首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypertrophic cardiomyopathy’s (HCM) association with sudden cardiac death is well recognised. The risk of sudden cardiac death is known to increase when there is a history of unexplained syncope, abnormal blood pressure response during exercise, severe left ventricular hypertrophy or a family history of unexplained death.Implantable Cardioverter Defibrillator (ICD) implantation has been widely used for primary and secondary prevention of sudden cardiac death (SCD) in people with HCM. Subcutaneous ICD (S-ICD) therapy has been developed to overcome some of the problems associated with the transvenous leads used in conventional ICDs.In this article, we report the use of S-ICD in a patient with HCM and multiple risk factors for sudden cardiac death, this device had to be extracted due to recurrent inappropriate shocks caused by over sensing of atrial flutter and failure to treat a VT episode. We are not aware of any reports of inappropriate shocks caused by atrial flutter in people with a S-ICD.  相似文献   

2.
Hypertrophic cardiomyopathy:from gene defect to clinical disease   总被引:9,自引:0,他引:9  
Major advances have been made over the last decade in our understanding of the molecular basis of several cardiac conditions.Hypertrophic cardiomyopathy(HCM)was the first cardiac disorder in which a genetic basis was identified and as such,has acted as a paradigm for the study of an inherited cardiac disorder.HCM can result in clinical symptoms ranging from no symptoms to severe heart failure and premature sudden death.HCM is the commonest cause of sudden death in those aged less than 35 years, including competitive athletes.At least ten genes have now been identified,defects in which cause HCM.All of these genes encode proteins which comprise the basic contractile unit of the heart,i.e.the sarcomere.While much is now known about which genes cause disease and the various clinical presentations,very little is known about how these gene defects cause disease,and what factors modify the expression of the mutant genes.Studies in both cell culture and animal models of HCM are now beginning to shed light on the signalling pathways involved in HCM,and the role of both environmental and genetic modifying factors.Understanding these mechanisms will ultimately improve our knowledge of the basic biology of heart muscle function,and will therefore provide new avenues for treating cardiovascular disease in man.  相似文献   

3.
Major advances have been made over the last decade in our understanding of the molecular basis of several cardiac conditions. Hypertrophic cardiomyopathy (HCM) was the first cardiac disorder in which a genetic basis was identified and as such, has acted as a paradigm for the study of an inherited cardiac disorder. HCM can result in clinical symptoms ranging from no symptoms to severe heart failure and premature sudden death. HCM is the commonest cause of sudden death in those aged less than 35 years, including competitive athletes. At least ten genes have now been identified, defects in which cause HCM. All of these genes encode proteins which comprise the basic contractile unit of the heart, i.e. the sarcomere. While much is now known about which genes cause disease and the various clinical presentations, very little is known about how these gene defects cause disease, and what factors modify the expression of the mutant genes. Studies in both cell culture and animal models of HCM are now beginning to  相似文献   

4.
Hypertrophic cardiomyopathy (HCM) is an important cardiovascular disease with sudden cardiac death as the most devastating presentation. Implantable cardioverter defibrillators (ICD) are the optimal therapy for prevention of sudden death from ventricular tachycardia or fibrillation of any cause. While there is no controversy with implanting ICDs in patients who have already survived a cardiac arrest, identifying high-risk patients for primary prevention in this disease remains a challenge. Implanting ICDs in patients with HCM is an important clinical consideration since many individuals could achieve normal or near-normal lifespans with this protection.  相似文献   

5.
Hypertrophic cardiomyopathy (HCM) is a genetically determined cardiac disease characterised by otherwise unexplained myocardial hypertrophy of the left ventricle, and may result in left ventricular outflow tract obstruction. It is the most common cause of sudden cardiac death in young adults due to arrhythmias. Septal myectomy is a surgical treatment for HCM with moderate to severe outflow tract obstruction, and is indicated for patients with severe symptoms refractory to medical therapy. The surgical approach involves obtaining access to the interventricular septum via transaortic, transapical or transmitral approaches, and excising a portion of the hypertrophied myocardium to relieve the outflow tract obstruction. Large, contemporary series from centres experienced in septal myectomy patients have demonstrated a low early mortality of <2 %, excellent long-term survival that matches the general population, and durable relief of symptoms.  相似文献   

6.
肥厚型心肌病的致病分子机制研究进展   总被引:1,自引:0,他引:1  
Song YR  Liu Z  Gu SL  Qian LJ  Yan QF 《遗传》2011,33(6):549-557
肥厚型心肌病(Hypertrophic cardiomyopathy,HCM)是以左心室及室间隔不对称肥厚为基本特征的原发性心肌病,其发病率约为0.2%,是青少年和运动员心源性猝死的最常见原因。HCM的发病年龄、发病程度和猝死风险等临床表型具有多样性,通常呈常染色体显性遗传。目前已报道的HCM相关突变超过900种,主要定位在β肌球蛋白重链基因、肌球蛋白结合蛋白C基因、心脏肌钙蛋白T基因等13个心脏肌节蛋白基因;另一方面,越来越多的研究显示线粒体基因突变与HCM发生相关。文章在简单介绍HCM形态学特征及临床表型的基础上,着重综述了HCM的致病分子机制及其最新研究进展。  相似文献   

7.
Traditionally regarded as a genetic disease of the cardiac sarcomere, hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disease and a significant cause of sudden cardiac death. While the most common etiologies of this phenotypically diverse disease lie in a handful of genes encoding critical contractile myofilament proteins, approximately 50% of patients diagnosed with HCM worldwide do not host sarcomeric gene mutations. Recently, mutations in genes encoding calcium-sensitive and calcium-handling proteins have been implicated in the pathogenesis of HCM. Among these are mutations in TNNC1- encoded cardiac troponin C, PLN-encoded phospholamban, and JPH2-encoded junctophilin 2 which have each been associated with HCM in multiple studies. In addition, mutations in RYR2-encoded ryanodine receptor 2, CASQ2-encoded calsequestrin 2, CALR3-encoded calreticulin 3, and SRI-encoded sorcin have been associated with HCM, although more studies are required to validate initial findings. While a relatively uncommon cause of HCM, mutations in genes that encode calcium-handling proteins represent an emerging genetic subset of HCM. Furthermore, these naturally occurring disease-associated mutations have provided useful molecular tools for uncovering novel mechanisms of disease pathogenesis, increasing our understanding of basic cardiac physiology, and dissecting important structure-function relationships within these proteins.  相似文献   

8.
BACKGROUND: Familial hypertrophic cardiomyopathy (HCM) is an autosomal dominant disease characterized by ventricular hypertrophy, myocellular disarray, arrhythmias, and sudden death. Mutations in several contractile proteins, including cardiac myosin heavy chains, have been described in families with this disease, leading to the hypothesis that HCM is a disease of the sarcomere. MATERIALS AND METHODS: A mutation in the myosin heavy chain (Myh) predicted to interfere strongly with myosin's binding to actin was designed and used to create an animal model for HCM. Five independent lines of transgenic mice were produced with cardiac-specific expression of the mutant Myh. RESULTS: Although the mutant Myh represents a small proportion (1-12%) of the heart's myosin, the mice exhibit the cardiac histopathology seen in HCM patients. Histopathology is absent from the atria and primarily restricted to the left ventricle. The line exhibiting the highest level of mutant Myh expression demonstrates ventricular hypertrophy by 12 weeks of age, but the further course of the disease is strongly affected by the sex of the animal. Hypertrophy increases with age in female animals while the hearts of male show severe dilation by 8 months of age, in the absence of increased mass. CONCLUSIONS: The low levels of the transgene protein in the presence of the phenotypic features of HCM suggest that the mutant protein acts as a dominant negative. In addition, the distinct phenotypes developed by aging male or female transgenic mice suggest that extragenic factors strongly influence the development of the disease phenotype.  相似文献   

9.
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiomyopathy and is characterized by asymmetric left ventricular hypertrophy and diastolic dysfunction, and a frequent cause of sudden cardiac death at young age. Pharmacological treatment to prevent or reverse HCM is lacking. This may be partly explained by the variety of underlying disease causes. Over 1500 mutations have been associated with HCM, of which the majority reside in genes encoding sarcomere proteins, the cardiac contractile building blocks. Several mutation-mediated disease mechanisms have been identified, with proof for gene- and mutation-specific cellular perturbations. In line with mutation-specific changes in cellular pathology, the response to treatment may depend on the underlying sarcomere gene mutation. In this review, we will discuss evidence for mutation-specific pathology and treatment responses in HCM patients, mouse models and engineered heart tissue. The pros and cons of these experimental models for studying mutation-specific HCM pathology and therapies will be outlined.  相似文献   

10.
Defined as clinically unexplained hypertrophy of the left ventricle, hypertrophic cardiomyopathy (HCM) is traditionally understood as a disease of the cardiac sarcomere. Mutations in TNNC1-encoded cardiac troponin C (cTnC) are a relatively rare cause of HCM. Here, we report clinical and functional characterization of a novel TNNC1 mutation, A31S, identified in a pediatric HCM proband with multiple episodes of ventricular fibrillation and aborted sudden cardiac death. Diagnosed at age 5, the proband is family history-negative for HCM or sudden cardiac death, suggesting a de novo mutation. TnC-extracted cardiac skinned fibers were reconstituted with the cTnC-A31S mutant, which increased Ca(2+) sensitivity with no effect on the maximal contractile force generation. Reconstituted actomyosin ATPase assays with 50% cTnC-A31S:50% cTnC-WT demonstrated Ca(2+) sensitivity that was intermediate between 100% cTnC-A31S and 100% cTnC-WT, whereas the mutant increased the activation of the actomyosin ATPase without affecting the inhibitory qualities of the ATPase. The secondary structure of the cTnC mutant was evaluated by circular dichroism, which did not indicate global changes in structure. Fluorescence studies demonstrated increased Ca(2+) affinity in isolated cTnC, the troponin complex, thin filament, and to a lesser degree, thin filament with myosin subfragment 1. These results suggest that this mutation has a direct effect on the Ca(2+) sensitivity of the myofilament, which may alter Ca(2+) handling and contribute to the arrhythmogenesis observed in the proband. In summary, we report a novel mutation in the TNNC1 gene that is associated with HCM pathogenesis and may predispose to the pathogenesis of a fatal arrhythmogenic subtype of HCM.  相似文献   

11.
Three hundred and fifty cases of "natural" sudden death within six hours of onset of symptoms in people ranging in age from 18 to 69 years in Wandsworth were studied using a detailed necropsy protocol to determine the cause of death. Sudden death occurred in 28 (8%) Asians and blacks, but because of the small number they were excluded from the study, leaving 322 cases. Ischaemic heart disease accounted for 189 (59%) of the 322 sudden deaths (155 (65%) men; 34 (41%) women) and no proportional increase in instantaneous compared with non-instantaneous sudden death was found. Non-ischaemic cardiac disease was the cause of sudden death in 24 cases (7.5%). Non-cardiac disease included pulmonary emboli, aortic aneurysms, and intracerebral haemorrhage and caused 89 (27.6%) deaths. Alcohol was the cause of nine deaths (2.8%) and in 11 (3.4%) cases (six men and five women) no cause of death was found. This study shows that although ischaemic heart disease is the single largest cause of sudden natural death there are other major causes.  相似文献   

12.
Implantable Cardioverter Defibrillator (ICD) implantation is the only established therapy for primary or secondary prevention of sudden cardiac death in patients with Hypertrophic Cardiomyopathy (HCM). Ineffectiveness of shock therapy for the termination of potentially fatal ventricular arrhythmias in ICD recipients is rare in the presence of appropriate arrhythmia detection by the device. We report the case of a 48-year-old woman with HCM and a single chamber ICD, who received five inefficient high-energy (35 Joules) shocks for the termination of an appropriately detected episode of Ventricular Tachycardia (VT). The episode was safely terminated with a subsequent application of Antitachycardia Pacing (ATP) by the device. At the following ICD control, an acceptable defibrillation threshold was detected.  相似文献   

13.
Hypertrophic cardiomyopathy (HCM) is a disease characterised by unexplained left ventricular hypertrophy (LVH) (i.e. LVH in the absence of another cardiac or systemic disease that could produce a similar degree of hypertrophy), electrical instability and sudden death (SD). Germline mutations in genes encoding for sarcomere proteins are found in more than half of the cases of unexplained LVH. The autosomal dominant inherited forms of HCM are characterised by incomplete penetrance and variability in clinical and echocardiographic features, prognosis and therapeutic modalities. The identification of the genetic defect in one of the HCM genes allows accurate presymptomatic detection of mutation carriers in a family. Cardiac evaluation of at-risk relatives enables early diagnosis and identification of those patients at high risk for SD, which can be the first manifestation of the disease in asymptomatic persons. In this article we present our experience with genetic testing and cardiac screening in our HCM population and give an overview of the current literature available on this subject. (Neth Heart J 2007;15:184-9.)  相似文献   

14.
Familial hypertrophic cardiomyopathy (HCM), a leading cause of sudden cardiac death, is primarily caused by mutations in sarcomeric proteins. The pathogenesis of HCM is complex, with functional changes that span scales, from molecules to tissues. This makes it challenging to deconvolve the biophysical molecular defect that drives the disease pathogenesis from downstream changes in cellular function. In this study, we examine an HCM mutation in troponin T, R92Q, for which several models explaining its effects in disease have been put forward. We demonstrate that the primary molecular insult driving disease pathogenesis is mutation-induced alterations in tropomyosin positioning, which causes increased molecular and cellular force generation during calcium-based activation. Computational modeling shows that the increased cellular force is consistent with the molecular mechanism. These changes in cellular contractility cause downstream alterations in gene expression, calcium handling, and electrophysiology. Taken together, our results demonstrate that molecularly driven changes in mechanical tension drive the early disease pathogenesis of familial HCM, leading to activation of adaptive mechanobiological signaling pathways.  相似文献   

15.
Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are the most common hereditary cardiac conditions. Both are frequent causes of sudden death and are often associated with an adverse disease course. Alpha-cardiac actin is one of the disease genes where different missense mutations have been found to cause either HCM or DCM. We have tested the hypothesis that the protein-folding pathway plays a role in disease development for two actin variants associated with DCM and six associated with HCM. Based on a cell-free coupled translation assay the actin variants could be graded by their tendency to associate with the chaperonin TCP-1 ring complex/chaperonin containing TCP-1 (TRiC/CCT) as well as their propensity to acquire their native conformation. Some variant proteins are completely stalled in a complex with TRiC and fail to fold into mature globular actin and some appear to fold as efficiently as the wild-type protein. A fraction of the translated polypeptide became ubiquitinated and detergent insoluble. Variant actin proteins overexpressed in mammalian cell lines fail to incorporate into actin filaments in a manner correlating with the degree of misfolding observed in the cell-free assay; ranging from incorporation comparable to wild-type actin to little or no incorporation. We propose that effects of mutations on folding and fiber assembly may play a role in the molecular disease mechanism.  相似文献   

16.
Mutations in myosin heavy chain (MyHC) can cause hypertrophic cardiomyopathy (HCM) that is characterized by hypertrophy, histopathology, contractile dysfunction, and sudden death. The signaling pathways involved in the pathology of HCM have not been elucidated, and an unresolved question is whether blocking hypertrophic growth in HCM may be maladaptive or beneficial. To address these questions, a mouse model of HCM was crossed with an antihypertrophic mouse model of constitutive activated glycogen synthase kinase-3beta (caGSK-3beta). Active GSK-3beta blocked cardiac hypertrophy in both male and female HCM mice. However, doubly transgenic males (HCM/GSK-3beta) demonstrated depressed contractile function, reduced sarcoplasmic (endo) reticulum Ca(2+)-ATPase (SERCA) expression, elevated atrial natriuretic factor (ANF) expression, and premature death. In contrast, female HCM/GSK-3beta double transgenic mice exhibited similar cardiac histology, function, and survival to their female HCM littermates. Remarkably, dietary modification from a soy-based diet to a casein-based diet significantly improved survival in HCM/GSK-3beta males. These findings indicate that activation of GSK-3beta is sufficient to limit cardiac growth in this HCM model and the consequence of caGSK-3beta was sexually dimorphic. Furthermore, these results show that blocking hypertrophy by active GSK-3beta in this HCM model is not therapeutic.  相似文献   

17.
Implanted defibrillators have become mainstream therapy for the prevention of sudden cardiac death from ventricular tachyarrhythmias. A decade of studies has confirmed the superiority of ICDs over antiarrhythmic drug therapy in prolonging the life of patients with a prior history of sustained VT or VF. More recent studies have compared ICD therapy to drugs or no antiarrhythmic therapy as 'primary prophylaxis' in patients considered at high risk for sudden death or with prior MIs. In selected patients, ICDs lead to important relative and absolute reductions in mortality in patients with no prior history of sustained VT or VF. Clinicians need to carefully consider these studies in their management of patients with CAD and severe LV dysfunction.  相似文献   

18.
Hypertrophic cardiomyopathy (HCM) is an autosomal dominant inherited genetic disease characterized by compensatory pathological left ventricle (LV) hypertrophy due to sarcomere dysfunction. In an important proportion of patients with HCM, the site and extent of cardiac hypertrophy results in severe obstruction to LV outflow tract (LVOT), contributing to disabling symptoms and increasing the risk of sudden cardiac death (SCD). In patients with progressive and/or refractory symptoms despite optimal pharmacological treatment, invasive therapies that diminish or abolish LVOT obstruction relieve heart failure-related symptoms, improve quality of life and could be associated with long-term survival similar to that observed in the general population. The gold standard in this respect is surgical septal myectomy, which might be supplementary associated with a reduction in SCD. Percutaneous techniques, particularly alcohol septal ablation (ASA) and more recently radiofrequency (RF) septal ablation, can achieve LVOT gradient reduction and symptomatic benefit in a large proportion of HOCM patients at the cost of a supposedly limited septal myocardial necrosis and a 10-20% risk of chronic atrioventricular block. After an initial period of enthusiasm, standard DDD pacing failed to show in randomized trials significant LVOT gradient reductions and objective improvement in exercise capacity. However, case reports and recent small pilot studies suggested that atrial synchronous LV or biventricular (biV) pacing significantly reduce LVOT obstruction and improve symptoms (acutely as well as long-term) in a large proportion of severely symptomatic HOCM patients not suitable to other gradient reduction therapies. Moreover, biV/LV pacing in HOCM seems to be associated with significant LV reverse remodelling.  相似文献   

19.
Background. Patients with hypertrophic cardiomyopathy (HCM) and HCM mutation carriers are at risk of sudden cardiac death (SCD). Both groups should therefore be subject to regular cardiological testing – including risk stratification for SCD – according to international guidelines. We evaluated Dutch cardiologists' knowledge of and adherence to international guidelines on risk stratification and prevention of SCD in mutation carriers with and without manifest HCM. Methods. A questionnaire was sent to 1109 Dutch cardiologists (in training) containing case-based questions. Results. The response rate was 21%. Own general knowledge on HCM care was rated as insufficient by 63% of cardiologists. The percentage of correct answers (i.e. in agreement with international guidelines), on the case-based questions ranged from 37 to 96%, being lowest in cases with an unknown number of risk factors for SCD. A substantial portion of correct answers was based on the correct answer ‘ask an expert opinion’. Significantly more correct answers were provided in cases with manifest HCM. There was little difference between the answers of cardiologists with different self-reported levels of knowledge, with different numbers of HCM patients in their practice or with different numbers of carriers without manifest HCM. Conclusion. Knowledge on risk stratification and preventive therapy was mediocre, and knowledge gaps exist, especially on HCM mutation carriers without manifest disease. Fortunately, experts are frequently asked for their opinion which might bring patient care to an adequate level. Hopefully, our results will stimulate cardiologists to follow developments in this field, thereby increasing quality of care for HCM patients and mutation carriers. (Neth Heart J 2009:17:464–9.).  相似文献   

20.

BACKGROUND:

Cardiomyopathies are a heterogeneous group of heart muscle disorders and are classified as 1) Hypertrophic Cardiomyopathy (HCM) 2) Dilated cardiomyopathy (DCM) 3) Restrictive cardiomyopathy (RCM) and 4) Arrhythmogenic right ventricular dysplasia (ARVD) as per WHO classification, of which HCM and DCM are common. HCM is a complex but relatively common form of inherited heart muscle disease with prevalence of 1 in 500 individuals and is commonly associated with sarcomeric gene mutations. Cardiac muscle troponin I (TNNI-3) is one such sarcomeric protein and is a subunit of the thin filament-associated troponin-tropomyosin complex involved in calcium regulation of skeletal and cardiac muscle contraction. Mutations in this gene were found to be associated with a history of sudden cardiac death in HCM patients.

AIM:

Therefore the present study aims to identify for mutations associated with troponin I gene in a set of HCM patients from Indian population.

MATERIALS AND METHODS:

Mutational analyses of 92 HCM cases were carried out following PCR based SSCP analysis.

RESULTS:

The study revealed band pattern variation in 3 cases from a group of 92 HCM patients. This band pattern variation, on sequencing revealed base changes, one at nt 2560 with G>T transversion in exon-5 region with a wobble and others at nt 2479 and nt 2478 with G>C and C>G transversions in the intronic region upstream of the exon 5 on sequencing. Further analysis showed that one of the probands showed apical form of hypertrophy, two others showing asymmetric septal hypertrophy. Two of these probands showed family history of the condition.

CONCLUSIONS:

Hence, the study supports earlier reports of involvement of TNNI-3 in the causation of apical and asymmetrical forms of hypertrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号