首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An oral killed (non-replicating) whole-cell anti-ETEC vaccine was prepared by treating enterotoxigenic Escherichia coli strain H-10407 (ST + LT +; 078: H11: CFA/I) with a 100%-lethal amount of colicin E2. Colicin E2 is a potent DNA endonuclease which enters the target bacterial cells without disrupting cellular integrity. Thus the vaccine consists of intact cells lacking chromosomal and plasmid DNA but possessing a normal complement of antigens, including CFA/I and enterotoxin(s), unaltered by chemical- or heat-treatment. Young healthy volunteers were administered two oral doses, one month apart, of approximately 3 x 10(10) vaccine cells. Of 22 vaccinees, 17 (77.3%) showed an intestinal anti-CFA/I IgA response and 19 (86.4%) showed an increase in intestinal anti-LT IgA. Twenty of 22 (90.9%) vaccinees had antibody responses to either CFA/I, LT, or both antigens, demonstrating that colicin E2-treated CFA-positive E. coli cells are an efficient vehicle in terms of delivery of antigens to the gut immune system. We previously demonstrated protection of vaccinees against challenge with the living homologous ETEC (strain H-10407). In this study, two groups of 8 vaccinees were challenged with a diarrheagenic dose of virulent ST + LT + ETEC of heterologous serotype; one group was challenged with a CFA/I-positive 063: H- strain and the other group was challenged with a CFA/II-positive 06: H16 strain. Approximately 75% efficacy was achieved in both challenge groups. None of the 16 vaccinees who had responded to both CFA/I and LT became ill upon challenge while both of the vaccinees who had not responded to either antigen did.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
In this study, we have searched for an effective mucosal delivery system for a purified E. coli antigen which elicits anticolonization and anti-toxic immunity. E. coli colonization factor antigen (CFA/I) and heat-labile enterotoxin (LT) were encapsulated in liposomes. To determine the efficacies of soluble and liposome-encapsulated E. coli antigens young rabbits were mucosally treated with three oral doses of E. coli antigens given 7 days apart. Ten days after the last booster, rabbits were orally challenged with 5 x 10(9) bacterial cells (O78:H11 serotype). The experimental results allow of making some remarks which can be correlated with the protection obtained in vaccinated animals: (a) immunization with E. coli antigens entrapped in liposomes ensured protection against ETEC strains; (b) lower protection against homologous and heterologous CFA/I +(LT- ST+) strains were noticed; (c) adhesion of labelled -3H-leucine-bacteria to the intestinal mucosa revealed a maximum distribution in duodenum-jejunum and minimum in the colonic mucosa; (d) it contributed to the release of inoculated virulent bacteria from intestinal tract; (e) humoral, cellular and histopathological findings confirm the afore mentioned observation. Summing up, these results suggest that liposomes are very good carriers for E. coli antigens and these findings highlight the potential use of LT and CFA/I antigens entrapped in liposomes as mucosal and humoral induction of immune response and make them a candidate for future use in prophylaxis of diarrhoea in man.  相似文献   

3.
CFA/I antigen was isolated and purified from E. coli, mutant 279 B-1-14, serotype 0128:H12, and had the following biochemical and biological features: a) amino-acid content was similar to that of purified antigen prepared from strain H10407; b) latex particles sensitization with purified CFA/I antigen produced bovine and human erythrocytes group A/II hemagglutination in carbohydrates presence; c) purified anti-CFA/I specific antibodies agglutinated CFA/I-positive enterotoxigenic E. coli strains; d) 3H-leucine-labelled CFA/I antigen adhered to rabbits intestinal mucosa at significant values; e) intestinal mucosa pretreating with purified CFA/I antigen, followed by 3H-leucine labelled enterotoxigenic bacteria infection, had a least 3 local effects: 1) intestinal mucosa protection against parental enterotoxigenic bacteria; 2) inhibition of CFA/I-positive bacteria adherence to intestinal mucosa; 3) release of approximately 96% intraluminally inoculated bacteria.  相似文献   

4.
Abstract Vaccine regimens which mimic actual infection with bacterial enteropathogens should offer the best opportunity for successful long-term immunoprotection against diarrheal disease caused by enterotoxigenic Escherichia coli (ETEC) or Vibrio cholerae . Based on this principle, we designed and tested an oral whole cell anti-ETEC vaccine consisting of intact cells of ETEC strain H-10407 (ST+LT+; O78: H11: CFA/I) which were rendered incapable of replication by treatment with a potent DNA endonuclease, colicin E2. Young healthy volunteers were administered two oral doses of either placebo or approx. 3 × 1010 vaccine cells. In a double-blind study, 9 of 10 vaccinees responded with an increase in CFA/I-specific intestinal IgA antibody, determined as percent of total IgA. Challenge with virulent strain H-10407 (5 × 109 living cells) produced diarrhea in 8 of 9 (89%) of the placebo-treated volunteers and in 2 of 10 (20%) of the vaccinees. Thus, the colicin E2-killed whole cell vaccine afforded both a significant intestinal immune response and significant protection against challenge with the virulent organism. The data presented here suggest that for this vaccine preparation an intestinal anti-CFA/I IgA response is a good indicator of a protective immune response, which most likely involves antibody responses to a number of antigens in addition to CFA/I. We conclude that the colicin E2 method for preparing an oral anti-ETEC vaccine merits further study and that this method may also be applicable to other enteropathogens.  相似文献   

5.
Enterotoxigenic Escherichia coli (ETEC) use colonization factors to attach to the human intestinal mucosa, followed by enterotoxin expression that induces net secretion and diarrhoeal illness. ETEC strain H10407 expresses CFA/I fimbriae, which are composed of multiple CfaB structural subunits and a CfaE tip subunit. Currently, the contribution of these individual fimbrial subunits in intestinal binding remains incompletely defined. To identify the role of CfaE in attachment in the native ETEC background, an R181A single-amino-acid substitution was introduced by recombination into the H10407 genome. The substitution of R181A eliminated haemagglutination and binding of intestinal mucosa biopsies in in vitro organ culture assays, without loss of CFA/I fimbriae expression. Wild-type in trans plasmid-expressed cfaE restored the binding phenotype . In contrast, in trans expression of cfaE containing amino acid 181 substitutions with similar amino acids, lysine, methionine and glutamine did not restore the binding phenotype, indicating that the loss of the binding phenotype was due to localized areas of epitope disruption. R181 appears to have an irreplaceable role in the formation of a receptor-binding feature on CFA/I fimbriae. The results specifically indicate that the CfaE tip protein is a required binding factor in CFA/I-mediated ETEC colonization, making it a potentially important vaccine antigen.  相似文献   

6.
Vaccine regimens which mimic actual infection with bacterial enteropathogens should offer the best opportunity for successful long-term immunoprotection against diarrheal disease caused by enterotoxigenic Escherichia coli (ETEC) or Vibrio cholerae. Based on this principle, we designed and tested an oral whole cell anti-ETEC vaccine consisting of intact cells of ETEC strain H-10407 (ST+LT+; O78:H11:CFA/I) which were rendered incapable of replication by treatment with a potent DNA endonuclease, colicin E2. Young healthy volunteers were administered two oral doses of either placebo or approx. 3 X 10(10) vaccine cells. In a double-blind study, 9 of 10 vaccinees responded with an increase in CFA/I-specific intestinal IgA antibody, determined as percent of total IgA. Challenge with virulent strain H-10407 (5 X 10(9) living cells) produced diarrhea in 8 of 9 (89%) of the placebo-treated volunteers and in 2 of 10 (20%) of the vaccinees. Thus, the colicin E2-killed whole cell vaccine afforded both a significant intestinal immune response and significant protection against challenge with the virulent organism. The data presented here suggest that for this vaccine preparation an intestinal anti-CFA/I IgA response is a good indicator of a protective immune response, which most likely involves antibody responses to a number of antigens in addition to CFA/I. We conclude that the colicin E2 method for preparing an oral anti-ETEC vaccine merits further study and that this method may also be applicable to other enteropathogens.  相似文献   

7.
Abstract Simple immunoassays were developed to study the binding between enterocytes of the small intestine and other cell types, and enterotoxigenic Escherichia coli (ETEC). CFA/I or CFA/II pilus protein or CFA-positive E. coli bacteria were wells of microtitre plates and incubated with vesicles or crude mucus prepared from human brush border enterocytes. Binding of the cell preparations was detected by adding specific rabbit anti-brush border IgG followed by urease-labelled goat anti-rabbit IgG and urea substrate. The binding of purified CFA/I to human or rabbit small intestine, human oral epithelial cells or Caco-2 cells was detected with specific anti-CFA/I IgG. Both human brush border and mucus-derived preparations were able to attach to ETEC. The binding was CFA-specific and strong enough to withstand several washings. In contrast, CFA/I did not bind to small intestinal cells of non-human small intestinal origin, indicating that there may be important differences in affinity between receptors present on human small intestinal cells and cells of non-human small intestinal origin. Antibodies directed against human small intestinal and non-small intestinal cells did not cross-react with either preparation, indicating that receptors between these different cell sources are different. The EIA proved useful during the identification of a newly-recognised 15 kDa bacterial surface component of ETEC strain H10407P, which may function as a putative attachment factor. The EIAs developed in this study were easy to perform and multiple tests could be performed on small samples, including biopsy samples obtained during endoscopy.  相似文献   

8.
定居因子CFA/I和CS6是肠毒素大肠杆菌 (ETEC)中重要的两种优势抗原 ,是ETEC疫苗研制的首选组分。采用基因重组技术将二者构建在以asd基因为选择标记的重组质粒上 ,与asd基因缺失突变型减毒福氏志贺氏菌FWL0 1构成宿主 载体平衡致死系统。实验结果表明 ,重组疫苗候选株能够稳定表达CFA/I和CS6抗原 ,并可在菌体表面形成相应菌毛。重组菌口服免疫BALB/c小鼠后 ,可诱生相应的抗CFA/I和CS6的特异性血清抗体IgG和分泌型抗体sIgA ,说明以志贺氏菌为载体 ,可以构建同时表达多个定居因子抗原的ETEC多价菌苗  相似文献   

9.
Entertoxigenic Escherichia coli (ETEC) strains of nineteen serogroups which produced colonization factors (coli-surface-associated antigens CS5, CS6, CS7 and CS17, colonization factor antigen CFA/III and putative colonization factors PCFO159:H4, PCFO166 and PCFO9) were tested for hybridization with a DNA probe containing the cfaD sequence that regulates expression of CFA/I. Strong colony hybridization, similar to that with the CFA/I-positive control strain H10407, occurred with ETEC strains of serogroups O27, O159 and O169 which produced CS6 antigen, and with all the strains which produced PCFO166 fimbriae. Weak colony hybridization, compared to the control strain, was found with ETEC producing CS5 fimbriae with CS6 antigen, CFA/III fimbriae with CS6 antigen, CS7 fimbriae or PCFO159:H4 fimbriae. CS6-antigen-positive strains of serogroups O79, O89 and O148 and all the CS17-antigen-positive and PCFO9-fimbriae-positive strains were negative in colony hybridization tests with the cfaD probe. Plasmid DNA of nine ETEC strains and their colonization-factor-negative derivatives was tested for hybridization with the cfaD probe and with ST and LT oligonucleotide probes. The sequences that hybridized with the cfaD probe were on the plasmids which coded for enterotoxin production. Fifteen strains were transformed with NTP513, a recombinant plasmid which contains the CFA/I region 1 fimbrial subunit operon but lacks a functional cfaD sequence, in order to determine whether DNA in any of these strains could substitute for the cfaD sequence in the regulation of production of CFA/I fimbriae.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Enterotoxigenic Escherichia Coli (ETEC) strains are the commonest bacteria causing diarrhea in children in developing countries and travelers to these areas. Colonization factors (CFs) and enterotoxins are the main virulence determinants in ETEC pathogenesis. Heterogeneity of CFs is commonly considered the bottleneck to developing an effective vaccine. It is believed that broad spectrum protection against ETEC would be achieved by induced anti‐CF and anti‐enterotoxin immunity simultaneously. Here, a fusion antigen strategy was used to construct a quadrivalent recombinant protein called 3CL and composed of CfaB, a structural subunit of CFA/I, and CS6 structural subunits, LTB and STa toxoid of ETEC. Its anti‐CF and antitoxin immunogenicity was then assessed. To achieve high‐level expression, the 3CL gene was synthesized using E. coli codon bias. Female BALB/C mice were immunized with purified recombinant 3CL. Immunized mice developed antibodies that were capable of detecting each recombinant subunit in addition to native CS6 protein and also protected the mice against ETEC challenge. Moreover, sera from immunized mice also neutralized STa toxin in a suckling mouse assay. These results indicate that 3CL can induce anti‐CF and neutralizing antitoxin antibodies along with introducing CFA/I as a platform for epitope insertion.
  相似文献   

11.
Diarrheagenic Escherichia coli (ETEC) bearing CFA/I or CFA/II adhesive factors specifically adhere onto the brush border of the polarized epithelial human intestinal Caco-2 cells in culture. Heat-killed Lactobacillus acidophilus strain LB, that adheres onto Caco-2 cells, inhibits diarrheagenic Escherichia coli adhesion in a concentration-dependent manner. Since the L. acidophilus does not express ETEC-CFA adhesive factors, it can be postulated that the heat-killed L. acidophilus LB cells inhibit diarrheagenic E. coli attachment by steric hindrance of the human enterocytic ETEC receptors.  相似文献   

12.
Ahmad N  Deeba F  Faisal SM  Khan A  Agrewala JN  Dwivedi V  Owais M 《Biochimie》2006,88(10):1391-1400
Earlier we have demonstrated that novel fusogenic liposomes made up of lipid from Escherichia coli (escheriosomes) have strong tendency to fuse with the plasma membrane of target cells and thereby delivering the entrapped contents into their cytosol. The delivery of entrapped antigen in cytosol of the target cells ensues its processing and presentation along with MHC class I pathway that eventually elicit antigen specific cytotoxic T cells. The result of the present study revealed that immunization of BALB/c mice with escheriosome-encapsulated Salmonella typhimurium (S. typhimurium) cytosolic antigens resulted in the augmentation of antigen specific cytotoxic T cell lymphocyte as well as IgG responses. In contrast, free or conventional liposome (PC liposome) encapsulated antigen failed to induce CD8+ CTLs in the immunized animals. Further, immunization with escheriosome-encapsulated antigen resulted in significant enhancement in the release of IFN-gamma and IgG2a in the experimental animals. Interestingly, the immunization with escheriosome-encapsulated antigen resulted in upregulation of CD80 and CD86 on the surface of antigen presenting cells (APCs) as well. Finally, the results of the present study reveal that immunization of animals with escheriosomes encapsulated antigen protected them against virulent S. typhimurium infection. This was evident by increased survival, and reduced bacterial burden in vital organs of the immunized animals. The data of the present study suggest that escheriosomes can emerge as an effective vehicle for intracellular delivery of antigen and thus hold promise in development of liposome based vaccine against Salmonella and other intracellular pathogens.  相似文献   

13.
Immunological heterogeneity has long been the major challenge in developing broadly effective vaccines to protect humans and animals against bacterial and viral infections. Enterotoxigenic Escherichia coli (ETEC) strains, the leading bacterial cause of diarrhea in humans, express at least 23 immunologically different colonization factor antigens (CFAs) and two distinct enterotoxins [heat-labile toxin (LT) and heat-stable toxin type Ib (STa or hSTa)]. ETEC strains expressing any one or two CFAs and either toxin cause diarrhea, therefore vaccines inducing broad immunity against a majority of CFAs, if not all, and both toxins are expected to be effective against ETEC. In this study, we applied the multiepitope fusion antigen (MEFA) strategy to construct ETEC antigens and examined antigens for broad anti-CFA and antitoxin immunogenicity. CFA MEFA CFA/I/II/IV [CVI 2014, 21(2):243-9], which carried epitopes of seven CFAs [CFA/I, CFA/II (CS1, CS2, CS3), CFA/IV (CS4, CS5, CS6)] expressed by the most prevalent and virulent ETEC strains, was genetically fused to LT-STa toxoid fusion monomer 3xSTaA14Q-dmLT or 3xSTaN12S-dmLT [IAI 2014, 82(5):1823-32] for CFA/I/II/IV-STaA14Q-dmLT and CFA/I/II/IV-STaN12S-dmLT MEFAs. Mice intraperitoneally immunized with either CFA/I/II/IV-STa-toxoid-dmLT MEFA developed antibodies specific to seven CFAs and both toxins, at levels equivalent or comparable to those induced from co-administration of the CFA/I/II/IV MEFA and toxoid fusion 3xSTaN12S-dmLT. Moreover, induced antibodies showed in vitro adherence inhibition activities against ETEC or E. coli strains expressing these seven CFAs and neutralization activities against both toxins. These results indicated CFA/I/II/IV-STa-toxoid-dmLT MEFA or CFA/I/II/IV MEFA combined with 3xSTaN12S-dmLT induced broadly protective anti-CFA and antitoxin immunity, and suggested their potential application in broadly effective ETEC vaccine development. This MEFA strategy may be generally used in multivalent vaccine development.  相似文献   

14.
The antibody-inducing properties of a bacterial/viral bivalent DNA vaccine (pRECFA), expressing a peptide composed of N- and C-terminal amino acid sequences of the herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) fused with an inner segment encoding the major structural subunit of enterotoxigenic Escherichia coli (ETEC) CFA/I fimbriae (CFA/I), was evaluated in BALB/c mice following intramuscular immunization. The bivalent pRECFA vaccine elicited serum antibody responses, belonging mainly to the IgG2a subclass, against both CFA/I and HSV gD proteins. pRECFA-elicited antibody responses cross-reacted with homologous and heterologous ETEC fimbrial antigens as well as with type 1 and type 2 HSV gD proteins, which could bind and inactivate intact HSV-2 particles. On the other hand, CFA/I-specific antibodies could bind but did not neutralize the adhesive functions of the bacterial CFA/I fimbriae. In spite of the functional restriction of the antibodies targeting the bacterial antigen, the present evidence suggests that fusion of heterologous peptides to the HSV gD protein represents an alternative for the design of bivalent DNA vaccines able to elicit serum antibody responses.  相似文献   

15.
The effect of surface charges of liposomes in immunopotentiation   总被引:1,自引:0,他引:1  
The purpose of this study was to establish the effect of surface charges of liposomes on its adjuvant activity to an entrapped protein antigen. The immune responses of rabbits immunized subcutaneously with lysozyme entrapped in neutral negatively and positively charged liposomes and compared with complete Freund's adjuvant (CFA), showed positively charged liposomes to be a better adjuvant than neutral, negatively charged liposomes and even CFA. This was true for solid liposomes also. Interestingly, injection of positively charged liposomes led to the formation of granulomas at the sites of immunization, which was not observed with neutral and negatively charged liposomes.  相似文献   

16.
17.
Enterotoxigenic Escherichia coli (ETEC) are a major cause of diarrheal disease worldwide. Adhesion pili (or fimbriae), such as the CFA/I (colonization factor antigen I) organelles that enable ETEC to attach efficiently to the host intestinal tract epithelium, are critical virulence factors for initiation of infection. We characterized the intrinsic biomechanical properties and kinetics of individual CFA/I pili at the single-organelle level, demonstrating that weak external forces (7.5 pN) are sufficient to unwind the intact helical filament of this prototypical ETEC pilus and that it quickly regains its original structure when the force is removed. While the general relationship between exertion of force and an increase in the filament length for CFA/I pili associated with diarrheal disease is analogous to that of P pili and type 1 pili, associated with urinary tract and other infections, the biomechanical properties of these different pili differ in key quantitative details. Unique features of CFA/I pili, including the significantly lower force required for unwinding, the higher extension speed at which the pili enter a dynamic range of unwinding, and the appearance of sudden force drops during unwinding, can be attributed to morphological features of CFA/I pili including weak layer-to-layer interactions between subunits on adjacent turns of the helix and the approximately horizontal orientation of pilin subunits with respect to the filament axis. Our results indicate that ETEC CFA/I pili are flexible organelles optimized to withstand harsh motion without breaking, resulting in continued attachment to the intestinal epithelium by the pathogenic bacteria that express these pili.  相似文献   

18.
Enterotoxigenic Escherichia coli (ETEC) is a primary causative agent of diarrhea in travelers and young children in low-to-middle-income countries (LMICs). ETEC adhere to intestinal epithelia via colonization factors (CFs) and secrete heat-stable toxin (ST) and/or heat-labile toxin (LT), causing dysregulated cellular ion transport and water secretion. ETEC isolates often harbor genes encoding more than one CF that are targets as vaccine antigens. CFA/I is a major CF that is associated with ETEC that causes moderate-to-severe diarrhea and plays an important role in pathogenesis. The Global Enteric Multicenter Study finding that 78% of CFA/I-expressing ETEC also encode the minor CF CS21 prompted investigation of the combined role of these two CFs. Western blots and electron microscopy demonstrated growth media-dependent and strain-dependent differences in CFA/I and CS21 expression. The critical role of CFA/I in adherence by ETEC strains expressing CFA/I and CS21 was demonstrated using the human enteroid model and a series of CFA/I- and CS21-specific mutants. Furthermore, only anti-CFA/I antibodies inhibited adherence by global ETEC isolates expressing CFA/I and CS21. Delivery of ST and resulting cGMP secretion was measured in supernatants from infected enteroid monolayers, and strain-specific ST delivery and time-dependent cGMP production was observed. Interestingly, cGMP levels were similar across wildtype and CF-deficient strains, reflecting a limitation of this static aerobic infection model. Despite adherence by ETEC and delivery of ST, the enteroid monolayer integrity was not disrupted, as shown by the lack of decrease in transepithelial electrical resistance and the lack of IL-8 cytokines produced during infection. Taken together, these data demonstrate that targeting CFA/I in global clinical CFA/I-CS21 strains is sufficient for adherence inhibition, supporting a vaccine strategy that focuses on blocking major CFs. In addition, the human enteroid model has significant utility for the study of ETEC pathogenesis and evaluation of vaccine-induced functional antibody responses.  相似文献   

19.
This study was aimed at establishment whether preliminary determination of colonization factor antigens CFA may be useful in selection of potentially pathogenic strains of Escherichia coli with serological types belonging to ETEC and 750 isolates of E. coli from children with symptoms of diarrhoea. Enterotoxigenicity of strains was evaluated by suckling mice test and culture of Y1 cell tissue. Colonization factor antigens CFA were evaluated on the basis of slide agglutination and agar gel immunodiffusion with application diagnostic sera prepared for this study. Ability of enterotoxin production was found in 25% strains of E. coli with serological types belonging to ETEC. In 90% these strains were isolated from cases of epidemic diarrhoea. ETEC strains were found in 11% of hospitalized children and in 5% who were treated outside of hospital because of diarrhoea. MRHA adhesins occurred on 80% of ETEC strains were all diagnosed as CFA/I. CFA/II were not found and in only three strains non-fimbrial CFA/IV was present. Preliminary determination of CFA during selection of ETEC strains presents as a very sensitive method (97%) and is also highly specific (99%). Application of this method will result in significant increase of affectivity of biological tests directed toward determination of E. coli enterotoxigenicity.  相似文献   

20.
Enterotoxigenic Escherichia coli (ETEC) cause diarrhea in infants and in travelers to developing countries. The bacteria utilize colonization factors (CF) for adherence to intestinal epithelia, then release toxins causing diarrhea. CF are strong immunogens as well as protective antigens. While 20 ETEC CF have been described in the literature, 11 CF are prominent enough to be considered for vaccine targeting. Of this group, six of the members fall into the CFA/I family of CF. Geysen pin (peptide) linear epitope analysis demonstrated that three regions containing linear epitopes exist in CFA/I, and that both B- and T-cell linear epitopes of CFA/I were concentrated at the N-terminus of the protein. We have determined N-terminal sequence of the CFA/I family members not previously sequenced. Comparison of the protein sequence of the six members of the family showed a strong homology up to residue 36. A peptide of 36 amino acids representing a consensus of the six sequences was synthesized and used to immunize animals. The antibody induced to the peptide was reactive to the peptide as well as cross-reactive to each member of the CFA/I family in Western blots. In addition, this antibody agglutinated three of the six members of the CFA/I family when added to whole cells expressing the native CF. We are currently evaluating different carriers and conjugation methods to maximize production of high titer, agglutinating antibody. It is hoped that this and related research will result in an effective and inexpensive cross-reactive and cross-protective ETEC vaccine. Received 04 October 1996/ Accepted in revised form 14 April 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号