首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
MLC1/GlialCAM突变导致伴皮层下囊肿的巨脑性白质脑病(MLC)预后不同的常染色体隐性/显性的一类中枢神经系统髓鞘变性病,病理特征为星形胶质细胞肿胀与囊肿形成。MLC1与GlialCAM蛋白在星形胶质细胞定位于终足处,参与MLC1/GlialCAM/CLCN2三聚体结构的形成,MLC1突变影响EGFR信号转导通路参与星形胶质细胞体积调节与RVD活化,影响EGFR-KCa3. 1信号通路使得星形胶质细胞功能障碍,影响水和离子平衡,最终导致疾病发生。  相似文献   

3.
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is an inherited neurologic disorder with macrocephaly before the age of one and slowly progressive deterioration of motor functions. Magnetic resonance imaging shows diffusely abnormal and swollen white matter of the cerebral hemispheres and the presence of subcortical cysts in the anterior-temporal region and often also in the frontoparietal region. Mutations in the MLC1 gene, encoding a putative membrane protein, have been recently identified as a cause for MLC. Here, we describe 14 new mutations in 18 patients. Two identified polymorphisms lead to alterations of amino acid residues. The role, suggested by others, of a mutation in the MLC1gene in catatonic schizophrenia and the possible function of the MLC1 protein as a cation channel are discussed.  相似文献   

4.
5.
单基因病是一种天然存在的致病基因突变模型,对这些基因突变引起的细胞功能障碍的分子机制研究越来越受到关注。巨脑性白质脑病伴皮层下囊肿(MLC)是儿童较常见的遗传性白质脑病之一,其致病基因为MLC1。新近研究表明,MLC1蛋白主要在星形胶质细胞的终足(end foot)表达,对其功能研究尚处于起步阶段,在分子水平上探讨MLC1基因突变对星形胶质细胞功能影响可以阐明其可能的分子机制,这些研究结果将为了解本病及类似疾病的共同发生机制、新的治疗靶点及早期干预,提供理论依据。  相似文献   

6.
7.
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a leukodystrophy characterized by early-onset macrocephaly and delayed-onset neurological deterioration. Recessive MLC1 mutations are observed in 75% of patients with MLC. Genetic-linkage studies failed to identify another gene. We recently showed that some patients without MLC1 mutations display the classical phenotype; others improve or become normal but retain macrocephaly. To find another MLC-related gene, we used quantitative proteomic analysis of affinity-purified MLC1 as an alternative approach and found that GlialCAM, an IgG-like cell adhesion molecule that is also called HepaCAM and is encoded by HEPACAM, is a direct MLC1-binding partner. Analysis of 40 MLC patients without MLC1 mutations revealed multiple different HEPACAM mutations. Ten patients with the classical, deteriorating phenotype had two mutations, and 18 patients with the improving phenotype had one mutation. Most parents with a single mutation had macrocephaly, indicating dominant inheritance. In some families with dominant HEPACAM mutations, the clinical picture and magnetic resonance imaging normalized, indicating that HEPACAM mutations can cause benign familial macrocephaly. In other families with dominant HEPACAM mutations, patients had macrocephaly and mental retardation with or without autism. Further experiments demonstrated that GlialCAM and MLC1 both localize in axons and colocalize in junctions between astrocytes. GlialCAM is additionally located in myelin. Mutant GlialCAM disrupts the localization of MLC1-GlialCAM complexes in astrocytic junctions in a manner reflecting the mode of inheritance. In conclusion, GlialCAM is required for proper localization of MLC1. HEPACAM is the second gene found to be mutated in MLC. Dominant HEPACAM mutations can cause either macrocephaly and mental retardation with or without autism or benign familial macrocephaly.  相似文献   

8.
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is an autosomal recessive disorder characterized by macrocephaly, deterioration of motor functions with ataxia, and spasticity, eventuating in mental decline. The brain appears swollen on magnetic resonance imaging, with diffuse white-matter abnormalities and the invariable presence of subcortical cysts. MLC was recently localized on chromosome 22q(tel). We have narrowed down the critical region by linkage analysis of 11 informative families with MLC to a region of approximately 250 kb, containing four known genes. One family with two patients who were siblings did not display linkage between the MLC phenotype and any of the analyzed microsatellite markers on chromosome 22q(tel), suggesting genetic heterogeneity and the existence of at least a second MLC locus. The maximum two-point LOD score for the 11 families was 6.6 at recombination fraction .02. Twelve different mutations in seven informative and six uninformative families were found in one of the candidate genes, KIAA0027, which we renamed "MLC1." The gene encodes a putative membrane protein with eight predicted transmembrane domains. The patients of one family were compound heterozygotes for mutations that both introduced stop codons. The mutations further included frameshifts, splice-acceptor mutations, a putative splice-donor mutation, and amino acid substitutions of residues in predicted transmembrane domains. These data provide strong evidence that mutations of MLC1 cause the disease.  相似文献   

9.
To study the contribution of beta-cell vulnerability to susceptibility to diabetes, we studied beta-cell vulnerability to a single high dose of streptozotocin (STZ) in an animal model of type 2 diabetes, the NSY mouse, a sister strain of the STZ-sensitive NOD mouse, in comparison with the STZ-resistant C3H mouse. NSY mice were found to be extremely sensitive to STZ. Introgression of a single Chr 11, where STZ-sensitivity was mapped in the NOD mouse, from NSY mice converted STZ-resistant C3H mice to STZ-sensitive. Two nucleotide substitutions were identified in the nucleoredoxin gene, a positional and functional candidate gene for STZ-induced diabetes on Chr 11. These data, together with the co-localization of type 1 (Idd4) and type 2 (Nidd1n) susceptibility genes on Chr 11, suggest that the intrinsic vulnerability of pancreatic beta cells is determined by a gene or genes on Chr 11, which may also contribute to susceptibility to spontaneous diabetes.  相似文献   

10.
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a progressive inherited neurological disorder characterized by macrocephaly, deterioration in motor functions and cerebellar ataxia. In Israel the disease is found in an increased frequency among Libyan Jews. The disease is caused by mutations in the MLC1 gene, which encodes a putative CNS membrane transporter. We describe three novel mutations (p.G59E, p.P92S, and 134_136insC) in seven MLC families. One of these mutations, p.G59E, was found in the vast majority of MLC patients in Israel. Screening of 200 normal Libyan Jewish individuals for the p.G59E mutation, revealed a carrier rate of 1/40 compared with an expected carrier rate of 1/81. Several explanations could account for this difference the most likely one is an admixture of the Libyan Jewish population.  相似文献   

11.
Three separate somatic cell fusions were made between Chinese hamster lines and human lymphocytes containing (1) a 3/4 translocation, (2) an X/9 translocation, and (3) a 17/9 translocation. Eleven independently derived hybrids showed that only human chromosome 22 was consistently present when human ACON m was expressed and absent when human ACON m was not expressed. These studies assign a gene for human ACON m to chromosome 22, and are consistent with prior gene-mapping results.This study was supported in part by Grants HD-04612 and HD-05615 from the National Institute of Child Health and Human Development.  相似文献   

12.
Two novel mouse genes and one novel human gene that define distinctive eukaryotic nucleotide-binding proteins (NUBP) and are related to the mrp gene of prokaryotes are characterized. Phylogenetic analyses of the genes, encoding a short form (Nubp2) and a long form (Nubp1) of NUBP, clearly establish them as a new NUBP/MRP gene family that is well conserved throughout phylogeny. In addition to conserved ATP/GTP-binding motifs A (P-loop) and A', members of this family share at least two highly conserved sequence motifs, NUBP/MRP motifs alpha and beta. Only one type of NUBP/MRP gene has been observed thus far in prokaryotes, but there are two types in eukaryotes. One group includes mouse Nubp1, human NBP, yeast NBP35, and Caenorhabditis elegans F10G8.6 and is characterized by a unique N-terminal sequence with four cysteine residues that is lacking in the other group, which includes mouse Nubp2, human NUBP2, and yeast YIA3w. Northern blot analyses of the two mouse genes show distinctive patterns consistent with this classification. Mouse Nubp2 is mapped to the t-complex region of mouse Chromosome 17, whereas Nubp1 is mapped to the proximal region of mouse Chromosome 16. Interestingly, both regions are syntenic with human chromosome 16p13.1-p13.3, suggesting that a chromosomal breakage between Nubp2 and Nubp1 probably occurred during the evolution of mouse chromosomes.  相似文献   

13.
Six loci, apoliproprotein B (including Ag(x) antigen), immunoglobulin kappa constant region (IGKC), luteinizing hormone/choriogonadotrophin receptor, avian myelocytomatosis viral related oncogene, neuroblastoma derived, ornithine decarboxylase, and proopiomelanocortin (adrenocorticotropin/beta-lipotropin) (POMC), were newly assigned to sheep chromosome 3p using a chromosomally characterized minipanel of sheep-hamster cell hybrids. Isotopic in situ hybridization of IGKC to sheep chromosome 3p22–p17 is reported, confirming the cell hybrid assignment. As these loci are all known to map to human chromosome 2p, this study demonstrates that this chromosomal segment is extensively conserved in sheep. Only POMC has been previously assigned to cattle chromosome 11, which is the equivalent of sheep chromosome 3p. Therefore, we predict that the other loci assigned in this study to sheep 3p are likely to be located on cattle 11. The provisional assignment of an additional locus, annexin-like to sheep chromosome 3p is also reported.  相似文献   

14.
H22 is a major resistance gene conferring high-level of antibiosis to Hessian fly [Mayetiola destructor (Say)] larvae. It was previously assigned to wheat chromosome 1D through monosomic analysis (Raupp et al. in J Hered 84:142–145, 1993). The objective of this study was to identify molecular markers that can be used for marker-assisted selection for wheat breeding, and to further map this gene toward map-based cloning. Forty-five simple sequence repeat (SSR) and sequence-tagged site (STS) markers specific to chromosome 1D were evaluated for linkage to H22 using a segregating population consisting of 192 F2:3 families, which were derived from the cross Tugela-Dn1 × KS85WGRC01(H22). The STS Xhor2kv and SSR Xgdm33 are two flanking markers that are tightly linked to H22 at genetic distances of 0.3 and 1.0 cM, respectively. Five other SSR markers including Xgpw7082, Xwmc147, Xcfd15, Xwmc432 and Xwmc336 were also linked to H22 at the distance from 0.8 to 20.8 cM. Analysis of Chinese Spring (CS) deletion lines revealed that all the H22-linked markers are located distal to the breakpoint of del 1DS-5, indicating that the H22 gene is located at the distal 30% region on the short arm of wheat chromosome 1D. Genomic comparison suggested that the H22 gene is located in the same or similar chromosomal region as the leaf rust resistance genes Lr21 and Lr40 on 1DS, and orthologous to the H9 gene cluster of 1AS.  相似文献   

15.
Somatic hybrids between potato and Solanum bulbocastanum, a wild diploid (2n=2x=24) Mexican species, are highly resistant to late blight, caused by Phytophthora infestans. Both randomly amplified polymorphic DNA (RAPD) and restriction fragment length polymorphism (RFLP) markers that are closely linked to the resistance have been noted by analysis of three different backcross-2 populations derived from two different somatic hybrids. With reference to previously published potato and tomato maps, resistance appears to be on the long arm of chromosome 8 and is flanked by RFLP markers CP53 and CT64. In a population of BC2 plants derived from a cross between the BC1 line J10lK6 [(S. tuberosum PI 203900+S. bulbocastanum PI 243510) ×Katahdin)]×Atlantic, late blight resistance cosegregated with RFLP marker CT88 and RAPD marker OPG02–625. Received: 26 November 1999 / Accepted: 22 December 1999  相似文献   

16.
The chromosomal location of the alpha subunit (23-kDa protein) of human cytochrome b-245 was analyzed by Southern blot hybridization using DNA isolated from a panel of 12 independent human-rodent somatic cell hybrids. The results indicate that this protein is encoded at a single locus on chromosome 16.  相似文献   

17.
The enzyme tyrosinase (monophenol,L-dopa:oxygen oxidoreductase; EC 1.14.18.1) catalyzes the first two steps in the conversion of tyrosine to melanin, the major pigment found in melanocytes. Some forms of oculocutaneous albinism, characterized by the absence of melanin in skin and eyes and by a deficiency of tyrosinase activity, may result from mutations in the tyrosinase structural gene. A recently isolated human tyrosinase cDNA was used to map the human tyrosinase locus (TYR) to chromosome 11, region q14----q21, by Southern blot analysis of somatic cell hybrid DNA and by in situ chromosomal hybridization. A second site of tyrosinase-related sequences was detected on the short arm of chromosome 11 near the centromere (p11.2----cen). Furthermore, we have confirmed the localization of the tyrosinase gene in the mouse at or near the c locus on chromosome 7. Comparison of the genetic maps of human chromosome 11 and mouse chromosome 7 leads to hypotheses regarding the evolution of human chromosome 11.  相似文献   

18.

Background

Previous genome-wide association analyses identified QTL regions in the X chromosome for percentage of normal sperm and scrotal circumference in Brahman and Tropical Composite cattle. These traits are important to be studied because they are indicators of male fertility and are correlated with female sexual precocity and reproductive longevity. The aim was to investigate candidate genes in these regions and to identify putative causative mutations that influence these traits. In addition, we tested the identified mutations for female fertility and growth traits.

Results

Using a combination of bioinformatics and molecular assay technology, twelve non-synonymous SNPs in eleven genes were genotyped in a cattle population. Three and nine SNPs explained more than 1% of the additive genetic variance for percentage of normal sperm and scrotal circumference, respectively. The SNPs that had a major influence in percentage of normal sperm were mapped to LOC100138021 and TAF7L genes; and in TEX11 and AR genes for scrotal circumference. One SNP in TEX11 was explained ~13% of the additive genetic variance for scrotal circumference at 12 months. The tested SNP were also associated with weight measurements, but not with female fertility traits.

Conclusions

The strong association of SNPs located in X chromosome genes with male fertility traits validates the QTL. The implicated genes became good candidates to be used for genetic evaluation, without detrimentally influencing female fertility traits.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1595-0) contains supplementary material, which is available to authorized users.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号