首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
哺乳动物卵母细胞在排卵后停滞在第二次减数分裂中期,受精和多种物理或是化学刺激可以克服这一阻滞使卵母细胞活化。蛋白合成抑制剂亚胺环己酮可以诱导小鼠卵母细胞发生孤雌活化,但其机制尚未完全阐明。以前的研究提示亚胺环己酮可能是通过抑制蛋白激酶MOS的合成来发挥孤雌激活的作用的。本实验发现,CHX诱导的卵母细胞孤雌活化是Ca^2 依赖性,其效率可被钙离子载体A23187大大提高,免疫蛋白印迹结果表明,卵母细胞孤雌活化后MAPK发生去磷酸化。蛋白磷酸酶抑制剂冈田酸可以克服CHX+A23187对小鼠放母细胞活化作用,并且部分阻止MAPK去磷酸化。以上结果表明,抑制MOS的合成并非CHX诱导的孤雌活化过程的惟一原因,并且蛋白磷酸酶抑制剂可以阻断这一激活事件。  相似文献   

2.
Protein synthesis inhibitors such as cycloheximide (CHX) are known to suppress protein degradation including autophagy. The fact that CHX inhibits autophagy has been generally interpreted to indicate that newly synthesized protein is indispensable for autophagy. However, CHX is also known to increase the intracellular level of amino acids and activate mTORC1 activity, a master negative regulator of autophagy. Accordingly, CHX can affect autophagic activity through inhibition of de novo protein synthesis and/or modulation of mTORC1 signaling. In this study, we investigated the effects of CHX on autophagy using specific autophagy markers. We found that CHX inhibited starvation-induced autophagy but not Torin1-induced autophagy. CHX also suppressed starvation-induced puncta formation of GFP-ULK1, an early-step marker of the autophagic process which is regulated by mTORC1. CHX activated mTORC1 even under autophagy-inducible starvation conditions. Finally, the inhibitory effect of CHX on starvation-induced autophagy was cancelled by the mTOR inhibitor Torin1. These results suggest that CHX inhibits starvation-induced autophagy through mTORC1 activation and also that autophagy does not require new protein synthesis at least in the acute phase of starvation.  相似文献   

3.
Cells of the human promyelocytic HL-60 line, when treated with a variety of antitumor agents in the presence of the protein synthesis inhibitor cycloheximide (CHX), or with CHX alone, rapidly undergo apoptosis (“active cell death”). It is presumed, therefore, that such cells are “primed” to apoptosis in that no new protein synthesis is required for induction of their death. We have studied apoptosis of HL-60 cells triggered by the DNA topoisomerase I inhibitor camptothecin (CAM) in the absence and presence of CHX and apoptosis induced by CHX alone. Two different flcw cytometric methods were used, each allowing us to relate the apoptosis-associated DNA degradation to the cell cycle position. Apoptosis induced by CAM was limited to S phase cells, e.g., at a CAM concentration of 0.15 μM, nearly 90% of the S phase cells underwent apoptosis after 4 h. In contrast, apoptosis triggered by CHX was indiscriminate, affecting all phases of the cycle: ~40% of the cells from each phase the cycle underwent apoptosis at 5 μM CHX concentration. When CAM and CHX were added together, the pattern of apoptosis resembled that of cycloheximide alone, namely, cells in all phases of the cycle in similar proportion were affected. Thus, CHX, while itself inducing apoptosis of a fraction of cells, protected the S phase cells against apoptosis triggered by CAM. Because CHX (5 μM) did not significantly affect the rate of cell progression through S phase, the observed protective effect was most likely directly related to inhibition of protein synthesis, rather than to its possible indirect effect on DNA replication. Furthermore, whereas apoptosis (DNA degradation) triggered by CAM was prevented by the serine protease inhibitor N-tosyl-L-lysylchloromethyl ketone (TLCK), this process was actually potentiated by this inhibitor when induced by CHX. The present data indicate differences in mechanism of apoptosis triggered by CAM (and perhaps other antitumor drugs) as compared with CHX. Apoptosis caused by CHX may be unique in that it may not involve new protein synthesis. These data are compatible with the assumption that the loss of a hypothetical, rapidly turning over suppressor of apoptosis may be the trigger of apoptosis of HL-60 cells treated with CHX, whereas de novo protein synthesis is required when apoptosis is triggered by other agents. © 1993 Wiley-Liss, Inc.  相似文献   

4.
Lignin and lignans share monolignols as common precursors and are both potentially involved in plant defence against pathogens. In this study, we investigated the effects of fungal elicitors on lignin and lignan metabolism in flax (Linum usitatissimum) cell suspensions. Cell suspension cultures of flax were treated with elicitor preparations made from mycelium extracts of Botrytis cinerea, Phoma exigua and Fusarium oxysporum F ssp lini. Elicitors induced a rapid stimulation of the monolignol pathway, as confirmed by the increase in PAL (phenylalanine ammonia-lyase, EC 4.1.3.5), CCR (cinnamoyl-CoA reductase EC 1.2.1.44) and CAD (cinnamyl alcohol dehydrogenase EC 1.1.1.195) gene expression and PAL activity. At the same time, CCR activity only increased significantly in F. oxysporum-treated cells 24 h post elicitation. On the other hand, CAD activity measured for coniferyl alcohol formation was transiently decreased but a substrate-specific activation of CAD activity was observed in F. oxysporum-treated cells when using sinapyl alcohol as substrate. The accumulation of monolignol-derived products varied according to the elicitor used. B. cinerea or P. exigua-elicited cell cultures were characterised by a reinforcement of the cell wall by a deposit of 8-O-4′-linked non-condensed lignin structures and phenolic monomers, while at the same time no stimulation of 8-8′-linked lignan or 8-5′-linked phenylcoumaran lignan accumulation was observed. Additionally, elicitation of cell cultures with F. oxysporum extracts even triggered a strong incorporation of monolignols in the non condensed labile ether-linked lignin fraction concomitantly with a decrease in lignan and phenylcoumaran lignan accumulation. Several hypotheses are proposed to explain the putative role of these compounds in the defence response of flax cells against pathogens. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users. C. Hano and M. Addi contributed equally to this work.  相似文献   

5.
The rainbow trout macrophage cell line RTS11 was found to be considerably more sensitive than rainbow trout fibroblast (RTG-2) and Chinook salmon epithelial (CHSE-214) cell lines to killing by macromolecular synthesis inhibitors, actinomycin D (AMD) and cycloheximide (CHX), a synthetic double stranded RNA (dsRNA), polyinosinic:polycytidylic acid (poly IC), and combinations of poly IC with AMD or CHX. Exposures of 24-30 h to AMD or CHX alone killed RTS11, but not CHSE-214 and RTG-2, in basal medium, L-15, with or without fetal bovine serum (FBS) supplementation. A two-week exposure to poly IC killed RTS11 in L-15, whereas RTG-2 and CHSE-214 remained viable. At concentrations that caused very little or no cell death, CHX or AMD pretreatments or co-treatments sensitized RTS11 to poly IC, causing death within 30 h. In all cases death was by apoptosis as judged by two criteria. H33258 staining revealed a fragmented nuclear morphology, and genomic degradation into oligonucleosomal fragments was seen with agarose gel electrophoresis. With AMD- or CHX-induced death, killing seemed caspase-independent as the pan caspase inhibitor, z-VAD-fmk, failed to block killing. By contrast, z-VAD-fmk almost completely abrogated killing by co-treatments of poly IC and low concentrations of AMD or CHX, suggesting caspase dependence. Killing by both types of treatments was blocked by 2 aminopurine (2-AP), which suggests the involvement of dsRNA-dependent protein kinase (PKR). The sensitizing of RTS11 to poly IC killing by AMD or CHX could be explained by a decrease in the level of a short-lived anti-apoptotic protein(s) and/or by the triggering of a ribotoxic stress.  相似文献   

6.
7.
During the interaction of two tropical agaric fungi, Marasmius pallescens and Marasmiellus troyanus, on agar media, initial deadlock between the two mycelia was ultimately followed by take-over by M. troyanus. When shaken liquid cultures of these two fungi were mixed, a rapid increase in laccase and manganese peroxidase activity, but no lignin peroxidase, was detected in the culture supernatant. Even more rapid and elevated induction of laccase occurred when filter-sterilized supernatant of Marasmius pallescens was added to Marasmiellus troyanus cultures, but the reciprocal experiment (addition of M. troyanus supernatant to M. pallescens cultures), did not lead to any increase in laccase activity. Addition of autoclaved supernatant of M. pallescens also induced laccase activity from M. troyanus cultures, but over a period of days rather than hours. Although both M. troyanus, and to a lesser extent M. pallescens, are able to produce laccases in shaken liquid culture following addition of the inducer 2,5-dimethylalanine, these experiments suggest that the presence of heat-stable and heat-labile laccase inducers secreted by M. pallescens mycelia lead to induction of laccases by M. troyanus.  相似文献   

8.
In Arabidopsis thaliana leaves a strong increase of H2O2 content was induced by application of methyl jasmonate (JAMe) through the root system, but the induction only slightly depended on JAMe concentration. The activity of superoxide dismutase and ascorbic acid peroxidase increased at lower JAMe concentrations and decreased at higher ones. Catalase activity decreased proportionally to JAMe concentration (in comparison with control plants). The sum of ascorbic acid and dehydroascorbate content at 10−6 M JAMe was similar to the control, but at higher concentrations it increased, especially due to a higher ascorbate accumulation. Methyl jasmonate applied directly to the extract of leaves (in vitro experiment) also induced a strong increase in H2O2 level, even at a low concentration (10−8 M). Since lower JAMe concentrations induced weak superoxide dismutase and did not change catalase and peroxidase activity, it is suggested that in this case a high level of hydrogen peroxide was not the result of the activity of the mentioned enzymes. JAMe-induction of H2O2 increase at the highest JAMe concentration resulted from SOD activity. Our in vivo and in vitro experiments suggest that jasmonate can influence oxidative stress not only through gene expression but also by its direct effect on enzyme activity.  相似文献   

9.
10.
Amiodarone (AMD) is known to induce a transient increase in cytosolic Ca2+ level in cells of the yeast Saccharomyces cerevisiae. In the present study the effect of AMD on the thermotolerance and Hsp104p synthesis of the yeast was studied. AMD induced Hsp104p synthesis and increased survival of the yeast after a severe heat shock (50°C). The development of thermotolerance to a considerable extent depended on the presence of Hsp104p. The same effect was achieved by treatment with the classical uncoupler CCCP, which is also known to increase the cytosolic Ca2+ level. It is supposed that the change in intracellular Ca2+ concentration plays an important role in activation of the HSP104 gene expression and in increasing the thermotolerance of the yeast. The possible link between mitochondrial activity and calcium homeostasis is discussed.  相似文献   

11.
12.
The genes that were induced and suppressed in human embryonic kidney cell line RH upon the infection with tick-borne encephalitis virus were studied by the method of subtractive hybridization. The expression of interferon-induced genes IFI-54K and IFI-56K in the infected cells was found to increase 50–100-fold.  相似文献   

13.
We previously showed in vivo and in vitro, that among the spermatogenic stages of the newt, prolactin (PRL) induces apoptosis specifically in the penultimate stage of secondary spermatogonia. In the current report, we demonstrate in vitro that cycloheximide (CHX), an inhibitor of protein synthesis, induces morphological apoptotic changes similar to those caused by PRL, such as chromatin condensation and apoptotic body formation. Next, we found that Z-VAD-fmk, an inhibitor of various caspases, suppressed the apoptosis induced by PRL and CHX, but ICE inhibitor Ac-YVAD-CHO or caspase-3 inhibitor Ac-DEVD-CHO did not. As high caspase activity was present in extracts of testes treated with CHX, we suggest that an unidentified caspase induces the morphological changes of apoptosis in newt spermatogonia.  相似文献   

14.
Kiedaisch BM  Blanton RL  Haigler CH 《Planta》2003,217(6):922-930
The physiological effects of an experimental herbicide and cellulose synthesis inhibitor, N2-(1-ethyl-3-phenylpropyl)-6-(1-fluoro-1-methylethyl)-1,3,5-triazine-2,4-diamine, called AE F150944, are described. In the aminotriazine molecular class, AE F150944 is structurally distinct from other known cellulose synthesis inhibitors. It specifically inhibits crystalline cellulose synthesis in plants without affecting other processes that were tested. The effects of AE F150944 on dicotyledonous plants were tested on cultured mesophyll cells of Zinnia elegans L. cv. Envy, which can be selectively induced to expand via primary wall synthesis or to differentiate into tracheary elements via secondary wall synthesis. The IC50 values during primary and secondary wall synthesis in Z. elegans were 3.91×10–8 M and 3.67×10–9 M, respectively. The IC50 in suspension cultures of the monocot Sorghum halapense (L.) Pers., which were dividing and synthesizing primary walls, was 1.67×10–10 M. At maximally inhibitory concentrations, 18–33% residual crystalline cellulose synthesis activity remained, with the most residual activity observed during primary wall synthesis in Z. elegans. Addition to Z. elegans cells of two other cellulose synthesis inhibitors, 1 M 2,6-dichlorobenzonitrile and isoxaben, along with AE F150944 did not eliminate the residual cellulose synthesis, indicating little synergy between the three inhibitors. In differentiating tracheary elements, AE F150944 inhibited the deposition of detectable cellulose into patterned secondary wall thickenings, which was correlated with delocalization of lignin as described previously for 2, 6-dichlorobenzonitrile. Freeze-fracture electron microscopy showed that the plasma membrane below the patterned thickenings of AE F150944-treated tracheary elements was depleted of cellulose-synthase-containing rosettes, which appeared to be inserted intact into the plasma membrane followed by their rapid disaggregation. AE F150944 also inhibited cellulose-dependent growth in the rosette-containing alga, Spirogyra pratensis, but it did not inhibit cellulose synthesis in Acetobacter xylinum or Dictyostelium discoideum, both of which synthesize cellulose via linear terminal complexes. Therefore, AE F150944 may inhibit crystalline cellulose synthesis by destabilizing plasma membrane rosettes.Abbreviations AE F150944 N2-(1-ethyl-3-phenylpropyl)-6-(1-fluoro-1-methylethyl)-1,3,5-triazine-2,4-diamine - CBI cellulose biosynthesis inhibiting - CGA CGA 325615, 1-cyclohexyl-5-(2,3,4,5,6-pentafluorophenoxy)-14,2,4,6-thiatriazin-3-amine - DCB 2,6-dichlorobenzonitrile - TE tracheary element  相似文献   

15.
In the present study we investigated the role of 5-hydroxytryptamine (5-HT) and 5-HT1A receptor during liver regeneration after partial hepatectomy (PH) and N-nitrosodiethylamine (NDEA) induced hepatocellular carcinoma in male Wistar rats. 5-HT content was significantly increased during liver regeneration after PH and NDEA induced hepatocellular carcinoma. Scatchard analysis using 8-OH-DPAT, a 5-HT1A specific agonist showed a decreased receptor during liver regeneration after PH and NDEA induced hepatocellular carcinoma. 5-HT when added alone to primary hepatocyte culture did not increase DNA synthesis but was able to increase the EGF mediated DNA synthesis and inhibit the TGFβ1 mediated DNA synthesis suppression in vitro. This confirmed the co-mitogenic activity of 5-HT. 8-OH-DPAT at a concentration of 10−4 M inhibited the basal and EGF-mediated DNA synthesis in primary hepatocyte cultures. It also suppressed the TGFβ1-mediated DNA synthesis suppression. This clearly showed that activated 5-HT1A receptor inhibited hepatocyte DNA synthesis. Our results suggest that decreased hepatic 5-HT1A receptor function during hepatocyte regeneration and neoplasia has clinical significance in the control of cell proliferation.  相似文献   

16.
Antagonism betweenFusarium udum Butler causing wilt of pigeon-pea (Cajanus cajan (L.) Millsp.) and the saprophytic microflora of the root region of the host was studied with reference to colony interaction, hyphal interference, volatile and non-volatile metabolites and staling growth products. Studies were extended to screen potential antagonists against the wilt pathogen in soil. Aspergillus flavus, A. niger, A. terreus, Penicillium citrinum andMicromonospora globosa (an actinomycete) were antagonistic againstF. udum, whereas the pathogen parasitized and killedAspergillus luchuensis, Cunninghamella echinulata, Curvularia lunata, Mortierella subtilissima andSyncephalastrum racemosum. The pattern of growth of microorganisms on nutrient agar staled by rhizosphere soil inocula of healthy or wilted pigeon-pea plants was found to be different.F. udum colonized and grew on nutrient agar staled by the rhizosphere inoculum of the wilted plants upto 120h of incubation. However, it could not colonise and grow on the nutrient agar staled by rhizosphere microflora of healthy plants after 48h of incubation because of the presence of antagonists likeA. niger, A. flavus, A. terreus and a few species ofPenicillium in the soil inoculum. When pure cultures in soil ofF. udum was mixed with those of antagonists in different ratios,A. niger, A. flavus andM. globosa significantly suppressed the population ofF. udum, whereasA. terreus markedly reduced the population. When inoculated in soil, the antagonists exhibited a high fungistatic activity againstF. udum.  相似文献   

17.
The BstF5I restriction–modification system from Bacillus stearothermophilus F5, unlike all known restriction–modification systems, contains three genes encoding DNA methyltransferases. In addition to revealing two DNA methylases responsible for modification of adenine in different DNA strands, it has been first shown that one bacterial cell has two DNA methylases, M.BstF5I-1 and M.BstF5I-3, with similar substrate specificity. The boundaries of the gene for DNA methyltransferase M.BstF5I-1 have been verified. The bstF5IM-1 gene was cloned in pJW and expressed in Escherichia coli. Homogeneous samples of M.BstF5I-1 and M.BstF5I-3 were obtained by chromatography with different sorbents. The main kinetic parameters have been determined for M.BstF5I-1 and M.BstF5I-3, both modifying adenine in the recognition site 5"-GGATG-3".  相似文献   

18.
We have been investigating the effects of natural polyamines and polyamine analogues on the survival and apoptosis of chondrocytes, which are cells critical for cartilage integrity. Treatment of human C‐28/I2 chondrocytes with N1,N11‐diethylnorspermine (DENSPM), a polyamine analogue with clinical relevance as an experimental anticancer agent, rapidly induced spermidine/spermine N1‐acetyltransferase (SSAT) and spermine oxidase (SMO), key enzymes of polyamine catabolism and down‐regulated ornithine decarboxylase, the first enzyme of polyamine biosynthesis, thus depleting all main polyamines within 24 h. The treatment with DENSPM did not provoke cell death and caspase activation when given alone for 24 h, but caused a caspase‐3 and ‐9 dependent apoptosis in chondrocytes further exposed to cycloheximide (CHX). In other cellular models, enhanced polyamine catabolism or polyamine depletion has been implicated as mechanisms involved in DENSPM‐related apoptosis. However, the simultaneous addition of DENSPM and CHX rapidly increased caspase activity in C‐28/I2 cells in the absence of SSAT and SMO induction or significant reduction of polyamine levels. Moreover, caspase activation induced by DENSPM plus CHX was not prevented by a N1‐acetylpolyamine oxidase (PAO)/SMO inhibitor, and depletion of all polyamines obtained by specific inhibitors of polyamine biosynthesis did not reproduce DENSPM effects in the presence of CHX. DENSPM/CHX‐induced apoptosis was associated with changes in the amount or activation of signalling kinases, Akt and MAPKs, and increased uptake of DENSPM. In conclusion, the results suggest that DENSPM can favour apoptosis in chondrocytes independently of its effects on polyamine metabolism and levels. J. Cell. Physiol. 219: 109–116, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
20.
Entomogenous Fungi as Promising Biopesticides for Tick Control   总被引:6,自引:0,他引:6  
When ticks were sealed in nylon tetrapacks and infected with the entomogenous fungi, Beauveria bassiana and Metarizium anisopliae and maintained in potted grass in the field, the fungal oil formulations (109 conidia per ml) induced 100% mortality in larvae of Rhipicephalus appendiculatus and Amblyomma variegatum, whereas mortalities in nymphs varied between 80–100% and in adults 80–90%. The aqueous formulations (109 conidia per ml) induced mortalities of 40–50% and reductions in egg hatchability of 68% (B. bassiana) and 48% (M. anisopliae) when sprayed on Boophilus decoloratus engorging on cattle. The strains of B. bassiana and M. anisopliae isolated from naturally infected ticks were also found to induce high mortalities in both R. appendiculatus and A.variegatum in tetrapacks placed in potted grass. Both aqueous and oil-based formulations were found to be effective, although the latter induced higher mortalities. These fungal strains in aqueous formulation (108 conidia per ml) suppressed on-host populations of adult R. appendiculatus by 80% (B. bassiana) and 92% (M. anisopliae) when sprayed on tick-infested grass once per month for a period of 6 months. The feasibility of using entomogenous fungi for tick control in the field is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号