首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-density map of the region of canine Chromosome 5 (CFA5) surrounding the evolutionary breakpoint between human Chromosomes 1p32 and 17p11 was constructed by integrating a radiation hybrid map including 41 microsatellites, 10 BACs, and 59 genes and a linkage map including 18 markers. A collection of canine genomic survey sequences providing 1.5× coverage was used to identify dog orthologs of human genes, proving instrumental in the development of this map. Of particular interest is the canine BHD gene, within which we have previously described a single nucleotide polymorphism associated with Hereditary Multifocal Renal Cystadenocarcinoma and Nodular Dermatofibrosis (RCND) in German Shepherd dogs. The corresponding region of the human genome is particularly gene rich, containing genes involved in development, metabolism, and cancer that are likely to be of interest in future mapping studies. This current mapping effort on CFA5 expands the degree to which initial findings of linkage in canine families can be followed by successful positional cloning efforts and increases the value of the human genome sequence for defining candidate genes. Moreover, this study demonstrates the utility of genomic survey sequences when combined with accurate genome maps for rapid mapping of disease susceptibility loci.  相似文献   

2.
《Autophagy》2013,9(4):662-676
Defective autophagy has been implicated in mammary tumorigenesis, as the gene encoding the essential autophagy regulator BECN1 is deleted in human breast cancers and Becn1+/? mice develop mammary hyperplasias. In agreement with a recent study, which reports concurrent allelic BECN1 loss and ERBB2 amplification in a small number of human breast tumors, we found that low BECN1 mRNA correlates with ERBB2-overexpression in breast cancers, suggesting that BECN1 loss and ERBB2 overexpression may functionally interact in mammary tumorigenesis. We now report that ERBB2 overexpression suppressed autophagic response to stress in mouse mammary and human breast cancer cells. ERBB2-overexpressing Becn1+/+ and Becn1+/? immortalized mouse mammary epithelial cells (iMMECs) formed mammary tumors in nude mice with similar kinetics, and monoallelic Becn1 loss did not alter ERBB2- and PyMT-driven mammary tumorigenesis. In human breast cancer databases, ERBB2-expressing tumors exhibit a low autophagy gene signature, independent of BECN1 mRNA expression, and have similar gene expression profiles with non-ERBB2-expressing breast tumors with low BECN1 levels. We also found that ERBB2-expressing BT474 breast cancer cells, despite being partially autophagy-deficient under stress, can be sensitized to the anti-ERBB2 antibody trastuzumab (tzb) by further pharmacological or genetic autophagy inhibition. Our results indicate that ERBB2-driven mammary tumorigenesis is associated with functional autophagy suppression and ERBB2-positive breast cancers are partially autophagy-deficient even in a wild-type BECN1 background. Furthermore and extending earlier findings using tzb-resistant cells, exogenously imposed autophagy inhibition increases the anticancer effect of trastuzumab on tzb-sensitive ERBB2-expressing breast tumor cells, indicating that pharmacological autophagy suppression has a wider role in the treatment of ERBB2-positive breast cancer.  相似文献   

3.
Defective autophagy has been implicated in mammary tumorigenesis, as the gene encoding the essential autophagy regulator BECN1 is deleted in human breast cancers and Becn1+/− mice develop mammary hyperplasias. In agreement with a recent study, which reports concurrent allelic BECN1 loss and ERBB2 amplification in a small number of human breast tumors, we found that low BECN1 mRNA correlates with ERBB2-overexpression in breast cancers, suggesting that BECN1 loss and ERBB2 overexpression may functionally interact in mammary tumorigenesis. We now report that ERBB2 overexpression suppressed autophagic response to stress in mouse mammary and human breast cancer cells. ERBB2-overexpressing Becn1+/+ and Becn1+/− immortalized mouse mammary epithelial cells (iMMECs) formed mammary tumors in nude mice with similar kinetics, and monoallelic Becn1 loss did not alter ERBB2- and PyMT-driven mammary tumorigenesis. In human breast cancer databases, ERBB2-expressing tumors exhibit a low autophagy gene signature, independent of BECN1 mRNA expression, and have similar gene expression profiles with non-ERBB2-expressing breast tumors with low BECN1 levels. We also found that ERBB2-expressing BT474 breast cancer cells, despite being partially autophagy-deficient under stress, can be sensitized to the anti-ERBB2 antibody trastuzumab (tzb) by further pharmacological or genetic autophagy inhibition. Our results indicate that ERBB2-driven mammary tumorigenesis is associated with functional autophagy suppression and ERBB2-positive breast cancers are partially autophagy-deficient even in a wild-type BECN1 background. Furthermore and extending earlier findings using tzb-resistant cells, exogenously imposed autophagy inhibition increases the anticancer effect of trastuzumab on tzb-sensitive ERBB2-expressing breast tumor cells, indicating that pharmacological autophagy suppression has a wider role in the treatment of ERBB2-positive breast cancer.  相似文献   

4.
Histiocytic sarcoma (HS) is a rare but aggressive cancer in both humans and dogs. The spontaneous canine model, which has clinical, epidemiological, and histological similarities with human HS and specific breed predispositions, provides a unique opportunity to unravel the genetic basis of this cancer. In this study, we aimed to identify germline risk factors associated with the development of HS in canine-predisposed breeds. We used a methodology that combined several genome-wide association studies in a multi-breed and multi-cancer approach as well as targeted next-generation sequencing, and imputation We combined several dog breeds (Bernese mountain dogs, Rottweilers, flat-coated retrievers, and golden retrievers), and three hematopoietic cancers (HS, lymphoma, and mast cell tumor). Results showed that we not only refined the previously identified HS risk CDKN2A locus, but also identified new loci on canine chromosomes 2, 5, 14, and 20. Capture and targeted sequencing of specific loci suggested the existence of regulatory variants in non-coding regions and methylation mechanisms linked to risk haplotypes, which lead to strong cancer predisposition in specific dog breeds. We also showed that these canine cancer predisposing loci appeared to be due to the additive effect of several risk haplotypes involved in other hematopoietic cancers such as lymphoma or mast cell tumors as well. This illustrates the pleiotropic nature of these canine cancer loci as observed in human oncology, thereby reinforcing the interest of predisposed dog breeds to study cancer initiation and progression.  相似文献   

5.
6.
Olfactory receptors are G protein-coupled, seven-transmembrane-domain proteins that are responsible for binding odorants in the nasal epithelium. They are encoded by a large gene family, members of which are organized in several clusters scattered throughout the genomes of mammalian species. Here we describe the mapping of mouse sequences corresponding to four conserved olfactory receptor genes, each representing separate, recently identified canine gene subfamilies. Three of the four canine genes detected related gene clusters in regions of mouse Chromosomes (Chrs) 2, 9, and 10, near previously mapped mouse olfactory genes, while one detected a formerly unidentified gene cluster located on mouse Chr 6. In addition, we have localized two human gene clusters with homology to the canine gene, CfOLF4, within the established physical map of Chr 19p. Combined with recently published studies, these data link the four conserved olfactory gene subfamilies to homologous regions of the human, dog, and mouse genomes. Received: 10 September 1997 / Accepted: 29 December 1997  相似文献   

7.
In total, 463 canine gene markers were identified and characterized to serve as reagents in canine genome map projects. These markers are distributed over 221 canine gene markers, 139 TOASTs (Traced Orthologous Sequence Tags), 27 canine TOASTs, and 76 huESTs (human Expressed Sequence Tags). Out of 310 canine gene markers, 59%–84% were successfully amplified on dog DNA, the highest rates of success being observed when the exon/intron structure is known. Concerning TOASTs and human ESTs, of the 225 and 300 markers analyzed, 62% and 25% respectively were able to produce a dog positive amplification. As part of an ongoing project to map the canine genome using a dog/hamster radiation hybrid panel, these markers were tested for their specificity on dog versus hamster DNA. Thus 61%, 21%, and 12% of dog gene markers, TOASTs, and huESTs met the criteria required for radiation hybrid mapping, respectively. All of these 463 canine gene markers, however, are available and will be of value to any other mapping strategies. Received: 5 January 1999 / Accepted: 13 April 1999  相似文献   

8.
As with many human cancers, canine tumors demonstrate recurrent chromosome aberrations. A detailed knowledge of such aberrations may facilitate diagnosis, prognosis and the selection of appropriate therapy. Following recent advances made in human genomics, we are developing a DNA microarray for the domestic dog, to be used in the detection and characterization of copy number changes in canine tumors. As a proof of principle, we have developed a small-scale microarray comprising 87 canine BAC clones. The array is composed of 26 clones selected from a panel of 24 canine cancer genes, representing 18 chromosomes, and an additional set of clones representing dog chromosomes 11, 13, 14 and 31. These chromosomes were shown previously to be commonly aberrant in canine multicentric malignant lymphoma. Clones representing the sex chromosomes were also included. We outline the principles of canine microarray development, and present data obtained from microarray analysis of three canine lymphoma cases previously characterized using conventional cytogenetic techniques.  相似文献   

9.
BackgroundAn essential question in cancer is why individuals with the same disease have different clinical outcomes. Progress toward a more personalized medicine in cancer patients requires taking into account the underlying heterogeneity at different molecular levels.ResultsHere, we present a model in which there are complex interactions at different cellular and systemic levels that account for the heterogeneity of susceptibility to and evolution of ERBB2-positive breast cancers. Our model is based on our analyses of a cohort of mice that are characterized by heterogeneous susceptibility to ERBB2-positive breast cancers. Our analysis reveals that there are similarities between ERBB2 tumors in humans and those of backcross mice at clinical, genomic, expression, and signaling levels. We also show that mice that have tumors with intrinsically high levels of active AKT and ERK are more resistant to tumor metastasis. Our findings suggest for the first time that a site-specific phosphorylation at the serine 473 residue of AKT1 modifies the capacity for tumors to disseminate. Finally, we present two predictive models that can explain the heterogeneous behavior of the disease in the mouse population when we consider simultaneously certain genetic markers, liver cell signaling and serum biomarkers that are identified before the onset of the disease.ConclusionsConsidering simultaneously tumor pathophenotypes and several molecular levels, we show the heterogeneous behavior of ERBB2-positive breast cancer in terms of disease progression. This and similar studies should help to better understand disease variability in patient populations.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0599-z) contains supplementary material, which is available to authorized users.  相似文献   

10.
Abnormalities in the genes encoding Pit-1 and Prop-1 have been reported to cause combined pituitary hormone deficiency (CPHD) in mice and humans. In dogs, a similar phenotype has been described in the German shepherd breed. We have previously reported that the Pit-1 gene (POU1F1) is not mutated in affected German shepherd dogs. In this study, we report the isolation and mapping of the canine Prop-1 gene (PROP1), and we assessed the involvement of PROP1 in German shepherd dog dwarfism. The canine PROP1 gene was found to contain three exons, encoding a 226 amino acid protein. The deduced amino acid sequence was 79% and 84% homologous with the mouse and human Prop-1 protein, respectively. Using fluorescence in situ hybridization, PROP1 was mapped to canine chromosome 11. Further mapping with a canine radiation hybrid panel showed co-localization with the polymorphic DNA marker AHT137. Sequence analysis of genomic DNA from dwarf German shepherd dogs revealed no alterations in the PROP1 gene. Moreover, linkage analysis of AHT137 revealed no co-segregation between the PROP1 locus and the CPHD phenotype, excluding this gene as candidate for canine CPHD and providing a new spontaneous model of hypopituitarism.  相似文献   

11.
12.
Although the serotonergic system and htr1A have been studied extensively, little is known about the canine serotonin receptor 1A. We are interested in this receptor in the dog because it is likely to be involved in behavioral disorders such as anxiety. Therefore, we isolated a canine bacterial artificial chromosome (BAC) clone containing htr1A, and, with the help of this clone, the complete canine coding sequence of this gene was determined. Radiation hybrid (RH) mapping showed that htr1A is part of a conserved linkage group also including the survival of motor neuron 1 (smn1) gene. Htr1A is estimated to be located about 7.3 Mb from smn1 on cfa02. In addition, we report a possible breed-specific variant of the gene in four golden retrievers.  相似文献   

13.
Point mutations in the cellular homologues HRAS, KRAS2, and NRAS of the viral Harvey and Kirsten rat sarcoma virus oncogenes are commonly involved in the onset of malignancies in humans and other species such as dog, mouse, and rat. Most often, three particular hot-spot codons are affected, with one amino acid exchange being sufficient for the induction of tumor growth. While RAS genes have been shown to play an important role in canine tumors such as non-small lung cell carcinomas, data about RAS mutations in canine fibrosarcomas as well as KRAS2 mutations in canine melanomas is sparse. To increase the number of tumors examined, we recently screened 13 canine fibrosarcomas and 11 canine melanomas for point mutations, particularly within the mutational hot spots. The results were compared to the already existing data from other studies about these tumors in dogs.  相似文献   

14.
The identification of dog genes and their accurate localization to chromosomes remain a major challenge in the postgenomics era. The 132 annotated canine genes with human orthologs remaining in the unassembled part (chrUnknown) of the dog sequence assembly (CanFam1) are of limited use for candidate gene approaches or comparative mapping studies. We used a two-step comparative analysis to infer a canine chromosomal interval for localization of the chrUn genes. We first constructed a human-dog synteny map, using 14,456 gene-based comparative anchors. We then mapped the 132 chrUn genes onto the reference (human) synteny map and identified the corresponding, orthologous segment on the canine map, based on conserved gene order. Our results show that 110 chrUn genes could be localized to short intervals on 18 dog chromosomes, whereas 22 genes remained assigned to 2 possible intervals. We extended this comparative analysis to multiple species, using the chimpanzee, mouse, and rat genome sequences. This made it possible to narrow down the intervals concerned and to increase the number of canine chrUn genes with an inferred chromosome location to 115. This study demonstrates that dog chromosomal intervals for chrUn genes can be rapidly inferred, using a reference species, and indicates that comparative strategies based on larger numbers of species may be even more effective.  相似文献   

15.
Briggs J  Paoloni M  Chen QR  Wen X  Khan J  Khanna C 《PloS one》2011,6(5):e17107

Background

Our understanding of disease is increasingly informed by changes in gene expression between normal and abnormal tissues. The release of the canine genome sequence in 2005 provided an opportunity to better understand human health and disease using the dog as clinically relevant model. Accordingly, we now present the first genome-wide, canine normal tissue gene expression compendium with corresponding human cross-species analysis.

Methodology/Principal Findings

The Affymetrix platform was utilized to catalogue gene expression signatures of 10 normal canine tissues including: liver, kidney, heart, lung, cerebrum, lymph node, spleen, jejunum, pancreas and skeletal muscle. The quality of the database was assessed in several ways. Organ defining gene sets were identified for each tissue and functional enrichment analysis revealed themes consistent with known physio-anatomic functions for each organ. In addition, a comparison of orthologous gene expression between matched canine and human normal tissues uncovered remarkable similarity. To demonstrate the utility of this dataset, novel canine gene annotations were established based on comparative analysis of dog and human tissue selective gene expression and manual curation of canine probeset mapping. Public access, using infrastructure identical to that currently in use for human normal tissues, has been established and allows for additional comparisons across species.

Conclusions/Significance

These data advance our understanding of the canine genome through a comprehensive analysis of gene expression in a diverse set of tissues, contributing to improved functional annotation that has been lacking. Importantly, it will be used to inform future studies of disease in the dog as a model for human translational research and provides a novel resource to the community at large.  相似文献   

16.
Mammary tumors are the most common tumor type in both human and canine females. Mutations in the breast cancer susceptibility gene, BRCA2, have been found in most cases of inherited human breast cancer. Similarly, the canine BRCA2 gene locus has been associated with mammary tumors in female dogs. However, deleterious mutations in canine BRCA2 have not been reported, thus far. The BRCA2 protein is involved in homologous recombination repair via its interaction with RAD51 recombinase, an interaction mediated by 8 BRC repeats. These repeats are 26-amino acid, conserved motifs in mammalian BRCA2. Previous structural analyses of cancer-associated mutations affecting the BRC repeats have shown that the weakening of RAD51''s affinity for even 1 repeat is sufficient to increase breast cancer susceptibility. In this study, we focused on 2 previously reported canine BRCA2 mutations (T1425P and K1435R) in BRC repeat 3 (BRC3), derived from mammary tumor samples. These mutations affected the interaction of canine BRC3 with RAD51, and were considered deleterious. Two BRC3 mutations (K1440R and K1440E), reported in human breast cancer patients, occur at amino acids corresponding to those of the K1435R mutation in dogs. These mutations affected the interaction of canine BRC3 with RAD51, and may also be considered deleterious. The two BRC3 mutations and a substitution (T1430P), corresponding to T1425P in canine BRCA2, were examined for their effects on human BRC3 function and the results were compared between species. The corresponding mutations and the substitution showed similar results in both human and canine BRC3. Therefore, canine BRCA2 may be a good model for studying human breast cancer caused by BRCA2 mutations.  相似文献   

17.
The mapping of the canine genome has recently been accelerated by the availability of chromosome-specific reagents and publication of radiation hybrid (RH), genetic linkage, and dog/human comparative maps, but the assignment of mapping groups to chromosomes is incomplete. To assign published radiation hybrid, linkage, and "syntenic" groups to chromosomes, individual markers found within each group have been amplified from canine and vulpine flow-sorted, chromosome-specific DNAs as templates. Here a further 102 type I genetic markers (previously mapped in human) and 21 further type II markers are assigned to canine chromosomes using marker-specific PCR. We have assigned all linkage, RH, and syntenic groups in the two most recently published canine genome maps to chromosomes. This demonstrates directly that there is at least one published mapping group for each of the 38 canine autosomes and thus that the coverage of the canine chromosome map is approaching completion. The dog/human comparative map is one of the most complex so far described, with 90 separate segments of chromosomal homology previously seen in dog-on-human cross-species chromosome-painting studies. The total of 142 type I markers now placed on canine chromosomes using this method of marker mapping has allowed us to confirm the placement of the great majority (83) of the 90 homologous segments. The positions of the remaining homologous segments were confirmed in new cross-species chromosome-painting experiments (dog-on-human, fox-on-human).  相似文献   

18.
Canine tricuspid valve malformation (CTVM) maps to canine chromosome 9 (CFA9), in a region syntenic with gene-dense human chromosome 17q. To define synteny blocks, we analyzed 148 markers on CFA9 using radiation hybrid mapping and established a four-way comparative map for human, mouse, rat, and dog. We identified a large number of rearrangements, allowing us to reconstruct the evolutionary history of individual synteny blocks and large chromosomal segments. A most parsimonious rearrangement scenario for all four species reveals that human chromosome 17q differs from CFA9 and the syntenic rodent chromosomes through two macroreversals of 9.2 and 23 Mb. Compared to a recovered ancestral gene order, CFA9 has undergone 11 reversals of <3 Mb and 2 reversals of >3 Mb. Interspecies reuse of breakpoints for micro- and macrorearrangements was observed. Gene order and content of the ctvm interval are best extrapolated from murine data, showing that multispecies genome rearrangement scenarios contribute to identifying gene content in canine mapping studies.  相似文献   

19.
20.
More than 350 inherited diseases have been reported in dogs and at least 50% of them have human counterparts. To remove the diseases from dog breeds and to identify canine models for human diseases, it is necessary to find the mutations underlying them. To this end, two methods have been used: the functional candidate gene approach and linkage analysis. Here we present an evaluation of these in canine retinal diseases, which have been the subject of a large number of molecular genetic studies, and we show the contrasting outcomes of these approaches when dealing with genetically heterogeneous diseases. The candidate gene approach has led to 377 published results with 23 genes. Most of the results (66.6%) excluded the presence of a mutation in a gene or its coding region, while only 3.4% of the results identified the mutation causing the disease. On the other hand, five linkage analysis studies have been done on retinal diseases, resulting in three identified mutations and two mapped disease loci. Mapping studies have relied on dog research colonies. If this favorable application of linkage analysis can be extended to dogs in the pet population, success in identifying canine mutations could increase, with advantages to veterinary and human medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号