首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
研究离散的单种群增长模型x_(n+1)=x_nexp(rn (1-x_(n-k))/(1-cx_(n-k))),n=0,1,2,…,(*)的解的振动性,其中{r_n)_(n=1)~∞是任意实序列,k是正整数,0<相似文献   

2.
种群模型参数辨识的一种方法   总被引:3,自引:2,他引:1  
1、M(。,m)模型的建立定理.对于微分方程 dnx,(t)dtn+口zd卜lx,(t) dtn一1+…+a。_:dx:(t) dt否,x,(‘)+box:(‘)+b3x;(‘)x:(‘)+…+”。·,x:(‘)‘二(‘)给定样本数据{x;(k)1,k二1,2,…,N,i=I,2,…,m,则该方程的参数向量a=〔a:aZ…a。一,ib:bZ…b二+:〕丁可通过〔(AIB)T(A{B)〕一’(A{B)TC辨识,其中,C=〔△,x;(2),△nx:(了),…,△。x,(N)〕T陈华豪等万卷s2/△,一‘x工(2)△“一‘x:(3)…△x:(2)△x:(3)A二一……△一’x,(N),△x,(、){,111\x,(z),x贯(1),x,(1)x:(1),…,x;(了).x二(I)B二‘1‘“’,‘飞‘”,‘1.:员.,‘2‘2’,”…  相似文献   

3.
考虑如下具有无穷时滞的微分系统:x′(t)=A(t,x(t))x(t) (integral from -∞to 0)f(t,s,x(s t))ds (sum from i=1 to p) fi(t,x(t-T_i(t)))的周期解.利用重合度理论和构造适当的Lyapunov泛函得到上述系统周期解存在性和全局吸引性的充分条件,推广了已有的结论,得到了新的结果.  相似文献   

4.
一类差分方程解的全局吸引性   总被引:3,自引:0,他引:3  
考虑差分方程xn+1=αxn/(1+k∑i=1βixn-i),n=0,1,2,….其中α∈(1,∞)且β=k∑i=1βi>0,k∈{0,1,2,…}.获得了使方程的正平衡点X=(α-1)/β为全局吸引的新充分条件  相似文献   

5.
对高寒地区小麦残茬落叶在农田土壤的分解与土壤生物化学的动态关系进行了较系统的研究。结果表明:小麦残茬落叶分解的最大速率在7月(12.14×10-3g·g-1·d-1),呈单峰曲线变化。14种土壤生物化学因素对小麦残茬落叶的分解和有机物质的转化既表现出明显的季节变化规律,又具有明显的阶段性作用特征。对小麦残茬落叶分解的灰色关联序为:x1(0.914)>x4(0.880)>x3(0.855)>x12(0.852)>x14(0.802)>x2(0.799)=x11(0.799)>x8(0.788)>x10(0.775)>x9(0.760)>x13(0.709)>x5(0.700)>x7(0.694)>x6(0.657),并选择性地建立了小麦残茬落叶分解的GM(0,6)灰色预测模型:y(k)=13.5x1(k)+23.75x4(k)-15.0x3(k)-16.5x12(k)-0.5x14(k)+5.0x2(k)-1.6  相似文献   

6.
利用主成分分析、系统聚类分析和非参数检验,对采自北京地区的88只姬鼠标本(黑线姬鼠Apodemus agrarius除外)的10个形态分类指标进行了分析,以便确定出最具种问特异性的形态分类特征并给出定量判别标准.结果表明:除黑线姬鼠外,北京地区另有中华姬鼠(A.draco)和大林姬鼠(A.peninsulae)两种姬鼠;门齿孔后缘距上臼齿列前缘水平线的距离(x9)、上领M^1后内侧齿突向舌侧突出的程度(x1)及其与第2横嵴内侧齿突的相对大小(x2)是区分后两种姬鼠的最有效的形态分类指标;3个指标的种间界限大致为:中华姬鼠x9〈0.4mm,01≥0.2mm,x2≥0.6;大林姬鼠x9≥0.4mm,x1〈0.2mm,x2〈0.6.  相似文献   

7.
具脉冲效应时滞微分方程的全局吸引性   总被引:2,自引:0,他引:2  
系统研究了具脉冲效应时滞系统x(t)=f(t,x(t-τ1(t)),…,x(t-τm(t))),t,t-τi(t)≠tk,k∈Z^ ,x(tk^ )=x(tk) Ik(x(tk)),t=tk,k∈Z^ 的正平衡态的全局吸引性,并把得到的理论结果应用到多个具脉冲效应时滞的种群模型。  相似文献   

8.
初步研究了气液双升式动物细胞反应器微载体培养 Bowes细胞和悬浮培养 M4G3杂交瘤细胞的生长条件 ,在不加入消泡剂和保护剂的情况下 ,批式培养 Bowes细胞的最大密度为 2 .6×1 0 6/ml,批式培养 M4G3细胞的最大密度为 1 .5× 1 0 6/ml。基于细胞生长的密度效应 ,建立了动物细胞生长动力学模型 :   μ=0   t相似文献   

9.
关于回交世代方差中加性×显性分量的讨论A   总被引:1,自引:0,他引:1  
当两系统存在k对基因差异,P1中增效基因为k-k’对,减效基因k’对时,两纯系杂交回交群体遗传方差加性×显性分量的数学式为F=(k-k’)∑(i=1)d1h1-k’∑(i=1) d1h1.。F的大小决定于显性齐性和基因分散的程度。因此在一般情况下,F的遗传含义是混杂不清的。只有基因完全相联时F=k∑(i=1)d1h1,与Mather 和Jinks 的推导结果一致,这时F反映显性齐性程度。Abstract: Assuming kpairs of different genes between two pure parental lines (P1 and P2), k-k’ pairs of increasing genes and k’ pairs of deereasing genes in P1,the comoponent of additive×dominance in the genetic variance of the backcross generation is represented as F=(k-k’)∑(i=1)d1h1-k’∑(i=1) d1h1.The component F is determined by both the consistency of dominance and the dispersion of genes. In genetral, the genetic implication of the component F is complexity.Only under the situation of complete associates of genes F=k∑(i=1)d1h1,which agrees with the result by Mather and Jinks. In such case, F illustrates the consistency of dominance.  相似文献   

10.
本文从实际问题出发,结合已有的描述群落生态的数学模型,提出了一组描述马尾松毛虫(Dendrolimus pnnctalus,walker)、条毒蛾(Lymantria dissoluta,Swinhoe)、天敌和食料之间动态关系的数学模型: w(k+1=(a_1x(k+1)/(1+a_2x(k+1)/_z(k))+a_3w(k)/(1+a_4w(k)/y(k)) x(k+1)=b_1w(k)/(1+b_2w(k)/y(k))+b_3x(k)/(1+b_4x(k)/z(k))+ y(k+1)=c_1z(k)/[1+c_sz(k)+c_3y(k)][1+c_4w(k)+(k+1)] z(k+1)=d_1z(k)/[1+d_2z(k)][1+d_3x(k)+d_4w(k)] 对于这个模型的线性化形式,详细讨论了控制松毛虫的暴发所需的条件及其生态学机制。  相似文献   

11.
It is well known that the periodic cycle {x(n)} of a periodically forced nonlinear difference equation is attenuant (resonant) if av(x(n)) < av(K(n))(av(x(n)) > av(K(n))),where {K ( n )} is the carrying capacity of the environment and av(t(n)) = (1/p)∑(p?1) (i=0) ti (arithmetic mean of the p-periodic cycle {t ( n )}). In this article, we extend the concept of attenuance and resonance of periodic cycles using the geometric mean for the average of a periodic cycle. We study the properties of the periodically forced nonautonomous delay Beverton-Holt model x(n+1) = r(n)x(n)/1 + (r(n?l) ? 1)x(n?k)/K(n?k), n= 0, 1, . . . , where {K ( n )} and {r ( n )} are positive p-periodic sequences; (K ( n )>0, r ( n )>1) as well as k and l are nonnegative integers. We will show that for all positive solutions {x ( n )} of the previous equation lim sup (n→∞) (∏(n?1)(i=0)xi)(1/n) ≤ ((∏(p?1)(i=0)ri)(1/p) ? 1)(∏(p?1)(i=0)(ri ? 1))(?1/p)(∏(p?1)(i=0)Ki)(1/p). In particular, in the case where {x(n)} is a p-periodic solution of the above equation (assuming that such solution exists) and r ( n )=r>1, the periodic cycle is g-attenuant, that is (∏(p?1)(i=0)x(i))(1/p)<(∏(p?1)(i=0)K(i))(p?1) Surprisingly, the obtained results show that the delays k and l do not play any role.  相似文献   

12.
Coiled coils consist of two or more amphipathic a-helices wrapped around each other to form a superhelical structure stabilized at the interhelical interface by hydrophobic residues spaced in a repeating 3-4 sequence pattern. Dimeric coiled coils have been shown to often form in a single step reaction in which association and folding of peptide chains are tightly coupled. Here, we ask whether such a simple folding mechanism may also apply to the formation of a three-stranded coiled coil. The designed 29-residue peptide LZ16A was shown previously to be in a concentration-dependent equilibrium between unfolded monomer (M), folded dimer (D), and folded trimer (T). We show by time-resolved fluorescence change experiments that folding of LZ16A to D and T can be described by 2M (k1)<==>(k(-1)) D and M + D (k2)<==>(k(-2)) T. The following rate constants were determined (25 degrees C, pH 7): k1 = 7.8 x 10(4) M(-1) s(-1), k(-1) = 0.015 s(-1), k2 = 6.5 x 10(5) M(-1) s(-1), and k(-2) = 1.1 s(-1). In a separate experiment, equilibrium binding constants were determined from the change with concentration of the far-ultraviolet circular dichroism spectrum of LZ16A and were in good agreement with the kinetic rate constants according to K(D) = k1/2k(-1) and K(T) = k2/k(-2). Furthermore, pulsed hydrogen-exchange experiments indicated that only unfolded M and folded D and T were significantly populated during folding. The results are compatible with a two-step reaction in which a subpopulation of association competent (e.g., partly helical) monomers associate to dimeric and trimeric coiled coils.  相似文献   

13.
Hsc66 from Escherichia coli is a constitutively expressed hsp70 class molecular chaperone whose activity is coupled to ATP binding and hydrolysis. To better understand the mechanism and regulation of Hsc66, we investigated the kinetics of ATP hydrolysis and the interactions of Hsc66 with nucleotides. Steady-state experiments revealed that Hsc66 has a low affinity for ATP (K(m)(ATP) = 12.7 microM) compared with other hsp70 chaperones. The kinetics of nucleotide binding were determined by analyzing changes in the Hsc66 absorbance spectrum using stopped-flow methods at 23 degrees C. ATP binding results in a rapid, biphasic increase of Hsc66 absorbance at 280 nm; this is interpreted as arising from a two-step process in which ATP binding (k(a)(ATP) = 4.2 x 10(4) M(-1) s(-1), k(d)(ATP) = 1.1 s(-1)) is followed by a slow conformational change (k(conf) = 0. 1 s(-1)). Under single turnover conditions, the ATP-induced transition decays exponentially with a rate (k(decay) = 0.0013 s(-1)) similar to that observed in both steady-state and single turnover ATP hydrolysis experiments (k(hyd) = 0.0014 s(-1)). ADP binding to Hsc66 results in a monophasic transition in the absence (k(a)(ADP) = 7 x 10(5) M(-1) s(-1), k(d)(ADP) = 60 s(-1)) and presence of physiological levels of inorganic phosphate (k(a)(ADP(P(i)) = 0.28 x 10(5) M(-1) s(-1), k(d)(ADP(P(i)) = 9.1 s(-1)). These results indicate that ATP hydrolysis is the rate-limiting step under steady-state conditions and is >10(3)-fold slower than the rate of ADP/ATP exchange. Thus, in contrast to DnaK and eukaryotic forms of hsp70 that have been characterized to date, the R if T equilibrium balance for Hsc66 is shifted in favor of the low peptide affinity T state, and regulation of the reaction cycle is expected to occur at the ATP hydrolysis step rather than at nucleotide exchange.  相似文献   

14.
The data processing method of the turbidimetric bioassay of nisin was modified to facilitate its industrial application. The influence of the initial indicator concentration was minimized by a redefined specific dose of the bacteriocin as the quotient between the titer of the added bacteriocin and the initial population density of the indicator in the suspension. It was found that d c = 0.125 μg ml−1 was the critical dose of nisin that can cause a complete inhibition of the indicator, Pediococcus acidilactici UL5, with an initial OD of 0.135. To eliminate the interference of the cell debris, an equation, , exploiting d c, was formulated to obtain the intrinsic survival proportion. The use of the specific dose of the bacteriocin and the intrinsic survival proportion as parameters of the dose/response curve greatly enhanced its repeatability and feasibility. A dual-dosage approach was developed to further simplify the conventional standard dose/response curve method.  相似文献   

15.
The lateral mobility and lipid-water partition of the pesticide lindane was studied by fluorescence quenching of N-isopropylcarbazole (NIPC) and l,-palmitoyl--(N-carbazolyl) undecanoylphosphatidylcholine (PCUPC) in liposomes of dimyristoylphosphatidylcholine at 50°C. In isotropic solvents the quenching reaction was highly inefficient. A scheme for dynamic quenching, in which the monomolecular quenching rate constant is small, was valid. In lipid bilayers the same scheme was applied to describe the quenching results but the rate constant of the backreaction of the excited complex to quencher and excited probe was of comparable magnitude to the monomolecular quenching rate constant. This phenomenon results in biexponential decays of the fluorescent probe in the presence of quencher. All the rate constants of the scheme could be determined. Stern-Volmer plots at different membrane concentrations were obtained from fluorescence intensity and decay time measurements. From these plots the true bimolecular quenching rate constant, k q , and the rate constant for lateral diffusion, k d , were determined: . The smaller value of k q compared to k d for the quenching reaction of NIPC with lindane indicates that this quenching reaction is not diffusion controlled. The lateral diffusion coefficient D of lindane was found to be 1.7±0.2×10-6 cm2/s in dimyristoylphosphatidylcholine vesicles at 50°C. The partition coefficient of lindane in these lipid bilayers is very high (>2000).Abbreviations DMPC dimyristoylphosphatidylcholine - lindane 1,2,3,4,5,6-hexachlorocyclohexane (-isomer) - NIPC N-isopropylcarbazole - PCUPC l,-palmitoyl--(N-carbazolyl) undecanoylphosphatidylcholine - SUV small unilamellar vesicles  相似文献   

16.
There are several known routes for the metabolic detoxication of alpha,beta-unsaturated aldehydes and ketones, including conjugation to glutathione and reduction and oxidation of the aldehyde to an alcohol and a carboxylic acid, respectively. In this study, we describe a fourth class of detoxication that involves the reduction of the alpha,beta-carbon=carbon double bond to a single bond. This reaction is catalyzed by NAD(P)H-dependent alkenal/one oxidoreductase (AO), an enzyme heretofore known as leukotriene B4 12-hydroxydehydrogenase, 15-oxoprostaglandin 13-reductase, and dithiolethione-inducible gene-1. AO is shown to effectively reduce cytotoxic lipid peroxidation products such as 4-hydroxy-2-nonenal (HNE) (k(cat) = 4.0 x 10(3) min(-1); k(cat)/K(m) = 3.3 x 10(7) min(-1) M(-1)) and acrolein (k(cat) = 2.2 x 10(2) min(-1); k(cat)/K(m) = 1.5 x 10(6) min(-1) M(-1)) and common industrial compounds such as ethyl vinyl ketone (k(cat) = 9.6 x 10(3) min(-1); k(cat)/K(m) = 8.8 x 10(7) min(-1) M(-1)) and 15-oxoprostaglandin E1 (k(cat) = 2.4 x 10(3) min(-1); k(cat)/K(m) = 2.4 x 10(9) min(-1) M(-1)). Furthermore, transfection of human embryonic kidney cells with a rat liver AO expression vector protected these cells from challenge with HNE. The concentration of HNE at which 50% of the cells were killed after 24 h increased from approximately 15 microM in control cells to approximately 70 microM in AO-transfected cells. Overexpression of AO also completely abolished protein alkylation by HNE at all concentrations tested (up to 30 microM). Thus, we describe a novel antioxidative activity of a previously characterized bioactive lipid-metabolizing enzyme that could prove to be therapeutically or prophylactically useful due to its high catalytic rate and inducibility.  相似文献   

17.
Genetic linkage between the equine loci for phosphohexose isomerase (PHI) and serum Xk protein was demonstrated by means of segregation data from three sire families. The recombination frequency was estimated from pooled data to be 0.23 +/- 0.02; a significant heterogeneity between sires for estimates of the recombination frequency was observed. No indication of linkage was detected between Xk and 14 other blood marker loci. Linkage between the Xk locus and the locus for soluble malic enzyme (ME1) has recently been reported in horses. An equine linkage group designated LG IV comprising the three loci ME1, PHI, and Xk has thus been established. The possibility that the linkage between PHI and Xk is homologous to the linkage between the loci for PHI and a serum postalbumin (PO-2) in pigs was discussed.  相似文献   

18.
Xia Z  Azurmendi HF  Mildvan AS 《Biochemistry》2005,44(46):15334-15344
The MutT pyrophosphohydrolase, in the presence of Mg2+, catalyzes the hydrolysis of nucleoside triphosphates by nucleophilic substitution at Pbeta, to yield the nucleotide and PP(i). The best substrate for MutT is the mutagenic 8-oxo-dGTP, on the basis of its Km being 540-fold lower than that of dGTP. Product inhibition studies have led to a proposed uni-bi-iso kinetic mechanism, in which PP(i) dissociates first from the enzyme-product complex (k3), followed by NMP (k4), leaving a product-binding form of the enzyme (F) which converts to the substrate-binding form (E) in a partially rate-limiting step (k5) [Saraswat, V., et al. (2002) Biochemistry 41, 15566-15577]. Single- and multiple-turnover kinetic studies of the hydrolysis of dGTP and 8-oxo-dGTP and global fitting of the data to this mechanism have yielded all of the nine rate constants. Consistent with an "iso" mechanism, single-turnover studies with dGTP and 8-oxo-dGTP hydrolysis showed slow apparent second-order rate constants for substrate binding similar to their kcat/Km values, but well below the diffusion limit (approximately 10(9) M(-1) s(-1)): k(on)app = 7.2 x 10(4) M(-1) s(-1) for dGTP and k(on)app = 2.8 x 10(7) M(-1) s(-1) for 8-oxo-dGTP. These low k(on)app values are fitted by assuming a slow iso step (k5 = 12.1 s(-1)) followed by fast rate constants for substrate binding: k1 = 1.9 x 10(6) M(-1) s(-1) for dGTP and k1 = 0.75 x 10(9) M(-1) s(-1) for 8-oxo-dGTP (the latter near the diffusion limit). With dGTP as the substrate, replacing Mg2+ with Mn2+ does not change k1, consistent with the formation of a second-sphere MutT-M2+-(H2O)-dGTP complex, but slows the iso step (k5) 5.8-fold, and its reverse (k(-5)) 25-fold, suggesting that the iso step involves a change in metal coordination, likely the dissociation of Glu-53 from the enzyme-bound metal so that it can function as the general base. Multiple-turnover studies with dGTP and 8-oxo-dGTP show bursts of product formation, indicating partially rate-limiting steps following the chemical step (k2). With dGTP, the slow steps are the chemical step (k2 = 10.7 s(-1)) and the iso step (k5 = 12.1 s(-1)). With 8-oxo-dGTP, the slow steps are the release of the 8-oxo-dGMP product (k4 = 3.9 s(-1)) and the iso step (k5 = 12.1 s(-1)), while the chemical step is fast (k2 = 32.3 s(-1)). The transient kinetic studies are generally consistent with the steady state kcat and Km values. Comparison of rate constants and free energy diagrams indicate that 8-oxo-dGTP, at low concentrations, is a better substrate than dGTP because it binds to MutT 395-fold faster, dissociates 46-fold slower, and has a 3.0-fold faster chemical step. The true dissociation constants (KD) of the substrates from the E-form of MutT, which can now be obtained from k(-1)/k1, are 3.5 nM for 8-oxo-dGTP and 62 microM for dGTP, indicating that 8-oxo-dGTP binds 1.8 x 10(4)-fold tighter than dGTP, corresponding to a 5.8 kcal/mol lower free energy of binding.  相似文献   

19.
We cloned, expressed, and purified a chimeric fusion between a soluble green fluorescent protein (smGFP) and the calmodulin binding protein calspermin. We have shown that the fusion protein, labeled smGN, has a K(i) in the calmodulin-dependent cyclic nucleotide phosphodiesterase activity assay of 1.97 nM, i.e., 3800 times smaller than that of the commonly used calmodulin inhibitor W7. Association and dissociation rate constants (k(a) and k(d)) and the dissociation equilibrium constant (K(D)) of smGN for calmodulin were determined using surface plasmon resonance (SPR). The k(a)=1.24 x 10(6)M(-1)s(-1), the k(d)=5.49 x 10(-3)s(-1), and the K(D)=4.42 x 10(-9)M. We also found that the GFP moiety was important for successfully binding calspermin to the surface of the CM5 flow cell at a sufficiently high concentration for SPR, and that this procedure may be used for SPR analysis of other acidic polypeptides, whose pI< or =4. To determine whether smGN might also bind to other calmodulin-like proteins in a heterologous system, we purified proteins from a plant total cell extract or a plant total protein extract by affinity chromatography against smGN. The purified proteins were identified as calmodulins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and liquid chromatography-tandem mass spectrometry, indicating a high level of specificity. We conclude that the high affinity and specific binding between smGN and calmodulin make it an easily localized recombinant alternative to chemical calmodulin inhibitors.  相似文献   

20.
A sensitive competitive method was developed for assessing the reactivity of compounds toward glutathione and toward thiols in general. The method employs the reaction of the fluorogenic reagent fluorescein-5-maleimide (FM) with glutathione (GSH) to generate a large increase in fluorescence emission. When the reaction is measured in the presence of a compound that competes with FM toward GSH, the rate constant for fluorescent product formation increases while the total amount of product formed at the end of the reaction decreases. These changes in the presence of a series of competitor concentrations allow one to calculate the rate constant of the reaction of the competitor with GSH. At 23 degrees C, pH 7.40 in PBS buffer the second-order rate constant of the FM-GSH reaction is k2 = (1.67 +/- 0.32) x 10(4) M(-1) x s(-1). Two GSH-reactive compounds were evaluated: the second-order rate constant for the reaction of PNU-27707 with GSH under our experimental conditions is k(i) = 5660 +/- 266 M(-1) x s(-1), while that of PNU-37802 is k(i) = 21,200 +/- 1600 M(-1) x s(-1). The method is easily adaptable to a high-throughput screening format.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号