首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The physiological mechanisms driving synapse formation are elusive. Although numerous signals are known to regulate synapses, it remains unclear which signaling mechanisms organize initial synapse assembly. Here, we describe new tools, referred to as “SynTAMs” for synaptic targeting molecules, that enable localized perturbations of cAMP signaling in developing postsynaptic specializations. We show that locally restricted suppression of postsynaptic cAMP levels or of cAMP-dependent protein-kinase activity severely impairs excitatory synapse formation without affecting neuronal maturation, dendritic arborization, or inhibitory synapse formation. In vivo, suppression of postsynaptic cAMP signaling in CA1 neurons prevented formation of both Schaffer-collateral and entorhinal-CA1/temporoammonic-path synapses, suggesting a general principle. Retrograde trans-synaptic rabies virus tracing revealed that postsynaptic cAMP signaling is required for continuous replacement of synapses throughout life. Given that postsynaptic latrophilin adhesion-GPCRs drive synapse formation and produce cAMP, we suggest that spatially restricted postsynaptic cAMP signals organize assembly of postsynaptic specializations during synapse formation.  相似文献   

2.
The formation of functional synapses requires precise coordination between neurons and their synaptic targets. Recent studies have identified two signaling molecules, Wnt and TGF-beta, which are required for formation and growth of the neuromuscular synapse.  相似文献   

3.
Synaptogenesis is a finely organized process, intriguing in its precise temporal and spatial resolution. It occurs as the dendrite of a postsynaptic neuron and an incoming axon communicate at defined sites to establish a stable synapse together. The molecular cues that guide synaptogenesis are now beginning to be identified, and cell surface interactions at synaptic sites participate prominently in the key steps. Interactions include trans-synaptic adhesion of pre- and post-synaptic neurons but also binding to non-neuronal neighboring cells and the extracellular matrix. These signals recruit scaffolding molecules, other adhesion molecules, and neurotransmitter receptors to bring together the key components of functional synapses. Recent progress provides stimulating insights into the role of adhesion and signaling molecules in the formation and function of synaptic specializations.  相似文献   

4.
GABA-mediated synaptic inhibition is crucial in neural circuit operations. In mammalian brains, the development of inhibitory synapses and innervation patterns is often a prolonged postnatal process, regulated by neural activity. Emerging evidence indicates that gamma-aminobutyric acid (GABA) acts beyond inhibitory transmission and regulates inhibitory synapse development. Indeed, GABA(A) receptors not only function as chloride channels that regulate membrane voltage and conductance but also play structural roles in synapse maturation and stabilization. The link from GABA(A) receptors to postsynaptic and presynaptic adhesion is probably mediated, partly by neuroligin-reurexin interactions, which are potent in promoting GABAergic synapse formation. Therefore, similar to glutamate signaling at excitatory synapse, GABA signaling may coordinate maturation of presynaptic and postsynaptic sites at inhibitory synapses. Defining the many steps from GABA signaling to receptor trafficking/stability and neuroligin function will provide further mechanistic insights into activity-dependent development and possibly plasticity of inhibitory synapses.  相似文献   

5.
Park M  Watanabe S  Poon VY  Ou CY  Jorgensen EM  Shen K 《Neuron》2011,70(4):742-757
The assembly and maturation of neural circuits require a delicate balance between synapse formation and elimination. The cellular and molecular mechanisms that coordinate synaptogenesis and synapse elimination are poorly understood. In C. elegans, DD motoneurons respecify their synaptic connectivity during development by completely eliminating existing synapses and forming new synapses without changing cell morphology. Using loss- and gain-of-function genetic approaches, we demonstrate that CYY-1, a cyclin box-containing protein, drives synapse removal in this process. In addition, cyclin-dependent kinase-5 (CDK-5) facilitates new synapse formation by regulating the transport of synaptic vesicles to the sites of synaptogenesis. Furthermore, we show that coordinated activation of UNC-104/Kinesin3 and Dynein is required for patterning newly formed synapses. During the remodeling process, presynaptic components from eliminated synapses are recycled to new synapses, suggesting that signaling mechanisms and molecular motors link the deconstruction of existing synapses and the assembly of new synapses during structural synaptic plasticity.  相似文献   

6.
Synaptic cell adhesion molecules (SCAMs) are mostly membrane-anchored molecules with extracellular domains that extend into the synaptic cleft. Prototypical SCAMs interact with homologous or heterologous molecules on the surface of adjacent cells, ensuring the precise apposition of pre- and postsynaptic elements. More recent definitions of SCAMs often include molecules involved in axon pathfinding, cell recognition and synaptic differentiation events, making SCAMs functionally and molecularly a highly diverse group. In this review, we summarize the proposed in vivo functions of a large variety of SCAMs. We mainly focus on results obtained from analyses of genetic model organisms, mostly mouse knockout mutants, lacking expression of the respective candidate genes. In contrast to the substantial effect yielded by some knockouts of molecules involved in synaptic vesicle release, no SCAM mutant has been reported thus far that shows a prominently altered structure of the majority of synapses or even lacks synapses altogether. This surprising resilience of synaptic structure might be explained by a high redundancy between different SCAMs, by the assumption that the crucial molecular players in synapse structure have yet to be discovered or by a grand variability in the mechanisms of synapse formation that underlies the diversity of synapses. Whatever the final answer turns out to be, the genetic dissection of the SCAM superfamilies has led to a much better understanding of the different steps required to form, differentiate and modify a synapse.Our studies are supported by the Deutsche Forschungsgemeinschaft (DFG-SFB 406, Germany). I.D. is a recipient of a Georg Christoph Lichtenberg Stipend (Ministry for Science and Culture of Lower Saxony, Germany).An erratum to this article can be found at  相似文献   

7.
Targeting of glutamate receptors to synapses is an important event in both developing and mature neurons. Glutamate receptors are delivered to nascent synapses during synaptogenesis and to existing synapses during activity-dependent synaptic strengthening. Increasing evidence suggests that glutamate receptors are inserted into the plasma membrane before they accumulate at the synapse. Lateral diffusion of receptors occurs at both synaptic and non-synaptic membranes, and glutamate receptors can exchange rapidly between synaptic and extrasynaptic sites. In addition, recent studies show that postsynaptic scaffold molecules can be highly mobile. The dynamic nature of the synapse suggests that many mechanisms might be involved in regulating synapse formation and synaptic plasticity.  相似文献   

8.
Glial cells are currently viewed as active partners of neurons in synapse formation. The close proximity of astrocytes to the synaptic cleft implicates that they strongly influence synapse function as well as suggests that these cells might be potential targets for neuronal-released molecules. In this review, we discuss the signaling pathways of astrocyte generation and the role of astrocyte-derived molecules in synapse formation in the central nervous system. Further, we discuss the role of the excitatory neurotransmitter, glutamate and transforming growth factor beta 1 (TGF-β1) pathway in astrocyte generation and differentiation. We provide evidence that astrocytes surrounding synapses are target of neuronal activity and shed light into the role of astroglial cells into neurological disorders associated with glutamate neurotoxicity.  相似文献   

9.
The actin-based dynamics of dendritic spines play a key role in synaptic plasticity, which underlies learning and memory. Although it is becoming increasingly clear that modulation of actin is critical for spine dynamics, the upstream molecular signals that regulate the formation and plasticity of spines are poorly understood. In non-neuronal cells, integrins are critical modulators of the actin cytoskeleton, but their function in the nervous system is not well characterized. Here we show that alpha5 integrin regulates spine morphogenesis and synapse formation in hippocampal neurons. Knockdown of alpha5 integrin expression using small interfering RNA decreased the number of dendritic protrusions, spines, and synapses. Expression of constitutively active or dominant negative alpha5 integrin also resulted in alterations in the number of dendritic protrusions, spines, and synapses. alpha5 integrin signaling regulates spine morphogenesis and synapse formation by a mechanism that is dependent on Src kinase, Rac, and the signaling adaptor GIT1. Alterations in the activity or localization of these molecules result in a significant decrease in the number of spines and synapses. Thus, our results point to a critical role for integrin signaling in regulating the formation of dendritic spines and synapses in hippocampal neurons.  相似文献   

10.
At synapses, cell adhesion molecules (CAMs) provide the molecular framework for coordinating signaling events across the synaptic cleft. Among synaptic CAMs, the integrins, receptors for extracellular matrix proteins and counterreceptors on adjacent cells, are implicated in synapse maturation and plasticity and memory formation. However, little is known about the molecular mechanisms of integrin action at central synapses. Here, we report that postsynaptic beta3 integrins control synaptic strength by regulating AMPA receptors (AMPARs) in a subunit-specific manner. Pharmacological perturbation targeting beta3 integrins promotes endocytosis of GluR2-containing AMPARs via Rap1 signaling, and expression of beta3 integrins produces robust changes in the abundance and composition of synaptic AMPARs without affecting dendritic spine structure. Importantly, homeostatic synaptic scaling induced by activity deprivation elevates surface expression of beta3 integrins, and in turn, beta3 integrins are required for synaptic scaling. Our findings demonstrate a key role for integrins in the feedback regulation of excitatory synaptic strength.  相似文献   

11.
Specifying synaptic partners and regulating synaptic numbers are at least partly activity-dependent processes during visual map formation in all systems investigated to date . In Drosophila, six photoreceptors that view the same point in visual space have to be sorted into synaptic modules called cartridges in order to form a visuotopically correct map . Synapse numbers per photoreceptor terminal and cartridge are both precisely regulated . However, it is unknown whether an activity-dependent mechanism or a genetically encoded developmental program regulates synapse numbers. We performed a large-scale quantitative ultrastructural analysis of photoreceptor synapses in mutants affecting the generation of electrical potentials (norpA, trp;trpl), neurotransmitter release (hdc, syt), vesicle endocytosis (synj), the trafficking of specific guidance molecules during photoreceptor targeting (sec15), a specific guidance receptor required for visual map formation (Dlar), and 57 other novel synaptic mutants affecting 43 genes. Remarkably, in all these mutants, individual photoreceptors form the correct number of synapses per presynaptic terminal independently of cartridge composition. Hence, our data show that each photoreceptor forms a precise and constant number of afferent synapses independently of neuronal activity and partner accuracy. Our data suggest cell-autonomous control of synapse numbers as part of a developmental program of activity-independent steps that lead to a "hard-wired" visual map in the fly brain.  相似文献   

12.
Wnt signaling during synaptic development and plasticity   总被引:1,自引:0,他引:1  
The formation of synaptic connections requires a dialogue between pre and postsynaptic cells to coordinate the assembly of the presynaptic release machinery and the postsynaptic receptive complexes. Signaling molecules of the Wnt family of proteins are central to this trans-synaptic dialogue. At the neuromuscular junction and central synapses, Wnts promote synaptic assembly by signaling to the developing pre and postsynaptic compartments. In addition, new studies reveal that expression of Wnt proteins and localization of their Fz receptors are regulated by neuronal activity. Importantly, Wnts mediates the synaptic changes induced by patterned neuronal activity or sensory experience in mature neurons. Here we review recent findings into the function of Wnt signaling at the synapse and its link to activity-dependent synaptic growth and function.  相似文献   

13.
Synaptogenesis is a highly controlled process, involving a vast array of players which include cell adhesion molecules, scaffolding and signaling proteins, neurotransmitter receptors and proteins associated with the synaptic vesicle machinery. These molecules cooperate in an intricate manner on both the pre- and postsynaptic sides to orchestrate the precise assembly of neuronal contacts. This is an amazing feat considering that a single neuron receives tens of thousands of synaptic inputs but virtually no mismatch between pre- and postsynaptic components occur in vivo. One crucial aspect of synapse formation is whether a nascent synapse will develop into an excitatory or inhibitory contact. The tight control of a balance between the types of synapses formed regulates the overall neuronal excitability, and is thus critical for normal brain function and plasticity. However, little is known about how this balance is achieved. This review discusses recent findings which provide clues to how neurons may control excitatory and inhibitory synapse formation, with focus on the involvement of the neuroligin family and PSD-95 in this process.  相似文献   

14.
The formation of neuronal synapses is a finely organized process that involves the presynaptic assembly of the machinery responsible for neurotransmitter release and the postsynaptic recruitment of neurotransmitter receptors and scaffold proteins to the postsynaptic density (PSD). The molecular cues guiding the establishment of synaptic connections are now beginning to be identified. Recent evidences indicate that cell adhesion molecules (CAMs) participate prominently in the key steps of synapse formation, inducing trans-synaptic adhesion and promoting a precise alignment of pre- and postsynaptic terminals. This addendum describes a new mechanism of cell-cell interaction that combines features of both diffusible and membrane-bound synaptogenic factors. It particularly points out the key role played by GDNF triggering trans-homophilic binding between GFRα1 molecules and cell adhesion between GFRα1-expressing cells. In this model GFRα1 functions as a ligand-induced cell adhesion molecule (LICAM) to establish precise synaptic contacts and promote the assembly of presynaptic terminals. In this overview, I summarize the current concepts of synapse formation in the limelight of this new mechanism of ligand-induced cell adhesion.  相似文献   

15.
Regulation of cell signaling by Wnt proteins is critical for the formation of neuronal circuits. Wnts modulate axon pathfinding, dendritic development, and synaptic assembly. Through different receptors, Wnts activate diverse signaling pathways that lead to local changes on the cytoskeleton or global cellular changes involving nuclear function. Recently, a link between neuronal activity, essential for the formation and refinement of neuronal connections, and Wnt signaling has been uncovered. Indeed, neuronal activity regulates the release of Wnt and the localization of their receptors. Wnts mediate synaptic structural changes induced by neuronal activity or experience. New emerging evidence suggests that dysfunction in Wnt signaling contributes to neurological disorders. In this article, the attention is focused on the function of Wnt signaling in the formation of neuronal circuits in the vertebrate central nervous system.The formation of neuronal connections requires the navigation of axons to their appropriate synaptic targets, the formation of terminal branches, and the assembly of functional synapses. These processes greatly depend on the proper dialogue between axons and their environment as they navigate to their target, and between axons and their postsynaptic dendrites during synapse assembly. A combination of secreted molecules and transmembrane proteins modulates these processes. Studies over the last 10 years have revealed an essential role for Wnt signaling in axon pathfinding, dendritic development, and synapse assembly in both central and peripheral nervous systems. Wnts also modulate basal synaptic transmission and the structural and functional plasticity of synapses in the central nervous system. Studies of Wnts in the nervous system have significantly contributed to our current understanding of the molecular mechanisms that control neuronal circuit assembly. These studies have also shed light into fundamental aspects of cell signaling such as novel mechanisms of protein secretion (Korkut et al. 2009) and receptor dynamics (Sahores et al. 2010). Here I review the mechanisms by which Wnts modulate axon guidance and synapse formation in the vertebrate central nervous system. I also discuss the increasing evidence in support for a role of Wnts in basal synaptic transmission, synaptic plasticity, and neurological disorders.  相似文献   

16.
Synapses are specialized cell-cell adhesion contacts that mediate communication within neural networks. During development, excitatory synapses are generated by step-wise recruitment of presynaptic and postsynaptic proteins to sites of contact. Several classes of synaptic organizing complexes have been identified that function during the initial stages of synapse formation. However, mechanisms underlying the later stages of synapse development are less well understood. In recent years, molecules have been discovered that appear to play a role in synapse maturation. In this review, we highlight recent findings that have provided key insights for understanding postsynaptic maturation of developing excitatory synapses with a focus on recruitment of AMPA receptors to developing synapses.  相似文献   

17.
Cell-cell adhesion molecules play key roles at the intercellular junctions of a wide variety of cells, including interneuronal synapses and neuron-glia contacts. Functional studies suggest that adhesion molecules are implicated in many aspects of neural network formation, such as axon-guidance, synapse formation, regulation of synaptic structure and astrocyte-synapse contacts. Some basic cell biological aspects of the assembly of junctional complexes of neurons and glial cells resemble those of epithelial cells. However, the neuron specific junctional machineries are required to exert neuronal functions, such as synaptic transmission and plasticity. In this review, we describe the distribution and function of cell adhesion molecules at synapses and at contacts between synapses and astrocytes.Key words: synapses, cell adhesion molecules, cadherin superfamily, immunoglobulin superfamily, nerve tissue proteins, axons  相似文献   

18.
Synapse formation in the CNS is a complex process that involves the dynamic interplay of numerous signals exchanged between pre- and postsynaptic neurons as well as perisynaptic glia. Members of the neurotrophin family, which are widely expressed in the developing and mature CNS and are well-known for their roles in promoting neuronal survival and differentiation, have emerged as key synaptic modulators. However, the mechanisms by which neurotrophins modulate synapse formation and function are poorly understood. Here, we summarize our work on the role of neurotrophins in synaptogenesis in the CNS, in particular the role of these signaling molecules and their receptors, the Trks, in the development of excitatory and inhibitory hippocampal synapses. We discuss our results that demonstrate that postsynaptic TrkB signaling plays an important role in modulating the formation and maintenance of NMDA and GABAA receptor clusters at central synapses, and suggest that neurotrophin signaling coordinately modulates these receptors as part of mechanism that promotes the balance between excitation and inhibition in developing circuits. We also discuss our results that demonstrate that astrocytes promote the formation of GABAergic synapses in vitro by differentially regulating the development of inhibitory presynaptic terminals and postsynaptic GABAA receptor clusters, and suggest that glial modulation of inhibitory synaptogenesis is mediated by neurotrophin-dependent and -independent signaling. Together, these findings extend our understanding of how neuron-glia communication modulates synapse formation, maintenance and function, and set the stage for defining the cellular and molecular mechanisms by which neurotrophins and other cell-cell signals direct synaptogenesis in the developing brain.  相似文献   

19.
The role of cell adhesion molecules in synaptic plasticity and memory.   总被引:12,自引:0,他引:12  
Studies in the past few years suggest that cell adhesion molecules may play signaling as well as structural roles at adult synapses during plasticity. The observation that many adhesion molecules are expressed both pre-synaptically and post-synaptically raises the possibility that information about synaptic activity might simultaneously be communicated to both sides of the synapse, circumventing the need for distinct anterograde and retrograde messengers.  相似文献   

20.
Synaptic destabilization by neuronal Nogo-A   总被引:1,自引:0,他引:1  
Formation and maintenance of a neuronal network is based on a balance between plasticity and stability of synaptic connections. Several molecules have been found to regulate the maintenance of excitatory synapses but nothing is known about the molecular mechanisms involved in synaptic stabilization versus disassembly at inhibitory synapses. Here, we demonstrate that Nogo-A, which is well known to be present in myelin and inhibit growth in the adult CNS, is present in inhibitory presynaptic terminals in cerebellar Purkinje cells at the time of Purkinje cell-Deep Cerebellar Nuclei (DCN) inhibitory synapse formation and is then downregulated during synapse maturation. We addressed the role of neuronal Nogo-A in synapse maturation by generating several mouse lines overexpressing Nogo-A, starting at postnatal ages and throughout adult life, specifically in cerebellar Purkinje cells and their terminals. The overexpression of Nogo-A induced a progressive disassembly, retraction and loss of the inhibitory Purkinje cell terminals. This led to deficits in motor learning and coordination in the transgenic mice. Prior to synapse disassembly, the overexpression of neuronal Nogo-A led to the downregulation of the synaptic scaffold proteins spectrin, spectrin-E and β-catenin in the postsynaptic neurons. Our data suggest that neuronal Nogo-A might play a role in the maintenance of inhibitory synapses by modulating the expression of synaptic anchoring molecules. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号