospholipids does not alter the effects of cholesterol except in the case of dilauroylphosphatidylcholine, which possesses the shortest alkyl chains (12 carbons) used in this work. (3) Unsaturation of the alkyl chains greatly reduces the ordering effect of cholesterol at C-5 and C-16 positions although unsaturation alone gives only minor fluidizing effects. (4) Introduction of 30 mol% cholesterol to dimyristoylphosphatidylcholine membranes decreases the lateral diffusion constants of lipids by a factor of four, while it causes only a slight decrease of lateral diffusion in dioleoylphosphatidylcholine membranes. (5) If compared at the same temperature, 5-SASL mobilities plotted as a function of mole fraction of cholesterol in the fluid phases of dimyristoylphosphatidylcholine-, dipalmitoylphosphatidylcholine- and distearoylphosphatidylcholine-cholesterol membranes are similar in wide ranges of temperature (45-82 degrees C) and cholesterol mole fraction (0-50%). (6) In isothermal experiments with saturated phosphatidylcholine membranes, 5-SASL is maximally immobilized at the phase boundary between Regions I and III reported by other workers (Recktenwald, D.J. and McConnell, H.M. (1981) Biochemistry 20, 4505-4510) and becomes more mobile away from the boundary in Regions I and III. (7) 5-SASL in unsaturated phosphatidylcholine membranes showed a gradual monotonic immobilization with increase of cholesterol mole fraction without showing any maximum in the range of cholesterol fractions studied. (8) By rigorously determining rigid-limit magnetic parameters of cholestane spin labels in membranes from Q-band second-derivative ESR spectra to monitor the dielectric environment around the nitroxide radical, it is concluded that cholesterol incorporation increases water accessibility in the hydrophilic loci of the membrane. In contrast, 12-(9-anthroyloxy)stearic acid fluorescence showed that water accessibility is decreased in the hydrophobic loci of the membrane.  相似文献   

13.
The nuclear magnetic resonance manganese doping technique is currently used for the determination of the water diffusional exchange time through human erythrocyte membranes. An apparent thermal transition at 26 degrees C was noticed at 18-30 mM manganese doping in the suspending solution. An analysis in terms of a two-phase nuclear spin exchanging system revealed that apparent thermal transitions are expected to occur in the upper and lower temperature regions. They represent a shift from intermediate exchange rates where water diffusion through the membrane is dominant to either fast or slow exchange rates where proton relaxation is the controlling process. The lower temperature apparent transition may be altered by the intracellular manganese concentration; the lower the Mn2+ concentration the lower the transition. Also according to this interpretation only a fraction of the erythrocytes are significantly permeated by Mn2+. The upper transition depends on the Mn2+ concentration in the extracellular volume; it decreases with decreasing Mn2+ concentration.  相似文献   

14.
R K Kunze  Jr  J T Ho    E P Day 《Biophysical journal》1980,30(2):359-364
We have observed a change at 41 degrees C in the relative volume magnetic susceptibility of an aqueous dispersion containing 13 wt% multilamellar dipalmitoylphosphatidylcholine (DPPC) vesicles. The magnitude of the change is consistent with the known density change of the phospholipid bilayer and the assumption that the mass susceptibility of the system is constant through the transition. The superconducting susceptometer used in this study of the sharp transition of DPPC will be able to detect 1% changes in bilayer density for 10 wt% dispersions even when the transition temperature and transition width of phospholipid vesicle under various experimental conditions.  相似文献   

15.
The influence of local anesthetics (LA): tetracaine, lidocaine, cocaine, dibucaine and heptacaine derivatives on the gel to liquid crystalline phase transition temperature (Tc) of model dipalmitoylphosphatidylcholine (DPPC) membranes was studied using electron spin resonance (ESR) and polarization microscopy methods. The decrease of Tc in the presence of anesthetics (delta Tc) was found to be dependent on the [DPPC]/[H2O] molar ratio at constant [LA]/[DPPC] molar ratio. Hence, the parameter alpha = delta Tc/[( LA]/[DPPC]) in dependence on [H2O]/[DPPC] was extrapolated to zero concentration of water and compared with biological efficiency.  相似文献   

16.
pH effect on phase transition measured by jump of conductance in the BLM formed from DPPA and thio-DPPA was studied. The difference of pH dependence for these two lipids was shown. The corresponding calculation discovered significance of intermolecular phosphate-phosphate hydrogen bonds in induced conductance of BLM.  相似文献   

17.
Differential scanning calorimetry (DSC) has been employed to determine the effect of five commonly employed extrinsic potential-sensitive probes on phase transitions of multilamellar suspensions of L-alpha-dimyristoylphosphatidylcholine (DMPC). At mol% values of less than five, the effect of these probes on the excess heat capacity curve in the vicinity of the gel to liquid crystal phase transition can be described by an equation based on the formation of ideal solutions in both phases. Even at up to 4 mol%, these dyes only moderately reduce the enthalpy change associated with this transition, but cause a marked decrease in the size of the cooperative unit parameter. The excess heat capacity profile for diS-C3-(5) is represented by the ideal solution equation, even at 12 mol%, whereas the suspensions with the other probes present at this level have profiles covering large temperature ranges. Multiple peaks appear at the higher levels for the negatively charged oxonols V and VI, and merocyanine 540, a result consistent with the presence of well-defined microdomains or even phase separation. The enthalpy change associated with the transition near 15 degrees C involving packing in the headgroup region is decreased significantly, indicating that the probes probably affect the lipid headgroup conformation, even at low levels. The cyanine probe diS-C3-(5) causes the heat capacity profile of small unilamellar vesicles to be transformed very rapidly into one similar to that of the vortexed lipid preparations, presumably by a dye-mediated vesicle fusion process, enhanced by the surface location of this probe. All our results are consistent with diS-C3-(5) being located on the surface of the bilayer in both phases, but a penetration of the other probes into the hydrocarbon region, at least in the liquid crystal phase.  相似文献   

18.
19.
Kinetics of the gel to liquid-crystalline phase transition of dipalmitoylphosphatidylcholine vesicle membrane was studied by the stopped-flow technique with turbidity detection. The observed change in turbidity was well characterized by a single-exponential decay curve with relaxation time in the millisecond range, although the existence of a faster process than the dead-time of the stopped-flow apparatus was inferred from the amplitude analysis. Relaxation times were determined as functions of 1-hexanol concentration and temperature just below phase transition. From the analysis based on the theories of nonequilibrium relaxation, it is concluded that the phase transition induced by 1-hexanol is governed by a nonlocalized fluctuation mechanism. The anesthetic-induced nonequilibrium state is unstable rather than metastable.  相似文献   

20.
Charged lipid membranes of dimyristoylmethylphosphatidic acid were mixed rapidly in a stopped-flow cell with protons or Ca2+ to compensate the charges and thereby trigger the ordered-fluid phase transition. The kinetics of the transition was studied by following the time development of the fluorescence anisotropy of diphenylhexatriene. A relaxation process was observed with a characteristic time in the range 10–200 ms. By comparison with existing theories of non-equilibrium relaxation it was concluded that the relaxation process is governed by a nucleation step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号